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Abstract—–In this paper, a real-time energy management algo-
rithm (RTEMA) for a grid-connected charging park in an indus-
trial/commercial workplace is developed. The charging park under
study involves plug-in hybrid electric vehicles (PHEVs) with differ-
ent sizes and battery ratings as well as a photovoltaic (PV) system.
Statistical and forecasting models were developed as components in
the developed RTEMA to model the various uncertainties involved
such as the PV power, the PHEVs, arrival time, and the energy
available in their batteries upon their arrival. The developed energy
management algorithm aims at reducing the overall daily cost of
charging the PHEVs, mitigating the impact of the charging park on
the main grid, and contributing to shaving the peak of the load
curve. Hence, the benefits of implementing this RTEMA is shared
among the customers, the charging park considering all customers
as a bulk of power connected to the grid, and the ac grid. Thismakes
it applicable for various business models. The developed RTEMA
utilizes a fuzzy controller to manage the random energy available
in the PHEVs’ batteries arriving at the charging park and their
charging/discharging times, power sharing among individual
PHEVs that is commonly known as vehicle-to-vehicle functionality,
and vehicle-to-grid service between the charging park and the main
ac grid. The developed RTEMA was simulated using the standard
IEEE 69-bus system at different penetration and distribution levels.
The obtained results verify the effectiveness and validity of the
developed RTEMA.

IndexTerms—Charging costminimization, charging park, fuzzy,
industrial/commercial zone, photovoltaic system, real-time energy
management, system loading, voltage stability.

I. INTRODUCTION

P LUG-IN hybrid electric vehicles (PHEVs) and plug-in
electric vehicles (EVs) are gaining much popularity due to

the global call for clean energy. Several pioneer automation com-
panies are in the process of making PHEVs, a better option for
vehicle buyers. Therefore, it is almost certain that the penetration
level of these PHEVs into our national grid will keep growing.

However, the grid, in its current status, is not fully prepared yet
for a high PHEV penetration level. There are some problems

related to their charging process; the process of charging a
random number of batteries with random energy demand re-
presents a demand side management dilemma. For instance, it is
expected that, since PHEV owners within the same society are
very likely to share the general outlines of their life styles, the grid
will be subjected to a big demand from PHEVs batteries at the
same timewhen people are back fromwork. Therefore, research-
ers have developed some ideas and algorithms to manage this
process [1]–[8]. The output charging rate setting of each PHEV
according to these algorithms is constant during the charging
period. In this paper, an RTEMA that is based on a set of priority
levels of the PHEVs is developed. PHEVs will be moved from
one priority level to another, and hence treated differently, based
on their state of charge (SoC) and time remaining for their
departure time. Moreover, previously developed algorithms did
not consider the inclusion of renewable energy sources in the
system, which holds the implementation of these algorithms
back since we know that the concept of PHEVs is attached with
obtaining the power to charge them from renewable energy.
Otherwise, we end up burning more fossil fuels and hence
polluting the environment even more. Saber et al. discerned this
drawback and directed their work toward systems that involve
renewable energy sources considering the added complexity and
uncertainty involved with them in [9] and [10]. They aimed at
minimizing the cost and emission attached with the charging
process of PHEVs distributed in the network. In this paper, the
energy management of a large number of PHEVs connected to
the grid at the same point as a smart park [11] is developed. The
main contributions of this paper are as follows:

1) to develop statistical probability density distributions for
the uncertain variables involved;

2) to develop an energy management algorithm for a grid-
connected charging park;

3) to involve a photovoltaic (PV) system as a renewable
energy source in the developed algorithm;

4) to vary the charging rates of the EVs dynamically in real
time according to their SoC.

The paper is organized as follows: in Section II, an insight of
the charging park power system architecture is given; in Sec-
tion III, the statistical and mathematical modeling process of the
various uncertain quantities involved within the algorithm is
presented; in Section IV, the developed RTEMA is presented; in
SectionV, some of the results obtained to verify the validity of the
developed RTEMA are presented; and finally in Section VI, a
summary of the conclusions that can be derived from this paper is
presented.
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II. CHARGING PARK ARCHITECTURE

A one-line diagram of the system under study is shown in
Fig. 1. It consists of a grid-connected charging park involving a
PV system with a total capacity of 500 kW, whose maximum
power point is continuously tracked and integrated into the
dc-bus linking the PHEVs’ batteries to the main grid. Hence,
the charging park appears as a dc microgrid with local generation
from thePVsystemand a storage system representing thePHEVs’
batteries. The charging park is connected to themain grid through
a bi-directional converter. The bi-directional converter is a fully
controlled ac–dc/dc–ac voltage source inverter that has the capa-
bility of controlling the amount of power flowing between the
ac and dc grid in both directions. Hence, the amount of power
flowing in either direction can be set to a certain pre-set value,
which is decided by the developed RTEMA [12].

III. MODELING SYSTEM UNCERTAINTIES

The developed smart charging park is a parking garage in a
workplace, possibly a university campus, which contains 1500
parking spaces. We assume that 60% of the 1500 cars parking
daily in this charging park, i.e., 900 cars, are PHEVs. These
900 PHEVs are the ones managed in this study. Among the
900 PHEVs considered, around 32.5% are compact sedans with
an energy consumption of 0.3 kWh/mi, 37.5% are mid-size
sedans with an energy consumption of 0.45 kWh/mi, 20% are
mid-size SUVs or pickups with an energy consumption of
0.6 kWh/mi, and 10% are full-size SUVs or pickups with an
energy consumption of 0.75 kWh/mi.

It can be noticed that the smart charging operation involves
several uncertain quantities such as the power available from the
PV system, the arrival and departure times of the PHEVs, and
their initial SoC when they arrive at the charging park. These
quantities, despite their randomness, are crucial parameters when
the energy within this system is to be managed and controlled.
Therefore, various models have been developed as an attempt to
model these uncertain quantities using regression techniques
based on historical data or statistical techniques based on prob-
ability distribution, or density, functions (pdfs). The developed
predictive models will be used for the decision-making process
of the RTEMA.

A. Online PV Modeling

Since the power available from the PV system plays an
essential role in the decision-making process of the developed

energy management algorithm, an online forecasting model is
regenerated from [13]. This model is based on statistical smooth-
ing techniques and quantile regression. In this model, the clear
sky model approach is first used to normalize the solar power.
Then, adaptive linear time series models are applied for online
prediction. We count on real data forecasting of PV output
power. The data forecasting process was based on PV data
collected over 15 years on an hourly basis, for example, the PV
system in the state of Texas. The power data was set as output
data to be forecasted, whereas the day of the year (1–365) and the
hour of the day (1–24) were used as inputs.

B. PHEVs Arrival and Departure Times

The estimated power demanded by a PHEV ( ) can be
represented by

where is the estimated power demanded by the th
PHEV, is the estimated number of miles driven daily,
is the energy consumption per mile for the PHEV, is the
estimated departure time, and is the estimated arrival time.

However, there are bounds for the values obtained from (1).
In order to extend the lifetime of the batteries, upper and lower
limits for their SoC are enforced. In this work, the lower limit of
SoC ( ) is set to 10%, which is enforced inside the PHEV
itself during its operation, whereas the upper limit ( ) is set
to around 80%. The upper limit is enforced in the charging park.
The developed algorithm will be responsible for charging the
batteries of the PHEVs connected to the charging park up to that
upper limit. Hence, the estimated energy needed by a PHEV for a
coming day ( ) will be set to a maximum saturation
point at 70% of the total battery capacity.

In this work, the charging park is located in a place that is
active from 9:00 A.M. to 6:00 P.M. Inspecting a large number,
around 30 000 samples, of random PHEVs arrival and departure
times, a probability distribution trend can be envisioned. Based
on the central limit theorem, stating that the conditions under
which the mean of a sufficiently large number of independent
random variables, each with finite mean and variance, will be
approximately normally distributed, the parameters of the distri-
bution are given in Table I.

Combining the pdfs of and , the joint pdf of
can be found, which is the daily parking duration. It is a
normally distributed random variable with and

. The pdf of the daily parking duration time is shown
in Fig. 2.

According to [14], the average yearly total miles driven in the
USA is 12 000 miles with 50% of drivers driving 25 miles/day
or less, and 80% of drivers driving 40 miles or less. Therefore, a

Fig. 1. One-line diagram showing a lumped model of the PHEVs charging park
power system.

TABLE I
PARAMETERS OF THE DURATION TIME PROBABILITY DISTRIBUTION
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log-normal distribution is utilized to approximate the pdf of .
The results show that the total yearly driving distance average is
12018miles,where 48%of the vehicles drive 25miles or less each
day, and 83%of the vehicles drive 45miles or less eachday.These
results, shown in Fig. 3, closely approximate the actual driving
distance statistics in [14]. The distribution is then represented by

where and .

C. PHEVs Energy Demand

Using the pdf of the daily duration time, the pdf of the daily
travel distance, and the power consumption of each class of the
PHEVs, the pdf of the power needed by each PHEV when it is
connected to the parking lot isfinally foundas an inverseGaussian
distribution with and , as shown in Fig. 4

Themean value of this distribution for a given daywill be used
to estimate the power needed by PHEVs. At a certain time , the
total power needed by the PHEVs which will arrive during the
current sample is calculated as follows:

This model, along with the forecasting model of the power
generated by the PV, the hourly price of the utility grid energy,
and the daily load curve, will be used to develop our RTEMA.

IV. REAL-TIME ENERGY MANAGEMENT ALGORITHM

A. PHEVs Charging Priority Levels

The charging process of the PHEVs is handled such that its
impacts on the utility grid are mitigated and the overall cost of
energy consumed by the PHEVs is reduced. The developed
RTEMA will tend to vary the charging rates of the connected
PHEVs in order to achieve these goals. The charging priority of
these PHEVs is carefully considered so that we get the capability
of managing the energy in the system without affecting the
constraint of having all the PHEVs leaving with the desired SoC.
The priority level of a PHEV is determined based on its
demanded power assuming that it will be charged from its initial
SoC when it arrives to the charging park to the maximum SoC
desired at the same power decrement

is the power demanded by the th PHEV.
Moreover, the total power is given by

The charging rates of different PHEVswith different SoCs and
power requirement and correspondingly different priority levels
will behandleddifferently.For instance, aPHEVthat is connected
to the parking park at 9:00 A.M., its departure time is set by the
consumer to 6:00 P.M., with an SoC of 65% which is relatively
high, will be charged at a relatively small charging rate. On the
other hand, a PHEV that is connected to the charging park also at
9:00 A.M. but leaving at 10:30 A.M. with an SoC that is only 10%
will be probably set by theRTEMA tobe charged at themaximum
charging rate.This is the role of thepriority levels in the algorithm.
Moreover, since the first car is staying for 8 h, its battery can be
used as an energy storage facility for vehicle-to-vehicle (V2V) or

Fig. 2. PDF of the parking duration time of PHEVs ( ).

Fig. 3. PDF of the miles driven daily for PHEVs.

Fig. 4. PDF of the daily power needed by PHEVs.
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vehicle-to-grid (V2G) service. Furthermore, the charging priority
of a PHEV is dynamically changing during its existence in the
charging park, i.e., a PHEVmay jump from a certain priority level
to a higher one right before its departure. On the contrary, at a
certain time if the energyprice is below thedaily averageprice and
the generated PV power is more than the total power required by
the PHEVs, then the extra power can be saved in some existing
PHEVs and hence the priority level of these PHEVs will conse-
quently decrease. The charging priority is shown in Table II.
PHEVs in levels 1, 2, and3 canonly be chargedbecause they need
much energy either because their SoC is low, e.g., close to 10%
when connected to the parking station, or their departure time is
approaching but the desired SoC have not been met yet. PHEVs
in levels 4 and 5 can be discharged to fulfill the V2G and V2V
service. However, the PHEVs in low priority levels may jump to
higher ones and vice versa as stated earlier.

B. Fuzzy Agent

A fuzzy agent will be responsible for yielding the charging rate
of each PHEV ( ) based on the current and estimated power
needed by the PHEVs, the estimated power generated by the PV,
and the daily energy tariff. Without V2V and V2G service, the
power flow for the current sample between the utility ac grid and
the charging park can be calculated as

along with the energy tariff (Tar) will be used as the
inputs for the real-time Mamdani-type [15] fuzzy logic power
flow controller to determine the charging index, which will
finally determine the charging rates of each charging priority
level. The power flow between the utility ac grid and the dc
charging park will be fuzzified as negative “N,” positive small
“PS,” positive medium “PM,” positive “P,” and positive big
“PB.” Similarly, the energy price will be described as very cheap
“VC,” cheap “C,” normal “N,” expensive “E,” and very expen-
sive “VE”. The method implemented for defuzzification is the
centroid-based method. Within the model, minimum and maxi-
mum are used for AND and OR operators, respectively. The output
of the fuzzy controller is the charging index ( ), which is used
for adjusting the charging rates for PHEVs in different priority
levels. The parameter can be described as “NB,” “N,” “Z,” “P,”
and “PB,”which stand for negative big, negative, zero, positive,
and positive big, respectively. The Mamdani-type model-based
fuzzy rules of the fuzzy logical power flow controller are given in
Fig. 5 and Table III.

The membership functions of , Tar, , and the surface
of the rules are shown in Fig. 5.

After gaining the charging index , which varies from
, the charging rates of each charging priority levels

can be calculated as follows:

The sign of along with the PHEV priority level indicates
whether a PHEV is charging or discharging.

C. Daily Load Curve Consideration

Based on different values of , the PHEVs in different priority
levels in every sample will be charged with different charging
rates. In order to limit the impacts of the charging process of
PHEVs to the utility ac grid even more, the charging algorithm
may also take into consideration the local load curve. For
example, in the winter, the daily load curve has two peaks; one
takes place at around 9:00 AM and the other at around 9:00 P.M.
Moreover, the load is almostminimumat around 3:00 P.M., so it is
the best time to charge the PHEVs if we want to decrease the
impacts of the PHEVs to the utility ac grid.

Hence, another index will be used to adjust the power flow
between the ac grid and the hybrid parking system. This index is
designed basedon the load curve at themain feeder.When the load
demand is relatively low, below 60 kW in our design, we do not
need to consider the local load and the charging rate will be just
dependent on , which is the output of the fuzzy controller
depending on the PHEVs demand and the energy tariff. If the load
demand is between 60 and 80 kW, will be decreasing linearly
from1 to0.9.When the loaddemandexceeds80kW, the local load
is high and near the peak, so a quadratic equation with 0.9 at load
80 kW and 0 at load 100 kW will be used, which can limit the
impacts from the charging parks to the ac utility grid by decreasing
the charging rate. This is mathematically represented by

where is the normalized load data. After obtaining , the final
charging rates for PHEVs in different priority levels can be
achieved by using the following set of equations:

<

<

TABLE II
CHARGING RATE FOR DIFFERENT CHARGING LEVELS
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V. RESULTS AND DISCUSSION

In order to examine the operation of the developed RTEMA,
the IEEE 69-bus radial distribution system was used. Fig. 6
shows a single-line diagram of this system which includes
69 buses and 7 lateral branches. The feeder voltage is 12.66 kV
and the total load in the base case is 3.82 MW and 2.85 MVar.
Load flow calculations in the base case present 4.03-MW and
2.85-MVar power infeed from the external grid and a minimum
voltage of 0.9 p.u. at Bus-54. The network loss is 0.23 MW or
5.7% of the total system active power. The load-flow results of
the system under study are given in a table in the Appendix.
All the modules of this research were implemented using two
software packages linked together: the algorithmwas implemen-
ted on MATLAB/SIMULINK and the output of the algorithm
was transferred to DIgSILENT/PowerFactory to perform the
load-flow studies. In order to study the behavior of the developed
algorithm under the daily load characteristic, we defined typical
daily load curves for summer and winter, which are obtained
from Florida Electric Utility as shown in Fig. 7 [16]. Because
the vast majority of customers in Florida are residential, peak
demand in the summer season begins to climb in the morning,
peaks during the hottest part of the day (4:00 P.M.), and levels off
as the evening approaches. This usage pattern corresponds to the
increase of loads due to air conditioning for residential custo-
mers. In the winter season, the usage pattern has two distinct
peaks: a larger one (8:00 A.M.) in the mid-morning and a smaller
one (8:00 P.M.) in the late evening, which correspond to residen-
tial heating loads [16]. In order to hold a consistent comparison of
the cases under study, it is assumed that the normalized summer

and winter curves have the same daily peak and the same daily
energy consumption (kWh). Hence, we made a little change in
winter curve to have the same integration as the summer curve
during a 24-h day time. Therefore, the EVs daily consumption in
both cases is intended to be 11.453MWh. This amount of load is
15.5% of the total load before adding EVs (73.78 MWh). Figs. 8
and 9 show the voltage profile in all buses for 24 h. Minimum
voltage of summer happens at Bus-54 at 4:12 P.M. Accordingly,
theminimum voltage of winter load occurs at the same bus, but at
8:24 A.M. Fig. 10 shows the SoC of an EV during the charging
process in the winter, which is connected to the grid at 8:24 A.M.
Before 10:00 P.M., the output power from PV farm is not
significant, and the load is in a peak period. Instead of charging
the battery, this EV injects power to the grid to shave the peak of
the load curve. The power injected by the EV can either supply
another vehicle that needs to be charged (V2V) or be transferred
to the grid (V2G); note that all the EVs are connected to the same
microgrid, hence the route of the power supplied by the individ-
ual vehicles cannot be tracked. After 10:00 AM, the power

Fig. 5. Flowchart showing the developed RTEMA.

TABLE III
FUZZY RULES
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generated by the PV increases while the load decreases. The EV
begins absorbing power from the grid. However, the load is still
heavy. Therefore, the charging rate is small, which limits the
impact of charging on the grid. After 1:00 P.M., the power
generated by the PV is large, and the load is small; then it is
the best time to charge the EVs, therefore the SoC of this EV
increases dramatically. This process fills the valley of the load
curve. The RTEMA algorithm was implemented in different
cases with different techniques as follows.

A. Case A: All EVs Are Connected to Bus-20

In this case, all EVs are connected as an integrated car park to
Bus-20.Without any optimization, this lumped load has the daily
curve as shown in Fig. 11 with a solid line. The daily peak is
3.383 MW which occurs at 9:10 A.M. Without any energy

Fig. 6. 69-Bus radial distribution test feeder.

Fig. 7. Florida’s normalized summer and winter daily load curves.

Fig. 8. 69-Bus daily voltage profile with no EVs for summer load.

Fig. 9. 69-Bus daily voltage profile with no EVs for winter load.

Fig. 10. SoC of an individual EV during a day as a result of implementing the
developed RTEMA.
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management procedure, some buses at the ends of the feeders
experience high voltage drop, i.e., 0.751 p.u. with summer load
and 0.72 p.u. withwinter load characteristics, which are shown in
Figs. 12 and 13. This drop may harm the sensitive loads on
the distribution feeder and need to be improved by using the
developed RTEMA. In this section, we used the optimization
procedure described in Section IV. The daily active power

consumption of EVs is shown in Fig. 11 with a dashed–dotted
curve. As can be seen, the PHEVs consumption is distributed in a
long-hourly based manner and hence the peak of this load is
decreased considerably and shifted to 11:00 A.M. Therefore, one
of the aims of the developed algorithm,which is shaving the peak
of the load curve, is achieved. The voltage daily profiles are also
shown for summer and winter loads in Figs. 14 and 15, respec-
tively, which present better voltage behavior during 24-h opera-
tion. Not only voltage is affected by using the developed
RTEMA, but also the feeder losses decreased from 6.89% to
5.66% in summer and from 7.15% to 5.33% in winter load,
respectively. Since the winter power losses improved more than
summer losses, the results show that the performance of the
RTEMA is dependent on the feeder load curves, too. Therefore,
the load curves of summer and winter loads of this feeder have
been included in the RTEMA as described previously. The
results of the RTEMA are also demonstrated in Fig. 11 with
considering summer andwinter load characteristics in the energy
management process. As shown in Fig. 7, the peak load of
summer occurs at 4:00 P.M. Therefore, by considering the load
curve, the RTEMA tries to put less loading stress around this
time which is obvious in Fig. 11 with a long-dashed curve.

Fig. 11. PHEVs daily load profile with no optimization and different optimiza-
tion objectives.

Fig. 12. Daily voltage profile with no RTEMA for summer load.

Fig. 13. Daily voltage profile with no RTEMA for winter load.

Fig. 14. Daily voltage profile with RTEMA considering energy function for
summer load.

Fig. 15. Daily voltage profile with RTEMA considering energy function for
winter load.

MOHAMED et al.: RTEMA FOR PHEV CHARGING PARKS INVOLVING SUSTAINABLE ENERGY 583



Accordingly, for winter load curve with two peaks, the main one
at 8:00 A.M. and the minor one at 8:00 P.M., the RTMEA tends to
charge the PHEVs after the first peak and before the second peak.
The daily voltage profiles improved in these cases and are similar
to Figs. 14 and 15. Therefore, the developed algorithm mitigates
the impact of the charging park on the main grid.

B. Case B: All EVs Are Distributed Equally to Five Buses

In order to study the effect of the PHEVs load distribution in
radial distribution feeder, in this case all the PHEVs are distrib-
uted equally at buses 20, 30, 41, 48, and 67. Hence, the same

amount of load which was considered in the previous case is
equally distributed at these nodes and the RTEMA uses the
PHEVs’ same daily distribution curve and feeder total daily load
curve to manage the PHEVs charging process. Therefore, the
results of the RTEMA are similar to the previous cases for the
summer and winter optimized daily load curves. The 24-hr daily
load-flow results in better voltage profiles, which are shown in
Figs. 16 and 17 for summer and winter loads, respectively. The
RTEMA objective function is based on energy by considering
feeder load characteristics. The voltage profiles in this case
are similar to feeder main profiles before connecting EVs, i.e.,

Fig. 16. Daily voltage profile with RTEMA considering energy function and
summer load curve.

Fig. 17. Daily voltage profile with RTEMA considering energy function and
winter load curve.

TABLE IV
SUMMARY OF THE RESULTS OF USING RTEMA IN 69-BUS RADIAL DISTRIBUTION FEEDER IN DIFFERENT CASES

584 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 5, NO. 2, APRIL 2014



Figs. 8 and 9. Table IV presents a summary of the results for all
cases studied in this paper. Obviously, the feeder total losses and
voltage profile improved in this case, too. For example, in the
summer load case, the feeder total loss is decreased from 5.59%
to 4.53%.

C. Case C: All EVs Are Distributed Equally to 10 Buses

In this last case, all the PHEVs are distributed equally among
10 buses in order to study the PHEVs parking distribution effect
in radial feeder. These nodes are: 20, 26, 30, 34, 41, 48, 54, 58, 67,
and90. Similar to the previous case, theRTEMAwill improve the
system voltage profiles. The response will be more similar to
the previous case and is comparable to the case with no EVs. The
results ofminimumvoltage, total loss of feeder, and itsmaximum
loading and peak hours are also presented in Table IV, and they
illustrate that more distribution of EVs does not have a significant
effect on radial distribution system parameters anymore.

Finally, it can also be seen in Table IV that the overall cost of
charging the PHEVs is reduced by a ratio that ranges from12% to
16% using the developed RTEMA. This means that the devel-
oped algorithm succeeds in reducing the overall daily cost of
charging the EVs. A future work suggested by the authors is to
put this complex time-variant optimization problem in a closed
formula and solve it using an optimization tool.

VI. CONCLUSION

In this paper, a real-time energy management algorithm for a
grid-connected smart charging park based on charging priority
levels was developed. The developed algorithm allows V2G and
V2V functionalities and aims at minimizing the total cost of
charging by handling the charging rates of the EVs. An advantage
of the developed algorithm is that the charging rates of the EVs
during their parking period are varying according to their state of
charge. A fuzzy agent was used as a component within the
developed algorithm. Energy tariff, load demand, and PV output
power profiles are elements within the algorithm. The perfor-
mance of the developed algorithmwas tested by simulating it on a
charging park connected to the IEEE standard 69-bus system at
different penetration and distribution levels. The results show a
reduction in the overall cost of charging as well as a significant
improvement in the voltage profile and the losses in the system.
The developed algorithm would also be beneficial to the utility
grid even if the price rate is flat, because the load curve will still be
shaved since the load curve is used as a factor in defining the
charging rates of the vehicles. Itwill also be beneficial for charging
park operators, although relatively less beneficial, since they still
have the capability of reducing the overall cost of energy by
managing the V2V service, which is independent from the energy
tariff. This algorithm is easy to be developed and implemented
because it is not based on an optimization technique and hence
several objectives can be targeted, simultaneously. However, it
may have a drawback of deviating from the optimal point.

APPENDIX

The load-flow results of the test system, shown in Fig. 6, are as
follows:

LOAD-FLOW RESULTS OF THE TEST SYSTEM
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