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A b s t r a c t  
In this paper, we show how a simple feed- 
forward neural network can be trained to fil- 
ter documents when only positive informa- 
tion is available, and that this method seems 
to be superior to more standard methods, 
such as tf-idf retrieval based on an "aver- 
age vector". A novel experimental finding 
that  retrieval is enhanced substantially in 
this context by carrying out a certain kind 
of uniform transformation ("Hadamard")  of 
the information prior to the training of the 
network. 

1. I n t r o d u c t i o n  
The goal of this research is to develop a filter that  
can examine a corpus of documents and choose those 
of interest. 

This requires a method of defining what it means to 
be "of interest" and a method of matching the docu- 
ments to this definition. It is natural and convenient 
to assume that  the definition of interest be learned 
(see also [4] and [6] ) by observing examples, and, 
in this context, it is pertinent to assume only posi- 
tive examples. That  is, one can have a sample set of 
examples of documents which are "interesting" and 
from this set develop a filter which can be applied 
to select other such "interesting" documents. The 
reason for using only positive examples is that  one 
can (i) obtain such examples simply by observation; 
i.e. for many applications an "active" teacher will 
not be necessary (ii) in many contexts, it is easier 
to find "typical" examples rather than typical "non- 
examples". See [2] for other papers on the use of 
positive examples only. 
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2. T h e  N e u r a l  N e t w o r k s  Classifier 
The basic design of the filter under discussion here is 
a feed-forward neurM network. In order to incorpo- 
rate the restriction of positive examples only, we used 
the design of a feed-forward network with a "bottle- 
neck", we choose a three level network with m inputs, 
m outputs and k neurons on the hidden level, where 
k < m. Then the network is trained, under stan- 
dard back-propagation to learn the identity function 
on the sample examples. 

The idea is that  while the bottleneck prevents learn- 
ing the full identity function on m-space; the iden- 
t i ty on the small set of examples is in fact learnable. 
Then the set of vectors for which the network acts 
as the identity function is a sort of sub-space which 
is similar to the trained set. (This avoids the "sat- 
uration" problem of learning from only positive ex- 
amples.) Thus the filter is defined by applying the 
network to a given vector; if the result is the identity, 
then the vector is "interesting". 

In most our experiments we used 20 real valued in- 
puts and output  and 6 hidden level neurons. All neu- 
rons were standard sigmoids. Training proceeded ac- 
cording to standard back-propagation with learning 
parameter .75 and momentum coefficient .08 until the 
mean-square error fell below a pre-determined level. 

For acceptance threshold determination, a sophisti- 
cated method was used , based on a combination 
of variance and calculating the optimal F1 measure. 
(See below and [7] for a definition of F1 .) During 
training, we checked, at different levels of error, the 
F1 values of the test set. We stop the training at the 
point which F1 started a steep decline. Then we did a 
secondary analysis to determine an optimal real mul- 
tiple of the standard deviation of the average error to 
serve as the threshold. 
We also examined our neural network filter with dif- 
ferent sizes of input and output ,  (corresponding to 
different numbers of features from the document, see 
below) in order to investigate how this influenced the 
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performence of the classification task. (See table 2. ) 

2.1 T e x t  R e p r e s e n t a t i o n  a n d  F e a t u r e  
S e l e c t i o n  

To implement the bottleneck filter, we ran experi- 
ments with several different representations. In addi- 
tion, as a comparison, we ran a different algorithm, 
that simply takes the average vector of the sample 
examples as a prototype vector and defines the tol- 
erance as the largest angle between this prototype 
and all sample examples. The filter then accepts all 
documents whose vector representation is within this 
tolerance. (Note that  this is similiar to the Rocchio 
algorithm [1] although we are using only positive ex- 
amples to determine the angle.) 

One can use , instead of the word frequency, the tf- 
idf ( term-frequency-inverse-document- frequency) 
representation [5] which is given by the following for- 
mula ( where f(word) meand the frequency of the 
word in the document and N(word) means the num- 
ber of documents the word appears in): 

tfidf(word) = f(word) . [log N(word) + 1]. 

To explain our heuristic mix of neural network en- 
coding and heuristic choice of representation, we will 
need a few definitions: 

Let C, the "corpus" be the set of documents to be 
classified. Let T be a subset of C the class of "in- 
teresting" documents. Let E be a subset of T, the 
positive examples. The problem is to define a func- 
tion (or "filter"), using only information from E that  
distinguishes T from T, the complement of T. 

We proceed as follows: Let D be the dictionary of 
all words in I,J E; with each word is associated its 
frequency in the list. Heuristically, we eliminate 
words whose document frequency is less than 3; and 
use standard algorithms to (i) eliminate connecting 
words and (ii) strip grammatical endings from com- 
mon words [3]. 

From this dictionary, we then chose the m words that  
appear in the most documents of E.  We call these 
"key-words"; however they are chosen automatically. 
This choice of m is was influenced by the compar- 
isons with different choices of m ( see table 2 ). For 
later reference (see "Hadamard product" below) we 
define vE as the m-dimensional vector consisting of 
the frequencies of appearance of each of the keywords 
throughout the dictionary. Then for each document 
e E E we associate a vector of dimension m, which 
we will continue to designate as e. Here el is the 
frequency of the i th chosen keyword in the document 
e .  

2.2 H a d a m a r d  P r o d u c t  

We discovered experimentally that  the following ad- 
ditional transformation, .HE, of vectors substantially 
enhances performance. Here 

HE(ei) = ei .v~i, 

i.e. take the component-wise product  with the fre- 
quency vector of the dictionary. 

It seems reasonable to look for a Bayesean explana- 
tion of this phenomenom. Let g represent a given 
document, w~ the i th word in the dictionary, and E a 
set of training examples. Assume that  el represents 
P(w~lg) and rE, represents P(wilE); i.e. the proba- 
bilities of a chosen word being wi given that  you are 
either in the document being tested or in the class of 
interesting examples. One can then argue (under cer- 
tain independent assumptions) using Bayes rule that 
the product vector is representing the adjusted prob- 
ability of a word being chosen given that  it is both in 
the document g and an interesting example. 

3. D a t a  S e t ,  E x p e r i m e n t s  a n d  R e s u l t s  
3.1 R e u t e r s - 2 1 5 7 8  

To test the above ideas, we applied these filters to the 
standard Reuters data-base,  a preclassified collection 
of short articles. This is one of the standard test-beds 
used to test information retrieval algorithms. So C 
is the overall collection of articles, and there are a 
variety of subsets T. 

For each choice of subject T, we used 25% of the 
positive data  to train; and then ran the filters on all 
of C. 
We treated each of the 10 categories as a binary clas- 
sification task and evaluated the classifiers for each 
category separately. For reporting the results we used 
the F1 measure, the recall and the precision values. 

For text categorization, the effectiveness meaure of 
recall and precision are defined as follows, recall is 
the number of items of category identified devide by 
the number of category members in test set. precision 
is the number of items of category identified devide 
by total items assigned to category. 

Van Rijsbergen [7] defined the Fl-meanre as a com- 
bination of recall (R) and precision (P) with an equal 
weight in the following form: F1 (R,P)= 2RP 

R--I- P 

In Table 1, we summarize the results for using Neu- 
ral Networks classifier with Hadamard and frequency 
document representation. The Prototype algorithm 
is presented as baseline algorithms.The results show 
that  the Hadamard representation is superior, and 
the Neural Networks is more superior than the Pro- 
totype algorithm. 
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Table 1. Neural Networks (NN) Comparison of Hadamard and Frequency representation. 
3resented as the baseline algorithm usin6 tf-idfrepresentation. 

Ft NN(Hadamard)l:t P I NN(Frequency)Ft R P I F1 Prototypel:t [ P  

Earn 0.781 0.800 0.763 0.418 0.805 0.282 0 .637 0.569 0.724 
Acq 0.534 0.598 0.483 0.347 0.363 0.332 0.468 0.492 0.446 
Money 0 .542  0.641 0.470 0.475 0.420 0.546 0 .484 0.500 0.470 
Grain 0.415 0.394 0.439 0.379 0.355 0.408 0.402 0.320 0.542 
Crude 0.537 0.505 0.573 0.476 0.410 0.566 0.398 0.322 0.520 
Trade 0.573 0.600 0.547 0.536 0.513 0.561 0 .557 0.503 0.623 
Int 0.496 0.416 0.616 0.478 0.405 0.583 0 .454 0.440 0.468 
Ship 0.393 0.328 0.492 0.388 0.400 0.376 0.370 0.358 0.382 
Wheat 0 .507  0.446 0.588 0.414 0.430 0.400 0.262 0.263 0.260 
Corn 0,310 0.451 0.236 0.315 0.434 0.247 0.230 0.423 0.158 
Average 0.508 0.517 0 .520 0.422 0.453 0.430 0.426 0.419 10.459 

Prototype algorithm is 

In Table 2, using only the Hadamard representation, 
we investigated the affect of increasing the dimension 
of the features. (That is, allowing a larger number 
of key-words, while keeping the size of the hidden 
level the same.) We see some improvement but not 
dramatic. 

Table 2. Corn 9arison of different sizes of Networks Using 
Hadamard Re presentation 

NN size 20 140 IJ 60 I 1°° 1 200 I 
Fx F1 Fi F1 F1 

Grain 0.415 0 5 0 4 0 . 5 1 5  05 8 0 37 
Crude 0.537 I 0.591 II 0.565 I I  583 I 
Trade 0.57310.605 ~ o .6161o.6o21o.6031 
Interest 0.496 0.504 0.497 0.528 0.510 

4.  S u m m a r y  

The basic result can be summarized as follows: (i) 
Using the autoencoder neural network works. (ii) It 
is sensitive to the choice of representation, a. Rep- 
resenting documents by tf-idf in this context fails, b. 
Representing documents by frequency works reason- 
ably. c. Modifying the frequency representation by 
a "Hadamard" operation results in substantially im- 
proved results. 
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