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A novel reactor simulator for the methanol oxidation to formaldehyde on silver catalyst was presented
in this paper, including an original kinetic model based on artificial neural networks. The neural network
training was performed using genetic algorithms associated with standard back-propagation, in order to
improve the training efficacy, eliminating the effect of random initial weights estimates. Experimental
data for training (rates of reaction) were obtained from process data (conversion and selectivity), using
a back-calculation procedure through a simplified deterministic model implemented in the reactor sim-
ormaldehyde
ilver
rtificial neural networks
enetic algorithms
rtificial intelligence
ethanol oxidation

ulator. Process data are widely available at industrial plants or literature and the proposed approach
improves the response time to train the neural network in cases where rigorous kinetic experimental
work cannot be conducted due to resource limitations. The simulator containing the trained artificial
neural network was successfully validated with literature and industrial data, especially at industrial
operating conditions, where available deterministic kinetic models for this system have failed. The sim-
ulator presented here, as well as the procedure to train the neural net consist in a powerful tool for plant

mize
inetic modeling process engineers to opti

. Introduction

Formaldehyde is one of the world’s most important chemicals,
asic building unit for a wide variety of substances [1]. Approx-

mately 32 million metric tonnes of formalin, 37% solution basis,
s produced worldwide per year [2], while the consumption has
rown steadily over the past two decades due to increasing demand
y the construction and automotive sectors for engineered prod-
cts manufactured using formaldehyde-based resins.

Two processes are commonly employed for formaldehyde man-
facture: the Silver and the Formox process [3,4]. In the former,
ethanol-rich methanol–air-stream mixture is passed through
simple silver catalyst fixed-bed at 600–700 ◦C. The Formox

rocess differs in the nature of the catalyst (iron–molybdenum
xides), methanol concentration (oxygen-rich), bed temperature
300–400 ◦C) and bed configuration (multitubular reactor). The

ilver catalyzed route accounts for approximately 30–50% of the
urrent world’s capacity [5–7]. It consists basically in two parallel
eactions: methanol oxidation (Eq. (1)) and methanol dehydro-
enation (Eq. (2)), both taking place on the silver surface. The first

∗ Corresponding author. Tel.: +55 19 3521 3958; fax: +55 19 3521 3910.
E-mail addresses: acpapes@terra.com.br, antonio.papes@gapac.com.br
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the formaldehyde silver reactor in a timely and economical fashion.
© 2010 Elsevier B.V. All rights reserved.

reaction (oxidation) is responsible for approximately 50–60% of the
formaldehyde produced. Formaldehyde is consumed in the reac-
tor by further oxidation to carbon dioxide on the silver catalyst
(Eq. (3)) and gas-phase decomposition to carbon monoxide above
650 ◦C (Eq. (4)).

CH3OH + (1/2)O2 → HCHO + H2O �H = −159 kJ/mol (1)

CH3OH � HCHO + H2 �H = +84 kJ/mol (2)

HCHO + O2 → CO2 + H2O �H = −514 kJ/mol (3)

HCHO → CO + H2 �H = +7 kJ/mol (4)

Water plays an important role in increasing the selectivity
towards the desired product [6,8–10]. The addition of water or
not at reactor feed differ the two major variation of formaldehyde
industrial process: Water Ballast Process and Methanol Ballast Pro-
cess, respectively.

After more than a century since formaldehyde synthesis was
developed, there is no full mechanistic and kinetics understanding
of methanol oxidation on silver surfaces under industrial con-

ditions [5,10–15]. In only a few reported studies in literature,
attention has been paid to the way that by-products are formed.
No single study covers the influence of temperature, methanol
and oxygen concentrations, as well as residence time under indus-
trial conditions [10,16]. The development of new models is costly,

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:acpapes@terra.com.br
mailto:antonio.papes@gapac.com.br
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ime consuming and they are not the focus of industrial person-
el. Any attempt to obtain kinetic models applied to industrial
onditions in a timely fashion would be a powerful tool for
nderstanding and optimizing this process. In these cases, novel
pproaches like neural networks are efficient in predicting the
ate of reaction, based on available data. Considering the poten-
ial market demand for formaldehyde and strong competition,
here are significant economic incentives to improve the selectiv-
ty of the process [5,6,17]. Environmental pressure is also a driver
n this case, once the carbon emissions generated by formalde-
yde plants (carbon dioxide and carbon monoxide) will have to be
educed soon in order to comply with world’s efforts against global
arming.

Artificial neural networks (ANNs) are widely used for simu-
ation of cases where deterministic models are not available or
ail in fitting the data [18,19]. The model is known to be generic
nd it can be used for a variety of problems with minor adapta-
ions [20]. The ANN learns the data pattern using an algorithm
nown as “training”, where many data rows [input/output] are
resented to the net until it fits the data. Details about the neural
etwork algorithm features and training process may be found in
21–27].

The classical ANN training methods, as back-propagation (BP),
ave been improved by the association of new techniques, as
enetic algorithms (GA). The training session starts with GA, which
erforms a global search on the net weights range, refining an initial
andom set of weights to obtain a better estimate, more probable
o be close to the global optimum. The BP algorithm then assumes
he training, refining the solution provided by GA to approach the
ptimum solution. GA have been successfully used to solve opti-
ization problems involving multiple parameters, where many

ocal optima may exist and there is a need to perform a wide search
n the variables range [28–30]. Details about GA may be found in
22,31–36].

In this work, the ANN was trained using an association of GA
nd BP as a training algorithm. Experimental kinetic data corre-
ating rate of reaction with associated conditions (composition,
emperature and pressure) is required to train the ANN, but this
ind of data is not usually available on industrial processes, which
easure and collect only macroparameters as conversion and

electivity. Due to several limitations [5,10–15], particularly for
he formaldehyde process, there is little kinetic data reported in
iterature and the best works available deal only with macropa-
ameters. In this sense, we employed an alternative approach
o back-calculate the rate of reactions from these macroprocess
arameters, as described in [25], according to the steps described
elow.

Initially, a simplified deterministic kinetic model was inserted
nto the reactor simulator. A set of data points which correlated
onversion, selectivity and operational conditions (temperature,
ressure and feed composition) was taken into consideration and,
or each of these process data points, the simplified model param-
ters were adjusted until the conversion and selectivity calculated
y the simulator fit the experimental ones. Once each individual
oint was fit, the rate of reaction profile through the catalytic bed
alculated by the simulator was saved with the associated local
perational conditions (partial pressures and temperature pro-
les), also provided by the simulator. This simplified kinetic model
t had to be done individually for each single data point and it was
nly valid for that data point, but after repeating the same pro-
edure for all available experimental points, a huge set of rate of

eaction data may be obtained [25]. It is important to mention that
he reactor profiles obtained through this procedure is the goal, for
urther use on ANN training, and not the singular parameters of the
implified model. This procedure has been successfully applied by
he authors as detailed in [25] and it is not supposed to replace rig-
gineering Journal 157 (2010) 501–508

orous experimental work to obtain the kinetics of a reaction, but it
represents a quick approach to generate required data to simulate
the process, in cases where there are limited resources for kinetic
experimentation.

The ANN was trained, using the back-calculated rates of reac-
tion and the association GA + BP as a training algorithm and, finally,
the optimum set of weights was stored in a data file. The trained
ANN is in fact the kinetic model and it was then able to estimate the
rate of reactions for the whole range of input variables. Rates for
the methanol oxidation to formaldehyde on silver catalyst back-
calculated from process information obtained in literature [14]
and industry were used to exemplify the procedure. The hybrid
simulator, using a deterministic model for the catalytic fixed-bed
and ANN to calculate the rate of reactions, was employed to esti-
mate conversion and selectivity at selected conditions, in order
to compare simulated values with experimental ones, for vali-
dation purposes. Many cases were successfully tested, and the
procedure proved to be an effective tool for the simulation of this
process.

To the best of our knowledge, this is the first time ANN is used to
model the kinetics of the methanol oxidation to formaldehyde on
silver catalyst. The simulator equipped with the trained ANN was
able to successfully estimate industrial conditions, where deter-
ministic models available in literature failed. The back-calculation
of kinetic data from macroprocess information, using a simplified
deterministic kinetic model with the simulator, was used for the
first time with this process as well.

The association of GA and BP for ANN training has been exten-
sively reported in literature and proved once more to be a good
approach to improve training efficacy.

2. Formaldehyde reactor simulator

The formaldehyde fixed-bed reactor was simulated based on
mass balance (Eq. (5)), derived from the equation of continuity [37]
on cylindrical coordinates, considering plug-flow tubular model,
molecular diffusion, mechanical dispersion and steady-state oper-
ation [38,39]. Calculations and industrial observations indicated
that, for practical ends, the reactor (fixed-bed) operates isother-
mally [25,40,41]. The pressure drop in the bed is small enough to
consider the pressure constant in the simulations [25]. Fig. 1 shows
a scheme of a typical silver reactor.

DL.
∂2C

∂z2
+ DR.

(
∂2C

∂r2
+ 1

r
.
∂C

∂r

)
− VZ.

∂C

∂z
+ �A.RV = 0 (5)

where “C” is the substance concentration (kg/m3); “r” is the dis-
tance from the reactor central line (m); “z” is the distance from
the reactor inlet (m); “DL” and “DR” are the axial and radial hydro-
dynamic dispersion coefficients, respectively (m2/s); “VZ” is the
axial velocity (m/s); “�A” is the stoichiometric coefficient for the
studied substance (dimensionless) and “RV” is the rate of the reac-
tion per reaction volume (kg/m3 s). The hydrodynamic dispersion
coefficient is the sum of molecular diffusion coefficient and the
mechanical dispersion coefficient.

The mass balance differential equation was solved numeri-
cally using the Crank–Nicholson algorithm [42,43], a semi-implicit
method known to be intrinsically stable. The physical properties of
pure substances and mixtures were calculated [44] at each step of
Crank–Nicholson method, according to the actual local conditions,
as a function of temperature and pressure.
The simulator contains a sub-routine with the ANN algorithm to
calculate the rate for the three reactions of interest in this process:
formaldehyde formation (Eq. (1) + Eq. (2)), oxidation (Eq. (3)) and
gas-phase decomposition (Eq. (4)), using the trained weights stored
in a data file. For every step of the numerical method, the simulator
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Fig. 1. Scheme of a typical silver reactor, sh

rovides to the ANN the local conditions (temperature and partial
ressures) and it calculates the rates for the three reactions.

Fig. 2 shows a flow diagram with the complete procedure. The

nputs to the network are bed temperature (K); total pressure
atm); partial pressures of methanol, oxygen, water, hydrogen,
ormaldehyde, carbon dioxide and carbon monoxide. The number
f neurons at hidden layer was varied to obtain the optimum con-
guration. The hybrid simulator containing the ANN as well as the

Fig. 2. Flow diagram with the complete procedure for bac
the fixed-bed and the downstream cooler.

sub-routines for ANN training using GA and BP were written by the
authors in Fortran® code.
3. Results and discussion

Experimental process data obtained in literature [14] and indus-
trial data were used to exemplify the procedure and train the
ANN.

k-calculation, ANN training and reactor simulation.
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Table 1
Sample of the rate of reaction set of data (nitrogen partial pressure completes total pressure).

Rate of reaction (kmol/m3 h) Process conditions–partial pressures (atm)

RHCHO RCO2 rCO CH3OH O2 H2O HCHO CO2 H2 CO

5.9715E+02 4.2389E+01 4.8627E+02 4.09E−02 2.44E−02 7.87E−02 2.47E−02 1.90E−03 3.27E−02 1.17E−02
4.6233E+02 1.6475E+01 2.1465E−01 6.36E−02 3.13E−02 7.00E−02 1.73E−02 3.79E−04 9.22E−03 2.88E−06
1.5812E+02 1.9595E+01 1.0479E+00 2.66E−02 2.04E−02 8.59E−02 4.98E−02 2.83E−03 2.93E−02 8.85E−05
5.9728E+01 1.7348E+01 1.4351E+00 1.12E−02 1.50E−02 9.25E−02 6.14E−02 5.50E−03 3.94E−02 2.73E−04
6.6853E+01 1.4969E+01 1.3753E+01 8.90E−03 1.52E−02 9.33E−02 6.33E−02 3.82E−03 4.06E−02 2.16E−03
5.7087E+01 1.7234E+01 1.4452E+00 1.07E−02 1.48E−02 9.26E−02 6.17E−02 5.63E−03 3.97E−02 2.83E−04
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2.3453E+02 1.7311E+01 9.5235E+00 2.76E−02 2.12E−
2.3148E+01 1.1270E+01 7.4406E+01 2.61E−03 1.27E−
8.6629E+01 2.1837E+01 4.7030E−02 2.09E−02 1.74E−
2.6341E+02 2.4674E+01 5.3329E−05 7.27E−02 3.35E−

.1. Literature data simulation

Waterhouse et al. [14] performed experimental work with a
xed-bed microreactor, filled with silver catalyst, using water at

eed (Water Ballast Process). They ran experiments with molar
eed composition CH3OH/O2/H2O/He of 2.25/1.00/1.70/20.00, total
ressure of 1.1 atm and space velocity of 1.25 × 105 h−1, varying the
ed temperature. A set of 670 data points that correlate rate of reac-
ion with local temperature and partial pressures of the reactants
ere back-calculated [25] from Waterhouse’s study and used for

he ANN training. Table 1 brings a small sample of this set of data.
The training session starts with GA as the algorithm to adjust the

NN weights. It develops as follows: (1) initial population is chosen
andomly – each individual of the first generation is characterized
y a random set of ANN weights; (2) every individual of the pop-
lation was evaluated – the ANN was run for all “N” experimental

nputs, calculating the outputs, using the weights associated to each
ndividual. The calculated outputs were compared to the exper-
mental rates; (3) the individuals of the population were ranked
ccording to the lower “E” (neural network error) values; (4) the
owest “E” value of the population (best individual) was copied to
he next generation (elitism); (5) the best parents were chosen to

enerate the children, using the crossover operators described in
iterature [22,31,33–36]; (6) the same procedure is repeated for the
econd generation and the algorithm is run for a defined number of
ycles. The final set of weights (chromosome of the best individual
f the last generation) is saved in a data file.

ig. 3. Correlation between experimental rate of reaction extracted from process data
ormaldehyde formation reaction (Eq. (1) + Eq. (2)).
8.55E−02 4.95E−02 1.66E−03 2.81E−02 5.38E−04
9.43E−02 4.76E−02 5.10E−03 6.31E−02 2.11E−02
8.83E−02 5.21E−02 5.85E−03 3.49E−02 7.30E−06
6.60E−02 8.60E−03 5.53E−04 5.13E−03 6.96E−10

The GA features used in this work were: population size of
50–150 (typical: 100); best 20 individual selected as parents;
1000–5000 generations (typical: 3000); real chromosome code;
50% probability for single-point and uniform crossover, each [34];
6.6% probability of creep mutation; and 3.4% probability of jump
mutation. The best population size in the cases studied here was
found to be 100, considering 3000 generations. These values were
defined as default after several GA studies performed by the authors
with different applications [25]. After finishing the GA training (1 h,
Pentium-4, 2.66 GHz, 480 MB RAM), the BP algorithm starts from
the solution provided by GA, stored in a data file. The BP continues
according to the classical method, reducing the error “E” until it lies
below a certain limit established by the user. When the training is
finished, the final set of weights is stored in a data file and the ANN
is used to calculate the rate values for a new set of data (validation).

On the validation step, the calculated rates were compared to
the experimental ones (formation, oxidation and decomposition
of formaldehyde, respectively). The results are shown in Figs. 3–5,
where the rate of reaction calculated by the ANN was plotted
against the experimental values extracted from Waterhouse et
al. [14], both normalized between 0 and 1, for the three reac-
tions stated above. High correlation coefficients (0.9985; 0.9976

and 0.9988, respectively) were obtained and calculated points con-
centrated along identity line, as shown on the graphs, indicating
that the neural network could successfully fit the experimental
data simultaneously for the three rates. The good fit was confirmed
through the “F” test (F-value of 489, which is overwhelmingly sig-

of Waterhouse et al. (x-axis) and rates calculated by the ANN (y-axis) for the
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ig. 4. Correlation between experimental rate of reaction extracted from proces
ormaldehyde oxidation reaction (Eq. (3)).

ificant when compared to the F-distribution [45], demonstrating
he success of the ANN model to fit the experimental rates). Black
ircles refer to data used for training the ANN. Part of the data set
as reserved to feed the trained ANN, for validation purposes. The

pen squares indicate the validation set of data, comparing the
xperimental rates with the calculated ones and confirming the
ood ANN training.

The optimum number of neurons at hidden layer was identified
s 12. The ANN configuration set for this case has 169 weights to
e fit and 670 experimental points, which is a possible case under
he mathematical point of view, with significant number of points
ompared to the number of parameters to be fit. Sha [46] pro-
ided a valuable discussion about the mathematical aspects of ANN
raining. The training statistics are: training time of 5 h (Pentium-4,

.66 GHz, 480 MB RAM) and 1,677,943 iterations.

It is important to guarantee that the data set covers a significant
ange of the variables to have a good ANN training, otherwise, the
odel could fail on the generalization test and might be restrict

ig. 5. Correlation between experimental rate of reaction extracted from process data
ormaldehyde decomposition reaction (Eq. (4)).
of Waterhouse et al. (x-axis) and rates calculated by the ANN (y-axis) for the

to the narrow range of the parameters represented by the experi-
mental data. One of the risks of ANN training is the over-learning,
when the net fits perfectly the data used for training, but it becomes
unable to deal adequately with new data. This issue was verified
with two validation steps: the trained ANN was employed to cal-
culate rates at conditions not used for training and the results were
compared to experimental ones; the hybrid simulator, with the
trained ANN was used to simulate different scenarios, including
extrapolation and conditions not used to back-calculate the rates
for training. Both validation steps were succeeded and the ANN
passed on the generalization test.

The process conditions reported by Waterhouse et al. were then
estimated using the reactor simulator equipped with the trained
ANN. Fig. 6 shows Waterhouse’s [14] experimental points and

the results of the simulator, which was able to properly fit the
experimental points on a wide temperature range (350–750 ◦C)
and principally on the range of 600–700 ◦C, where most industrial
plants are operated. It can predict correctly the abrupt change on

of Waterhouse et al. (x-axis) and rates calculated by the ANN (y-axis) for the
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ig. 6. Simulation of experiments from Waterhouse et al., varying bed temperature.
ioxide and carbon monoxide, as well as methanol conversion. Solid lines represen

he kinetics above 650 ◦C, where decomposition of formaldehyde to
arbon monoxide becomes relevant, which is extremely important
or the reactor optimization. Some deviation from experimental
oints for formaldehyde selectivity is still observed in the range
00–730 ◦C, above industrial operation range, with small impact
n practical use of the simulator.

Selectivity towards formaldehyde increases with bed tempera-
ure up to 650 ◦C and then starts to decrease, with a dramatic drop
bove 700 ◦C, due to the gas-phase decomposition of formaldehyde
o carbon monoxide. Selectivity towards carbon dioxide decreases
onsistently with increasing temperature. On the other hand, the
igher the temperature, the higher the carbon monoxide selectiv-

ty, showing a quick increase above 700 ◦C. These trends are very
mportant to understand and optimize the Silver process, and the
roposed approach has proven to allow the ANN to capture cor-
ectly these relationships.

Waterhouse’s [14] experiments were run at near industrial con-
itions, where many laboratory studies had failed, which they
ttributed to differences in catalyst, bed construction, reactor
esign and testing conditions. In accordance with industrial prac-
ices, Waterhouse et al. identified the importance of water presence
t feed for achieving high formaldehyde yields.

.2. ANN training with industrial data

Industrial data from an operating Silver plant in Brazil were
tudied according to the same procedure. Actual process infor-
ation was extracted from the plant, based on Water Ballast

rocess, with molar feed composition CH3OH/O2/H2O/N2 of
.60/1.00/0.46/3.76 (air is the carrier gas), total pressure of 1.2 atm,
pace velocity of 6.1 × 106 h−1, and temperature set-point of 625 ◦C.

set of 4050 data points which correlate rate of reaction with
ocal temperature and partial pressures of the reactants were back-
alculated from plant process data and used for the ANN training,
erformed in the same fashion as explained above. The optimum
umber of neurons at hidden layer was also found to be 12 in this
ase. The number of experimental points is significantly bigger than

he number of fitting parameters.

The rate of reaction calculated by the trained ANN was plot-
ed against the experimental values from the industrial Silver
lant. Due to space limitations, the graphs are not shown, but
igh correlation coefficients were obtained: 0.9985 for formalde-
s are experimental measurements for the selectivity towards formaldehyde, carbon
lated values for selectivity; dashed line represents simulations for conversion.

hyde formation, 0.9910 for formaldehyde oxidation and 0.9967
for formaldehyde decomposition. Calculated points also concen-
trated along the identity line, indicating that the neural network
could successfully fit the actual experimental data from the plant,
even containing noise normally encountered in an industrial plant
(instrument errors, unregistered deviations, record errors, mea-
surement lags and normal oscillations from set-points). The good
fit for the validation set of data (not used for training) confirmed
the successful ANN fit. The complete analysis may be found in [25].

Papes Filho [25] compared the training efficacy using only stan-
dard BP and the hybrid approach (GA + BP), concluding that the later
is definitely superior for achieving better fit.

Process simulations for industrial conditions with the ANN have
demonstrated the ability of the neural net in estimating conversion
and selectivity close to industrial measurements. Fig. 7 shows some
of the comparison results, where simulations were performed with
different operating temperatures. Industrial points (black symbols)
lie only on the temperature range limited to the operational con-
ditions (620–680 ◦C), in this sense, literature data (open symbols)
from Waterhouse et al. [14] spread on a wider temperature range
(580–720 ◦C) were plotted on the same graph in order to provide a
clearer picture of the trends for the reader. Simulated data (lines)
perfectly matched the industrial data, validating the simulator for
plant use. The simulated trends were very consistent to the lit-
erature data. Some deviation from simulation and literature data
was observed in this case, once ANN training was performed using
only industrial data. Depending on the catalyst quality and reactor
geometry, some differences might be perceived on the performance
of different silver reactors. In this sense, the simulator must be fit
(or the ANN must be trained) for each case, using the proper exper-
imental data. The trends provided by the simulator will be very
similar, but individual values might vary depending on the reactor.

It is worthwhile mentioning that this proposed approach allows
dealing even with data obtained when the regimen is not kinetic but
rather mass-transfer controlled which may occur in some indus-
trial operating conditions. This is very suitable in cases where the
focus of the project is more practical (process control or optimiza-

tion) than theoretical (kinetic study), when the process reaction
rates may be back-calculated from the operational data and mea-
sured reactor temperature profiles. The procedure is not supposed
to replace experimentation and rigorous modeling, but it is a first
step to model and simulate a process to take fast decisions about
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ig. 7. Effect of temperature on methanol conversion, selectivity towards formald
ccording to the base industrial operational conditions, varying the bed temperatu
omparison. Solid lines refer to simulated selectivity. Dashed line refers to simulate

afe conditions, operational policies and economical aspects. The
ybrid simulator and the ANN training approach presented in this
ork proved to be effective in simulating the Silver process with

xisting available data. In this sense, it represents an effective tool
o understand this process, aiding operators and engineers in fore-
eeing abnormal situations and allowing anticipation of corrective
ctions. The system may also be used for process optimization,
elping process engineers to define best operational policies to
educe costs, improve throughput and minimize carbon emissions
25].

The presented approach was truly used to simulate an operat-
ng industrial Silver formaldehyde reactor and the outputs guided
rocess engineers to define new operational set-points which lead
o significant improvement on reaction selectivity to formaldehyde
n a Brazilian formaldehyde plant. Consequently, significant value

as added to the process while production costs and the carbon
missions decreased.

. Conclusions

A novel simulator for methanol oxidation to formaldehyde on
ilver catalyst was presented in this work. A novel kinetic model
ased on artificial neural networks was inserted into the reactor
imulator in order to calculate the rate of the reactions (formalde-
yde formation, formaldehyde oxidation to carbon dioxide and
as-phase formaldehyde decomposition to carbon monoxide). The
NN training was performed through an association of genetic algo-
ithm and classic back-propagation.

The hybrid reactor simulator, constructed with deterministic
xed-bed model and a trained ANN, proved the ability to cor-
ectly predict conversion and selectivity for desired formaldehyde
rocess conditions. The methods presented here were tested with
wo case-examples: experimental work from literature and actual
ndustrial data. The later one comprised a large set of data rows,
ontaining noisy plant measured data. Good results were achieved
or the two studied cases, providing estimates much closer to the
xperimental values for conversion and selectivity, compared to

reviously available models.

The system is a powerful tool for operators and engineers
n foreseeing abnormal situations, anticipating corrective actions,
efining best operational policies to reduce costs, improve through-
ut and minimize carbon emissions.

[

[

, carbon dioxide and carbon monoxide. Simulations were performed in this work,
dustrial (black symbols) and literature (open symbols [14]) data were plotted for
version.
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