
Software Defined Wireless Networks:
Unbridling SDNs

Salvatore Costanzo, Laura Galluccio, Giacomo Morabito, Sergio Palazzo

DIEEI – University of Catania – Catania, Italy

Abstract—The software defined networking (SDN) paradigm
promises to dramatically simplify network configuration and
resource management. Such features are extremely valuable to
network operators and therefore, the industrial (besides the aca-
demic) research and development community is paying increasing
attention to SDN. Although wireless equipment manufacturers
are increasing their involvement in SDN-related activities, to
date there is not a clear and comprehensive understanding of
what are the opportunities offered by SDN in most common
networking scenarios involving wireless infrastructureless com-
munications and how SDN concepts should be adapted to suit
the characteristics of wireless and mobile communications. This
paper is a first attempt to fill this gap as it aims at analyzing how
SDN can be beneficial in wireless infrastructureless networking
environments with special emphasis on wireless personal area
networks (WPAN). Furthermore, a possible approach (called
SDWN) for such environments is presented and some design
guidelines are provided.

I. INTRODUCTION

Software Defined Networking (SDN) promises to dramat-

ically reduce the complexity of network configuration and

management as well as to make the introduction of innovation

in the network operations possible.

Network operators envision in such features the possibility

to introduce evolvability in their networks, which in their

perspective means the possibility to differentiate their offer

when compared to other operators, and to improve network

efficiency given that new, more efficient technical solutions

can be easily deployed in existing equipment. Accordingly,

SDN design and experimentation is the subject of the in-

creasing attention of the industrial and academic research

communities. The deployment of large SDN testbeds, such as

the one realized by the OFELIA consortium (http://www.fp7-

ofelia.eu/) and the institution of large industry-driven orga-

nizations focused on SDN such as the Open Networking

Foundation (ONF) (https://www.opennetworking.org/) witness

such increasing interest.

The SDN has interested the wireless networking community

as well1. In fact, an increasing number of enterprises working

in the field of wireless and mobile communications have joined

SDN-related initiatives. For example, Verizon, Nokia Siemens

Networks, Ericsson, and Netgear are current members of ONF.

Regardless of such increasing interest, to the best of our

knowledge, there is not a clear and comprehensive understand-

1Actually the idea of delegating the management of even the lowest layers
of the protocol stack to software programs has been introduced in the wireless
domain long time ago through the Software-Defined Radio concept [7].

ing of what are the advantages of SDN in the most common

wireless infrastructureless networking scenarios and how the

SDN concept should be expanded to suit the characteristics of

wireless and mobile communications [2], [5].

This paper represents an attempt to achieve such understand-

ing in case of IEEE 802.15.4-based low rate, wireless personal
area networks (LR-WPANs) [9]. In fact, major contribution of

this work are the following:

• We will analyze the advantages of the SDN approach in

LR-WPANs.

• We will identify the major differences between the sys-

tem requirements that should be taken into account in

traditional wired networks and LR-WPANs.

• We will present the solution – called Software Defined
Wireless Network (SDWN) – we are developing to sup-

port the SDN approach in LR-WPANs.

The rest of this paper is organized as follows. In Section II

we will elaborate on the opportunities which can be achieved

by applying the SDN paradigm to wireless infrastructureless

networks, while in Section III we will illustrate how the

requirements to be considered in LR-WPANs scenario dif-

fer from those utilized to design SDN solutions for wired

networks. We have used such requirements to develop our

Software Defined Wireless Network (SDWN) protocol stack

which is briefly introduced in Section IV. In Section V

design and implementation details will be discussed. Finally,

in Section VI we will draw our conclusions.

II. THE OPPORTUNITIES OF SDWN

Let any false hope (which might have been turned on in

the fantasy of wireless networking scientists approaching SDN

for the first time) be immediately removed from the table by

saying that:

There is nothing you can do with SDN which cannot
be done without.

Indeed, it has been extensively discussed and stressed that

SDN is not about performance improvements. On the contrary,

it might even be that some performance is lost given that

higher levels of abstraction are introduced. Rather, SDN is

about simplification and evolvability. New network control

and management solutions can be easily deployed on existing

equipment, ideally, as simply as it is to install new programs

on a computer. Accordingly,

2012 European Workshop on Software Defined Networking

978-0-7695-4870-8/12 $26.00 © 2012 IEEE

DOI 10.1109/EWSDN.2012.12

1



• if new and more efficient control and management solu-

tions become available, these can simply be installed to

replace the old ones;

• if the context in which the network operates changes and

consequently the requirements change, then other control

and management solutions can be deployed that are more

effective for the new conditions.

As a consequence, higher efficiency of network equipment

can be achieved on the long term. However, again, the same

efficiency could be achieved by replacing the old network

equipment with new one implementing the desired new func-

tionalities or, if supported by the equipment, by deploying the

new solutions in each relevant piece of the network.

The above claims are valid for any networking environment

and therefore for wireless infrastructureless networks, such

as the wireless personal area networks (WPANs), as well.

However, in wireless infrastructureless networking environ-

ments the separation of the network control and management

functionality from the forwarding operations (as envisioned in

SDNs) offers further possibilities. In fact, while there is almost

total consensus about the technical solutions that should be

used at the first two layers of the protocol stack, at higher

layers and in the management plan several candidates are

available and networks deployed for different scenarios are

likely to use different alternatives.

For example, in wireless sensor networks there is a universal

consensus on the access technology to be used – which should

be based on IEEE 802.15.4 – but there is still a debate

going on for the characterization of the higher layers of

the protocol stack. In fact, ZigBee and 6LOWPAN are very

popular alternatives which are not compatible with each others.

Similar discussions could be carried out about vehicular

networks for which the Wireless Access Vehicular Environment
“WAVE” has been standardized as IEEE 802.11p or about

wireless mesh networks for which the IEEE 802.11s amend-

ment has been standardized. In fact, in both environments

there is no consensus on the routing protocols2 to be used

as well as on most of the network management operations to

be performed.

As a consequence, it may happen that nodes applying the

same access technology utilized in a given network cannot

enter a new network because of differences at the higher

layers of the protocol stack. This gives strict limitations to

the possibility for nodes to migrate from network to network.

Such problem can be easily solved by applying the SDN

paradigm which envisions that the functionality performed at

the network and higher layers of the protocol stack are defined

through software and can be changed easily and “on the fly”.

In fact, in SDN the network management operations are

centralized – at least in the earliest implementations – and

physically separated from the forwarding operations. Indeed,

in SDN there are network nodes (SDN switches) that are

2Note that IEEE 802.11s identifies the Hybrid Wireless Mesh Protocol
(HWMP) – which is derived by the AODV – as the default routing protocol;
however, vendors are allowed to implement their own solutions.

responsible for classifying packets according to some rules
and performing the corresponding actions3. The above nodes

can be distinguished from others (the Controllers) that are

responsible for setting the rules and actions. A network node

that has no information available to classify an incoming

packet, requests the assistance from one (or several) of the

Controllers which should provide an appropriate rule/action

pair based. Note that the policies applied by Controller to set

the rule/action pair (which in the end define the entire network

behavior) can be easily and rapidly modified by installing a

new Controller software.

As it is evident from the above discussion, SDN “enforces”

a centralized approach to network control. This raises crucial

problems about which network element(s) should run network

control operations but makes network optimization easier – as

all relevant information could be made available to the network

Controller – and therefore may provide several advantages as

will be discussed in the following.

For all the above reasons we believe that the extension of the

SDN paradigm to WPANs, which we call Software Defined

Wireless Networking (SDWN) paradigm, can have significant

impact on such networking environment.

III. REQUIREMENTS FOR THE SDWN

Implementations of the SDN solutions for traditional wired

networks have considered velocity as the major performance

measure. Indeed, it is necessary to guarantee that SDN nodes

can execute switching operations at line rate. Satisfaction of

such necessity has been paid in terms of low flexibility in

the definition of the rules specifying the flows, like it will be

further discussed later.

In LR-WPAN networking scenarios constraints about the

velocity can be relaxed. In fact, communications in LR-

WPANs occur at low rate by definition. On the contrary it

is extremely important to guarantee low energy consumption.

By looking at the scientific literature it becomes clear that

reduction of energy consumption can be achieved in several

ways [1]. Among them, SDWN uses duty cycles [3], in-

network data aggregation [4], and flexible definition of rules

and actions to allow cross-layer optimization.

Accordingly, the new requirements which have been con-

sidered in the design of SDWN are given below:

SDWN must support duty cycles – The most obvious

way for reducing the energy consumption is turning the radio

off when it is not utilized, that is, to use duty cycles. The

radio interface of generic nodes is turned off periodically.

This would result in topology modifications which should be

considered by the modules that are responsible for network

control. Obviously control of the duty cycle requires appropri-

ate primitives. To this purpose, SDWN defines an appropriate

action, like we will explain in Section V-B.

SDWN must support in-network data aggregation – En-

ergy consumption can be reduced by removing the redundancy

3Here we derive our terminology from OpenFlow [6], which is to date the
most popular SDN implementation.

2



from the data circulating in the network, that is, by using

data aggregation techniques. In fact, it is well known that

in many relevant scenarios data circulating in the network

is highly correlated both in time and space [8]. Support of

data aggregation functionalities is achieved by SDWN through

an appropriate module in the protocol architecture and the

definition of a new action like the one described in Sections

IV and V-B, respectively.

SDWN must support flexible definition of the rules –

OpenFlow supports the definition of rules which consider the

traditional TCP (or UDP)/IP header fields only. This allows a

definition of switching and routing strategies which are much

more flexible when compared to traditional switching/routing

strategies. However, analysis of the literature suggests that

higher flexibility is required in wireless sensor and actor

networks. In SDWN higher flexibility is achieved along two

orthogonal dimensions.

In fact, on the one hand SDWN allows to define rules which

consider any byte in the packet (obviously there are some

limitations like we will explain in Section V-B) for matching

purposes. This would allow, for example, to route packets

based on the specific value in the payload they carry (which

would be extremely useful in several wireless sensor and

actor networking scenarios). On the other hand, SDWN allows

to define rules in which matching must not be necessarily

conditioned by the equality between the bytes to be considered

in the packet and some reference values. In fact, SDWN allows

to define rules in which matching can be conditioned by other

relational operators. For example, a route can be configured for

packets in which the value contained in the payload is higher

than a given threshold while another route is configured for

packets in which the above value is below the threshold.

Again several application scenarios can be figured out in

which the above flexibility is extremely useful.

Other requirements – There are several other obvious

new requirements that must be satisfied, which we will not

specifically analyze for space constraints. Examples include

the necessity to support nodes mobility and the resulting

topology changes, the necessity to deal with the unreliability

characterizing wireless links, and the need to be robust to the

failure of generic nodes and the Control node.

IV. SDWN PROTOCOL ARCHITECTURE

In this section we show the protocol architecture we are

developing for a sensor and actor network based on IEEE

802.15.4 communication nodes. Besides the transceiver a

micro-control unit is deployed in such nodes with limited

computing and energy capabilities. In the network there is

also one (or several) sink node(s)4 which is (are) also the

node(s) where the network Controller is executed. The IEEE

802.15.4 transceiver of the sink is connected to an embedded

system running, for example, a Linux operating system. Com-

puting/communication capabilities of such embedded system

4In our scenario we have a sink however, the proposed architecture can be
utilized also in the case there are several sinks.

are significantly high when compared to the other nodes of

the network. The network Controller functionality will be

performed by such embedded system.

In Figure 1 we show the proposed protocol architectures for

SDWN nodes. More specifically, in Figure 1 (left) we show

the protocol architecture for generic nodes, whereas in Figure

1 (right) we show the protocol architecture for the sink nodes.

A. Generic node

All generic nodes run the basic physical and MAC layer

functionalities of standard IEEE 802.15.4, required to form

a peer-to-peer topology. On top of the MAC layer, a For-
warding layer is executed which is responsible for treating

arriving packets as specified by the controller. To achieve such

goal, the Forwarding layer maintains a flow table5 updated.

According to the SDN approach, the entries of the flow tables,

which are called, are defined by a rule, an action, and statistic

information.

A rule is a description of the characteristics which are

featured by packets belonging to a flow and that must be

treated by the node in the same way. Indeed, each flow table

entry specifies the action which should be executed to all

packets satisfying the above rule. Finally, the table flow entry

specifies the number of received packets which have satisfied

the rule, that is, the statistic information. In SectionV-B we

will provide more details on the implementation of the flow

table entries.

Arriving packets are provided by the MAC layer to the

Forwarding layer. This identifies the type of packet and if it

is a control packet, then sends it to the Network Operating

System layer which will be described later in this section.

Otherwise, i.e., if the packet is a data packet, the Forwarding

layer controls whether the packet matches one of the rules

specified in the flow table. If this is the case, then the packet

is treated according to the corresponding action. Otherwise the

packet is given to the Network Operating System layer.

The Aggregation layer is executed over the Forwarding

layer. Its responsibility is to perform the action required

to aggregate information flowing through the network. Our

current implementation of the Aggregation layer is quite

straightforward. In fact, on of the actions which can be

specified by the flow table entries is to include the packet in

an aggregation equivalent flow (AEF). Packets belonging to

the same AEF can be aggregated with each others and sent to

the Aggregation layer for this purpose. The Forwarding layer

will just concatenate arriving packets, if these are sufficiently

small, and forward them as specified by the corresponsing flow

table entry.

In the future, a more sophisticated behavior for the Aggre-

gation layer can be designed.

Finally, in the architecture shown in Figure 1 (left) we can

distinguish a Network Operating System (NOS) layer which

runs on top of the IEEE 802.15.4 standard physical and link

layers and has access to all the new protocol layers described

5We derive our terminology from OpenFlow.

3



� �

���������	
���
�

�
�����
��
����	�
����
�

���

���

���

����

����

��
�

�
��

�
�

�	


��

�
�����
��
����	�
����
�

���

���

���� �!�"
�

�
���
������������

��	���!!
�

����

�
�

�
�

�
�

�
�

�
�
�

��
�

�
��

��
�
�

�
��

�
  
�
�

!
�
"
��

�

!
�
"
��

�

#����������� 
��$

Fig. 1. Protocol architecture.

above. Indeed, we observe that the NOS layer has access to

APIs offered by all layers. Such APIs enable to control the

behavior of the physical and link protocol layers as well as the

new defined layers and therefore, allow cross-layer operations.

Objectives of the NOS layer are, on the one hand, to collect

local information from the node and send such information to

the Controller; on the other hand, to control the behavior of all

other layers of the protocol stack as specified by the Controller.

Achievement of the above objectives requires NOS to be able

to reach the sink node at any time. To this purpose a simple

protocol is applied as described in Section V-A. A Flow Chart

of the operations run by the NOS layer is reported in Figure

2.

���
�����	�
���
����

����
��������	��������
�����������������

�������� !����  �#�����
��

�����$� !����  �#��
���
��%��������


���
��������	��&&
������!����
��

�����������!����
���
������'��(������#��


����
��������	��&&
$� !����#���#�����
��%

�������(�������	���
� !�������)������

��*���(��!���!��!���+�,!�
�

�

�

�

�

�

-����.
/�������
����

Fig. 2. Flow Chart for NOS operations.

Finally, note that the Application layer runs on top of the

NOS layer, which is thus expected to provide an appropriate

API. In order to support legacy applications, the current API

generalizes the IEEE 802 APIs.

B. Sink node

The architecture of the Sink node can be split into two

different parts as shown in Figure 1 (right). In fact, the bottom

layers which run in the same device which is used by generic

nodes are the same as explained in the previous subsection.

Besides, there are further functionality which require high

computing and communication capabilities and therefore are

executed in the Linux-based embedded system.

The device and the embedded system are usually connected

through USB, RS232 or some other communication interface.

In the embedded system, an Adaptation layer is executed

which is responsible of formatting the messages in such a way

that they can be handled by the WPAN devices.

Another key element of the sink node is the Virtualizer
layer. This layer uses the local information collected by the

generic nodes to build a consistent and detailed representation

of the current network topology (graph, energy level of all

generic nodes, quality of the links, etc). The Virtualizer layer

is responsible for allowing the coexistence of different logic

networks on the same devices. Such networks can use different

policies regarding the network management, i.e. they use

different Controllers. Each coexisting network is characterized

by a network rule which is used to filter packets that will be

treated according to the specific management policies defined

by the corresponding Controller.

For what concerns the representation of the network topol-

ogy, a map is used to collect all the information regarding a

generic node. More specifically, for each generic node A the

topology information that we need to manage is the following:

• Last time instants when the sink node has received a

packet generated by A.

• The battery level reported in the last packets received

from A.

• A list of nodes that are neighbors of A. For each of such

neighbors, say B, we need to represent the address (at

this moment this is a 2 byte field), the quality of the link

between nodes A and B6, a time stamp reporting the last

time instant when the sink has received a packet from A
that reports B among A’s neighbors.

In our current implementation we represent the network

conditions by exploiting the Java Map interfaces. For the Map

we define an obsolescence timeout which is the time after

which an entry (being it an entire list of neighbors or just one

neighbor) should be removed from the map unless there are

evidences that this action should not be taken.

Finally, besides the Application layer the protocol architec-

ture of the sink node contains one or several Controller(s).

The Controller is responsible to implement the desired network

management policy. More specifically, the Controller will

receive packets that generic nodes have not been able to

classify in an existing flow and for such packets must define

a rule along with the appropriate actions. The Controller will

6The link quality is represented by means of the received signal strength
indication (RSSI), which is represented through 1 byte.

4



create flow table entries in this way which are based on the

information on the current topology of the network.

In our current implementation Controllers can be imple-

mented by using Java.

V. DESIGN AND IMPLEMENTATION DETAILS

In this section we report some implementation details of our

SDWN solution. More specifically, in Section V-A we present

the protocol executed by the NOS to support communications

between a generic node and the controller. In Section V-B we

describe how rules and actions are specified. Finally, in Section

V-C we present the format of relevant SDWN packets.

A. Collection of topology information

One of the major goals of the NOS layer is to collect

the topology information which is needed by each node

to communicate with the sink node and by the sink node

to provide a representation of the current topology to the

Virtualizer and the Controller.

In order to support communication between a generic node

and the Controller, each node must learn a path (as convenient

as possible) to reach the sink. To achieve this, the sink peri-

odically generates a beacon packet. This packet is broadcast

throughout the network in multi-hop. At each hop the beacon

packet contains information about the current distance from

the sink (expressed as the number of hops to reach it) and

a measurement of the local battery level. Upon receiving a

beacon packet each node increases the value of the current

distance from the sink by one, overwrites the value of the

current level of the battery, and, then, forwards the packet.

Also, upon receiving a beacon packet each node measures

the RSSI value in the link towards the nodes that have just

transmitted the beacon.

The information contained in the beacon packets and the

RSSI measurement allow each node to identify the most

convenient next hop node to reach the sink. In particular, at

first, it would choose the node that declares the lowest distance

from the sink; then, the node with the longest battery life and,

alternatively, the node toward which the highest RSSI value

was measured.

Each node also stores in a local table, called neighbors table,

the list of nodes from which it received a beacon, and for each

of them stores the measured value of RSSI as well. This list

of neighbors will be sent periodically to the sink node using

a packet, called report packet, which will be forwarded to the

best next hop node identified as explained above.

The sink node will receive the list of neighbors from any

network node and will be able to infer the global topology of

the network. In fact, it will receive information by all nodes

about their one-hop neighbors and the link quality towards

each of them (expressed in terms of RSSI).

B. Specification of rules and actions

Differently from the wired network case in our scenario

we have strict limitations in terms of available memory.

Accordingly, we need to develop a methodology to define

TABLE I
EXAMPLARY FLOW TABLE

Window I Window II ... Action Stats
Size Op Addr Value Size Op Addr Value ... Type Value Count

2 = 2 170.24 2 �= 4 170.11 .. Forward 170.23 17

2 = 2 170.16 1 = 1 3 .. Drop 1 3

2 �= 2 170.24 1 = 7 25 .. Modify 7/26 3

2 = 2 170.17 0 = 0 0 .. Forward 170.21 11

rules which is memory efficient. In order to limit the space

required to store the rule in the flow table, our rules can

operate only upon a limited portion of the incoming packet. In

particular, a rule operates on (up to) three windows of bytes of

the incoming packet. Each windows in no longer than 2 bytes

(if this is set to zero the window is ignored). An example of

how the rules are stored in the flow-table is reported in Table

I.

Each flow table entry contains three blocks (window blocks)

related to three windows of bytes to match against packets, a

block (action block) related to the action that specifies the way

in which the packets of a flow will be processed and a counter
used for statistical purposes.

Each window block is composed of the following fields:

• size: indicates the number of bytes of the window. It can

assume a value between 0 and 2. More specifically, if this

is set to zero, then the window is ignored.

• operator: defines the relational operator that must be

checked to consider the matching valid. In our first release

we implement only the operators “=” and “�=”.

• address: indicates the position of the first byte of the

window.

• value: indicates the value which must be matched against

the byte(s) of the packet window.

Upon receiving a packet, the matching algorithm checks

whether each window matches the value stored in the field

“value” and if so, it performs the action that is identified by

the value stored in the “Action Type” field.

The type of action can be “forward”, “modify”, “drop”,

“aggregate” and “turn off radio”. The action will be performed

according to the value contained in “Action Value” field. This

field length is two bytes and assumes a different meaning

depending on the type of action:

• If the action is “forward”, the two bytes of “Action Value”

field are used to identify the next hop.

• If the action is “modify” the first byte of “Action Value”

field is used to identify the specific byte of the packet

which must be modified and the second byte to indicate

the value to be assigned to such byte.

• If the action is “drop” the first byte is used to give the

probability with which the packet should be dropped (by

default this probability is set to one). The second byte

indicates the second byte of the address of the node to

which the packet should be forwarded in case it is not

5



dropped. Note that, if there are several nodes with the

same last byte in their address, the node will choose

randomly (implementation specific) the one to which the

packet will be actually forwarded.

• If the action is “aggregate” the two bytes are used to

identify the next hop to which the aggregated packet must

be forwarded. Definition of the aggregation rules will be

explored in our future work.

• If the action is “turn off radio” the two bytes of “Action

Value” field are used to specify the duration of the interval

during which the radio interface must be off.

For example, the first entry in Table I specifies that packets

that have in bytes 2 and 3 the values 170 and 24 and that

do not have in bytes 3 and 4 the values 170 and 11 must be

forwarded to node 170.23. Finally, the last value in the line

specifies that 17 packets have been classified according to this

rule up to now.

The flow table entry will be populated with the values

contained in the “Rule/action Response” packets received by

the sink. We will provided a more detailed description in

Section V-C.

C. Packet format

Fig. 3. Packet Header Format.

All the packets circulating in the network use a fixed header

that is organized as depicted in Figure 3. Accordingly, the first

flow table entry in Table I, which we have already discussed in

the previous section, can be interpreted as follows. All packets

generated by node 170.24 and that are not directed to node

170.11 must be forwarded to node 170.23.

Additional fields may be included based on the specific type

of packet, as explained below:

Type 0 - Data packet: This packet is generated/delivered

by/to the application layer and contains the header as depicted

in Figure 3 plus the payload.

Type 1 - Beacon packet: This is the packet which is

broadcast periodically by the sink. Such packet contains the

header fields as reported above and an additional byte (referred

to as “Hops to sink”) providing the number of hops required

to reach the sink from the node which has transmitted (not

generated) the packet.

Type 2 - Report packet: This packet is generated pe-

riodically by each node and is transmitted to the sink upon

receiving a Beacon Packet. Report packets contain the 10 bytes

of header depicted in Figure 3 plus the “Hop to sink” byte,

another byte reporting an assessment of the current charge

level of the battery (several devices support the reading of the

battery voltage) and information about the current neighboring

nodes. Such information is structured as follows. The first byte

contains the number of current neighbors. Then for each of

the above neighbors 2 bytes are used for the address and an

additional byte for the RSSI.

Type 3 - Rule/action Request: This packet is generated

by a node upon receiving a packet which does not match any

of the rules stored in the flow table. It is generated as a copy

of the incoming packet in which, however, the Type of Packet

field (i.e., byte 6 in the header) is set to 3 and the original

Type of Packet value is inserted at byte 10.

Type 4 - Rule/action Response: Besides the usual header

this packet contains a pair Rule/Action which is described as

presented in Section V-B. More specifically, we use 2 bits

to identify the window size, 3 bits to identify the relational

operator, one byte to identify the position in the packet of the

first byte of the window, and two bytes for the “value” field.

VI. CONCLUSIONS

In this paper we have made a first attempt to analyze the

opportunities and challenges of applying the SDN paradigm

in IEEE 802.15.4 networks. Currently, we are implementing

and testing a specific solution for such scenario which we call

SDWN.

In this paper we have presented the general architecture

of SDWN along with some of its most relevant design and

implementation details.

This paper must be considered as a first step towards the

definition of a complete working solution. In fact, several

issues remain open. Significant examples are related to the

setting of some parameters characterizing the behavior of the

proposed solution. Even if the values of such parameters can

be set dynamically by the controller, we are currently running

simulations to evaluate some optimal values that can be used

by default.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. A survey on
sensor networks. IEEE Comm. Magazine. Vol. 40, No. 8. Aug. 2002.

[2] M. Boc, A. Fladenmuller, M. Dias de Amorim, L. Galluccio, S. Palazzo.
Price: Hybrid geographic and contact-based forwarding in delay-tolerant
networks. Computer Networks. Vol. 55, No. 9, Jun. 2011.

[3] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris. Span: An Energy-
Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc
Wireless Networks Wireless Networks. Vol. 8, No. 5. Sep. 2002.

[4] L. Galluccio, S. Palazzo, and A. T. Campbell. Modeling and designing
efficient data aggregation in wireless sensor networks under entropy and
energy bounds. International Journal of Wireless Information Networks.
Vol. 16, No. 3, Sep. 2009.

[5] L. Galluccio, T. Melodia, S. Palazzo, G. E. Santagati. Challenges and
Implications of Using Ultrasonic Communications in Intra-body Area
Networks. WONS 2012. Jan. 2012.

[6] N. McKeown, T. Andreson, H. Balakrishnan, et. al. OpenFlow: Enabling
Innovation in Campus Networks. White paper. Mar. 2008.

[7] W. Tuttlebee. Software Defined Radio: Origins, Drivers, and Interna-
tional Perspectives. Wiley. 2002.

[8] M. C. Vuran, O. B. Akan, I. F. Akyildiz. Spatio-temporal correlation:
theory and applications for wireless sensor networks. Computer Net-
works. Vol. 45, No. 3. Jun. 2004.

[9] IEEE 2003 version of 802.15.4 MAC & Phy standard.
http://standards.ieee.org/getieee802/download/
/802.15.4-2003.pdf

6




