
Fault Tolerance Management in IaaS Clouds

Ravi Jhawar and Vincenzo Piuri

Dipartimento di Informatica – Università degli Studi di Milano, 26013 Crema, Italy

Email: firstname.lastname@unimi.it

Abstract—Fault tolerance, reliability and availability in Cloud
computing are critical to ensure correct and continuous system
operation also in the presence of failures. In this paper, we present
an approach to evaluate fault tolerance mechanisms that use the
virtualization technology to transparently increase the reliability
and availability of applications deployed in the virtual machines
in a Cloud. In contrast to several existing solutions that assume
independent failures, we take into account the failure behavior of
various server components, network and power distribution in a
typical Cloud computing infrastructure, the correlation between
individual failures, and the impact of each failure on user’s
applications. We use this evaluation to study fault tolerance
mechanisms under different deployment contexts, and use it as
the basis to develop a methodology for identifying and selecting
mechanisms that match user’s fault tolerance requirements.

Index Terms—Fault Tolerance as a Service, Fault Tolerance
Management, Infrastructure Clouds

I. INTRODUCTION

Cloud computing is gaining an increasing popularity over

traditional information processing systems. It offers immense

benefits in terms of flexibility in obtaining and releasing

computing resources, as and when required, in a cost-effective

manner. As a consequence, this paradigm is widely being

used particularly to deploy applications with high scalability,

processing and storage requirements.

Due to economic limitations, Cloud infrastructures are often

built using commodity components, and as a consequence,

the hardware is exposed to scale and conditions it was not

originally designed for [13]. Furthermore, due to very high

system complexity, even carefully engineered data centers are

subject to a large number of failures, especially when they

are distributed in several locations. The dimension of risks on

user’s applications is significantly changed since failures in

the data centers are outside the scope of user’s organization.

Traditional fault tolerance approaches are therefore less effec-

tive, and there is a pressing need to address user’s reliability

and availability concerns as one of the basis to improve the

overall system’s security.

The traditional way to increase reliability and availability of

software is to employ robust fault avoidance and fault tolerance

techniques at development time. In this approach, users must

take into account the system architecture and build their

applications accordingly. However, the system’s architectural

details are not widely available to the users because of the

abstraction layers and business model of Cloud computing.

As an alternative, a new perspective of offering fault tolerance

as an additional service either by a third party or the service

provider itself is being advocated [6], [7], [9]. This new ap-

proach leverages existing fault tolerance mechanisms that use

virtualization technology and its capabilities to transparently

replicate and migrate virtual machine (VM) instances. In this

direction, we developed a conceptual framework, the Fault

Tolerance Manager (FTM), which includes all the components

necessary to realize the new perspective [6].

In this paper, we build on the principles of the FTM, and

present a solution on two important aspects of the service that

were not analyzed previously. First, we present an approach

to measure the effectiveness of a fault tolerance mechanism

built using the virtualization technology. To achieve this, we

evaluate the level of reliability and availability that can be

obtained by using a particular fault tolerance mechanism at

different deployment levels using fault trees [12] and Markov

models. Second, we present a methodology to select the fault

tolerance mechanisms that most appropriately match user’s

requirements by considering the effectiveness measure (that is

obtained in the first step). This matching process is essential

for the FTM to correctly deliver the fault tolerance support.

The remainder of the paper is as follows. Section II

describes the motivating scenario. Section III presents an

overview of a typical Cloud infrastructure, outlines the failure

behavior of critical system components and their impact on

the service. Section IV discusses representative fault tolerance

mechanisms that use virtualization techniques to transpar-

ently obtain fault tolerance and describes possible deployment

scenarios. Section V presents an approach to identify and

select fault tolerance techniques based on user’s requirements.

Section VI summarizes the related work and Section VII

outlines our conclusions.

II. MOTIVATING SCENARIO

In our study, we consider a service-oriented and distributed

Cloud computing environment that involves the following

stakeholders.

• Infrastructure Provider (IP): realizes a Cloud computing

infrastructure, and delivers computing resources to its

users as an on-demand service.

• User (U): deploys its applications using infrastructure

provider’s service. We assume that a user satisfies its

reliability and availability requirements by leveraging the

service offered by the fault tolerance service provider.

• Fault Tolerance Service Provider (SP): offers fault toler-

ance support to user’s applications based on a given set

of requirements. We assume that the service provider is

trusted both by IP and U.

978-1-4673-4688-7/12/$31.00 ©2012 IEEE



As an example, consider a user offering a web-based

banking service which allows its customers to manage their

accounts over the Internet. The user implements the banking

service as a multi-tier application that uses the storage service

offered by the IP to store and retrieve its customer data,

and compute service to process its operations and respond

to customer queries. In this context, we note that a failure

in the storage server or compute nodes may highly impact

the banking service. Furthermore, each tier of the banking

application may require different fault tolerance properties,

and the requirements may change over time based on business

demands. By using traditional approaches, fault tolerance of

the banking service remains constant throughout its life-cycle.

Hence, it is easier for the user to specify its requirements and

make use of the service offered by the SP to meet its reliability

and availability goals. However, in this context the service

provider clearly requires the ability to identify the failure

characteristics of the system, evaluate different configurations

of various fault tolerance mechanisms it has implemented,

and quantify the reliability and availability obtained by each

mechanism to suitably deliver and maintain its service to the

user. It also requires a mechanism that allows users to specify

its requirements with ease, and a scheme to match user’s high

level requirements with its low level techniques.

III. FAILURE CHARACTERISTICS

A Cloud computing user must engage with the service

provider to obtain fault tolerance support for its applications.

The goal of the service provider is to create a fault tolerance

solution based on user’s requirements and realize the solution

by taking into account the failure characteristics of the Cloud

infrastructure. In this section we first present an overview of

a typical Cloud infrastructure and then derive an approach to

characterize the failures in the system.

A. Overview of Cloud infrastructure

We consider that the Cloud infrastructure is developed by

interconnecting large-scale data centers that host thousands

of servers. Each server contains multiple processors, storage

disks, memory modules and network interfaces. A hypervisor

is deployed on each server to virtualize its resources, and

required amounts of computing resources are delivered to the

user in the form of virtual machine instances. All the servers

are connected using several network switches and routers. In

particular, as described in [4], we consider that servers are

first connected via a 1Gbps link to a switch (S), which is

in turn connected to two (primary and backup) aggregation

switches (AggS). The subsystem formed by the group of

servers under an aggregate switch can be viewed as a cluster.

An AggS connects tens of switches (S) to redundant access

routers (AccR). This implies that each AccR handles traffic

from thousands of servers and route it to core routers that

connect different data centers to the Internet.

B. Failure behavior of system components

Failure behavior of the system must be modeled in the

service provider’s perspective, that is, the infrastructure com-

ponent failures which result in a user application failure

must be implicitly represented. We model the failure behavior

using the notion of fault trees [8], [12] since the dependence

between individual failures in the Cloud infrastructure and the

boundaries on the impact of each failure can be taken into

account. In particular, we consider failures on three main types

of resources: server, network and power.

• Server: An application deployed in a VM instance that

is hosted on a server may fail if there is a failure in the

physical host or management software. In other words, a

failure/error either in the i) processor, memory modules,

storage disks, power supply or network interfaces, or

ii) the virtual machine manager (VMM), or iii) the VM

instance itself, may lead the application to a failure.

Figure 1 illustrates this behavior as a fault tree where the

top-event represents the failure in user’s application (i.e.,

when the top-event’s value is true). Service provider can

determine the reliability and availability of a server and

its components using Markov models (see Section IV-A).

• Network: Figure 2 represents the fault tree for an applica-

tion considering the network failures in the system, based

on the network architecture described in Section III-A.

A failure in this context implies that the application

is not connected to the rest of the network or gives

errors during data transmission. We note that the fault

tree clearly defines the boundaries (using server, cluster

and data center level blocks) and impact of network

failures. This allows the service provider to increase the

fault tolerance of user’s applications (e.g., by placing

individual replicas of an application in different failure

zones). A network failure happens if there is an error in

all redundant switches S, AggS, AccR or core routers, or

the network links connecting the physical host and other

network components.

• Power: We assume that a data center receives the power

via an uninterrupted power network, and a redundant

distribution unit (DU) is deployed for each cluster within

the data center. A DU provides power to all the servers

within a cluster. A failure in the DU is independent of

other DUs and the central power supply. Figure 3 depicts

the fault tree of power failures in a Cloud infrastructure.

We note that this method can be extended to incorporate other

failures (e.g., cloud manager errors) in a straightforward man-

ner, and are not included in this paper due to space constraints.

We use the failure characteristics and fault trees to select an

appropriate deployment configuration for the fault tolerance

mechanism applied on an application (see Section IV-B).

IV. FAULT TOLERANCE IN CLOUD COMPUTING

We discuss about representative fault tolerance mechanisms

that can transparently handle system component failures and

possible deployment scenarios in Cloud infrastructures.

A. Fault Tolerance Mechanisms

The task of offering fault tolerance as a service requires

the service provider to realize fault tolerance mechanisms that



Fig. 1. Fault tree for server failure Fig. 2. Fault tree for network failure Fig. 3. Fault tree for power failure

can transparently function on user’s applications. We define

ft sol as an independent module that applies a coherent fault

tolerance mechanism to a recurrent set of system failures at the

granularity of a VM instance. The notion of ft sol is based on

the observation that the impact of hardware failures on user’s

applications can be handled by applying fault tolerance mech-

anisms directly at the virtualization layer than the application

itself. For instance, fault tolerance of the banking service can

be increased by replicating the entire VM instance in which

its application-tier is deployed on multiple physical nodes. We

present here a brief discussion on three main configurations

of ft sols based on replication schemes, which represent the

majority of fault tolerance implementations that are currently

being used.

1) Semi-active replication: The input is either provided to

all the replicas or state information of the primary replica is

frequently transmitted to the backup replicas. The primary

as well as the backup replicas executes all the instructions,

but only the output generated by the primary replica is made

available to the user. The output messages of backup replicas

are logged by the hypervisor. In case the primary replica fails,

one of the backup replicas can readily resume the service

execution. For each replica failure, the FTM must create an

equivalent replica (VM instance) on another host and update

its state. We note that in a cloud computing environment,

resources are often over-provisioned, and hence it is possible

to create backup resources with a very high probability. An

example of a technique that falls in this category is the

VMware’s Fault Tolerance [15] that is designed for mission-

critical workloads. We note that the availability obtained by

using this technique is very high, but it comes at high resource

consumption costs.

1,1 1,0 0,0

2λ

kµ

λ

kµ

(1− k)µ (1− k)µ

Fig. 4. An example of a Markov model for semi-active replication. λ is the
failure rate and µ is the recovery rate

As discussed in the previous section, we use Markov models

to determine the reliability and availability of the application

that uses this replication scheme because failure behavior of

physical hosts (servers) must be taken into account. Figure 4

depicts the Markov model of a representative ft sol that is

based on semi-active replication scheme with two replicas.

Each state is represented as (x, y) where x=1 implies that

the primary replica is working and x=0 implies that it failed.

Similarly, y represents the state of the backup replica. The

system starts and remains in state (1,1) during normal exe-

cution, i.e., when both replicas are available. When a VM

instance (either primary or backup replica) fails, the system

moves to state (0,1) or (1,0) where other replica takes over

the execution process. We note that a single state is sufficient

to represent this condition in the Markov model since, in the

service provider’s perspective, both the replicas are equivalent.

In state (0,1) or (1,0), FTM initiates the recovery mechanism

defined in the ft sol, and the system moves to state (1,1) if

the recovery is successful; if the server experiences a failure,

the system transits to state (0,0) where the service becomes

unavailable.

2) Semi-passive replication: The state information is ob-

tained by frequently checkpointing the primary replica and

buffering the input parameters between each checkpoint, and

replication is performed by transferring the state information

to the backup replicas. The backup replicas do not execute

the instructions but saves the latest state obtained from the

primary replica. In case the primary replica fails, a backup

replica is initiated and updated to the current state with some

loss in the present execution cycle and reasonable downtime.

Remus [3] is a typical example of a system that is used

by the Xen hypervisor and realizes a configuration of semi-

passive replication. We note that the availability obtained from

this technique is less than that by semi-active replication, but

the resource consumption costs are reduced since the backup

replicas do not execute instructions.

Figure 5 represents the Markov model of an application

for which the semi-passive replication mechanism with two

replicas is applied by the service provider. In this model,

when a failure in the primary replica happens, the system

moves from state (1,1) to state (0,1) and begins the update

process. The backup replica assumes the execution process

(becomes the new primary replica) and the system implicitly



1,1

1,0

0,1

0,0

λ

λ

kµ

c
λ

kµ

(1− k)µ

(1− k)µ

Fig. 5. An example of a Markov model for semi-passive replication

moves to state (1,0). In this state, FTM invokes a new replica

and provides it with the latest checkpoint. If the new backup

replica is successfully commissioned, the system again moves

to state (1,1), otherwise it remains in state (1,0). A failure in

the primary replica in state (1,0) results in a complete system

failure (i.e., both replicas become unavailable), and the system

transits to state (0,0).

3) Passive replication: The state information of a VM

instance is regularly stored on a backup. In case of a failure,

FTM recommissions another VM instance and restores the last

saved state. We note that a backup can be configured to share

the state of several VM instances or it can be dedicated to a

particular application, and the VM recommissioning process

can be performed based on a priority value assigned to each

VM instance. VMware’s High Availability solution [14] is a

typical example of this replication technique. This approach

consumes least amount of resources but provides reduced

availability than the former methods. Figure 6 illustrates

the Markov model of an application for which a dedicated

(passive) backup is applied.

A ft sol can perform replication of a user’s application,

detection of failures, and recovery from a failed state with-

out requiring any changes to the application’s source code.

This implies that it is feasible for the service provider to

transparently enforce fault tolerance on specified applications.

However, based on the failure characteristics of the system,

the service provider must derive a deployment level (location

of individual replicas) for each ft sol to correctly realize the

fault tolerance service. For the sake of simplicity, we discussed

only the availability property of the system in our examples,

but similar Markov models can be used to study the reliability

property as well.

B. Deployment levels in Cloud infrastructures

Fault tolerance (and resource costs) of an application may

vary also based on the location of its replicas. We discuss

three different deployment scenarios and identify how fault

tree of the service instance can be integrated based on the

chosen scenario. A deployment scenario corresponds to the

location (or configuration) of the physical host on which

individual replicas (VM instances) of an application under

a single implementation of a fault tolerance mechanism are

1 0

λ

kµ

(1− k)µ

Fig. 6. An example of a Markov model for passive replication

created. We assume failures in individual resource type to be

independent of each other.

1) Multiple machines within a cluster: Two replicas of an

application can be placed on hosts that are connected by a

switch (S) i.e., in a LAN. This deployment provides benefits in

terms of low latency and high bandwidth but offers least failure

independence. Replicas cannot communicate and execute the

fault tolerance protocol upon a single switch failure, or a

failure in the power distribution unit results in an outage of

the entire application. Even worse, if both replicas are placed

on the same host, a single component failure will affect both

replicas. In this deployment scenario, the cluster level fault

tree blocks for each type of resource failure (Figures 1–3)

must be connected with a logical AND operator (e.g., DU1,

DU2 of the cluster ∧ S connecting the hosts ∧ individual

host components). We note that the overall availability and

reliability obtained from each fault tolerance mechanism with

respect to host failures must be determined using a Markov

model.

2) Multiple clusters within a data center: Two replicas of

an application can be placed on hosts that belong to different

clusters in the same data center i.e., connected via a switch

and AggS. This deployment still provides moderate benefits

in terms of latency and bandwidth, and offers higher failure

independence. The replicas are not bound to an outage with

a single power distribution or switch failure. Therefore, to

represent the overall availability of an application, in this

scenario, the cluster level blocks from the fault trees may

be connected with a logical OR operator in conjunction with

power and network with an AND operator.

3) Multiple data centers: Two replicas of an application can

be placed on hosts that belong to different data centers i.e.,

connected via a switch, AggS and AccR. This deployment has

a drawback with respect to high latency and low bandwidth,

but offers a very high level of failure independence. A single

power failure has least effect on the availability of the appli-

cation. In this scenario, the data center level blocks from the

fault trees may be connected with a logical OR operator in

conjunction with the network in the AND logic.

C. Example of ft sol behavior at various deployment levels

Since input parameters and availability values of hardware

and system software are normally vendor-confidential, we

derive this data from the tables published in [8], [10], [11].

Based on this data and using our evaluation scheme, as an



TABLE I
AVAILABILITY VALUES FOR EACH FAULT TOLERANCE MECHANISM IN

DIFFERENT DEPLOYMENT SCENARIOS

Same Cluster Same Data center, Diff. Data centers
diff. clusters

Semi-Active 0.9871 0.9913 0.9985
Semi-Passive 0.9826 0.9840 0.9912

Passive 0.9542 0.9723 0.9766

example, we derive the overall availability of each represen-

tative replication scheme of ft sols with respect to different

deployment levels. Table I illustrates the availability results.

We can see that availability of the application is highest

when replicas are placed in two different data centers. The

value is slightly lower for the deployment level 2 (replicas

in two different clusters) and still lower for scenario where

replicas are placed inside the same LAN. Similarly, the overall

availability obtained by semi-active replication is slightly

higher than semi-passive replication, and lowest for simple

passive replication scheme. The values in this table can be

used by the service provider to select appropriate ft sols and

its deployment level (see next Section).

V. FAULT TOLERANCE MECHANISMS AND DEPLOYMENT

LEVEL SELECTION METHODOLOGY

We introduce a methodology to select appropriate fault

tolerance mechanisms and deployment levels based on user’s

requirements.

A. Matching and Selection Process

We assume that the service provider realizes a range of

fault tolerance mechanisms as ft sols and determines the

reliability and availability values that can be obtained using

each ft sol for different configurations (e.g., no. of replicas)

and deployment levels (e.g., Table I).

We denote the fault tolerance properties p of a ft sol using

a triple p=(s, p̂, A) where s denotes the ft sol, p̂ represents

the high level abstract properties such as reliability and

availability, and A denotes the set of structural, functional and

operational attributes that refers to the granularity at which

s can handle failures, benefits and limitations of using s,

inherent resource consumption costs and quality of service

metrics. Each attribute a∈A can take a value, denoted as v(a),
from a domain Da and a partial ordered relationship �a can be

defined on the domain. For instance, fault tolerance property of

a ft sol s1 can be denoted as p=(s1, {availability=99.995%,

reliability=98%}, {mechanism=semi-passive-replication,

fault model=server crashes, network faults, power failures,

fault detection time=5ms, recovery time=8ms, n.replica=3}).
A hierarchy of fault tolerance properties �p can also be

defined; if P is the set of all properties, and given

two properties pi,pj∈P , pi�ppj if pi·p̂=pj ·p̂ and ∀a∈A,

vi(a)�vj(a). The attribute values depend on the configuration

of the fault tolerance mechanism and values for abstract

properties are determined using Markov models and fault

trees. A user can specify its requirements in terms of desired

abstract properties p̂c and constraints on attribute values Ac.

Let S be the set of ft sols available in the system. For a

given user request, we first shortlist the ft sols that satisfy

user’s abstract property requirements. Let S′⊆S be the short-

listed set of ft sols for which p̂c�pp̂i, ∀i∈S. Any s∈S′ can

be used to deliver the service if the user does not provide

constraints in terms of total resource usage costs or perfor-

mance of the fault tolerance protocol since high level reliability

and availability requirements can be satisfied by any s∈S′.

However, since a user’s input may contain specific attribute

values, for each ft sol in S′, we compare attribute values for

each a∈A to obtain a set S′′ of candidate ft sols. In particular,

we compare the values of each attribute vi(a) with the value

specified by the user vc(a), and include those ft sols in S′′

for which vc(a)�avi(a). For example, fault detection time

or recovery time must be less than or equal to the specified

value, whereas number of replicas must be greater than or

equal to the specified value. By performing this step, our

algorithm selects only those ft sols that satisfy both user’s high

level requirements and additional conditions on the attributes.

Note that there may be some inconsistencies in the matching

and comparison processes that can be handled based on the

priorities specified by the user. Finally, we compare each ft sol

within S′′ and order them with respect to user’s requirements.

The first ft sol in the ordered set S′′ is finally used to provide

fault tolerance service to user’s application since it most

appropriately satisfies user’s requirements.

B. Illustrative example of matching and selection process

Assume that the service provider realizes three ft sols with

properties

p1=(s1, {availability=99.9%, reliability=99%},
{mechanism=semi-active-replication, n.replicas=3,

fault detection time=2ms, recovery time=2ms, deploy-

ment level=2}),
p2=(s2, {availability=95%},
{mechanism=passive-replication, recovery time=30sec,

dimension=shared}), and

p3=(s3, {availability=99.5%, reliability=98%},
{mechanism=semi-active-replication, n.replicas=2,

fault detection time=4ms, recovery time=8ms, deploy-

ment level=2})

respectively. If the user requests a fault tolerance support for

its banking service, and specifies the following requirements

pc=(sc, {availability≥99%, reliability≥98%},
{fault detection time≤5ms, recovery time≤10ms,

n.replicas<3}),

our algorithm first generates the set S′=(s1, s3) since

sc(reliability)≤s1(reliability)∧sc(availability)≤s1(availability),

sc(reliability)≤s3(reliability)∧sc(availability)≤s3(availability).

The algorithm then discards s1 from S′ since s1(n.replicas)6<3;

hence, S′′={s3}. Finally, since |S′′|=1, the ft sol s3 is used

by the service provider to deliver the fault tolerance service

to the user. That is, two replicas of the banking service are

created and placed on different clusters within the same data

center; the semi-active replication scheme is used to maintain

the state of each replica.



Typically, the service provider must realize a two stage

delivery scheme: design stage and runtime stage, to deliver

high levels of fault tolerance to user’s applications. The design

stage starts when a user requests a service provider to offer

a fault tolerance support to its application. In this stage, the

service provider must first analyze the user’s requirements,

match them with available ft sols and select an appropriate

mechanism to deliver the service. However, since the context

of a fault tolerance solution may change at runtime due to

the dynamic nature of the Cloud computing environment, the

attribute values of each fault tolerance solution offered to the

user must be continuously monitored in the runtime stage. For

example, the real-time attributes of the host on which a replica

is located must be monitored in the runtime stage to ensure that

user’s reliability requirements are satisfied throughout the life-

cycle of the service. The methodology presented in this paper

effectively realizes the design stage of the delivery scheme and

it can be similarly extended to deal with the runtime stage. We

consider developing a more holistic solution with efficient and

robust runtime monitoring as part of our future work.

VI. RELATED WORK

Virtualization technology is an important enabler of the

Cloud computing paradigm. It allows an infrastructure

provider to address concerns related to scalability and avail-

ability, and issues with heterogeneous computing resources in

data centers. Service availability is often used as the standard

metric in service level agreements (SLA). An interesting work

presents the availability models for both virtualized and non-

virtualized servers in the form hierarchical analytical models

[8] and demonstrate encouraging results with the use of

virtualization. The system modeling scheme presented in this

paper also uses analytical models but it is the only solution that

takes the correlation between component failures in typical

data centers and deployment scenarios in a large scale system

into account. The authors in [11] study the availability attribute

in the state-of-art SLA models using similar techniques and

conclude that it is beneficial to offer different levels of

availability to different user applications. The matching and

comparison method presented in this paper, is similar to [2],

[7], and allows the service provider to feasibly realize this

additional feature. Our proposal enables a service provider

to identify suitable fault tolerance techniques when a set of

desired properties are given.

An interesting line of research exploits the virtualization

technology to improve the availability and reliability of a sys-

tem. In [3], the authors present a mechanism to continuously

“synchronize” the memory state of a node to backup nodes

using checkpointing. A fault tolerance middleware that uses

the leader/follower replication approach to tolerate crash faults

in Cloud computing is presented in [16]. In this paper, we

build on the principles of the conceptual framework presented

in [6], [7] to utilize the virtualization layer to transparently

introduce fault tolerance on applications. We believe that the

proposed solution can serve as a basis to holistically realize

the perspective of offering fault tolerance as a service in Cloud

computing. Security is also an important feature considered in

FTM for ensuring dependability (e.g., [1]).

VII. CONCLUSIONS

We presented a failure model comprising critical cloud

infrastructure resources namely, server components (including

VM and VMM), network and power distribution, to analyze

the impact of each failure on user’s applications. Based on this

failure model and representative fault tolerance mechanisms

that transparently functions on applications deployed in the

VM instances, we discussed suitable deployment contexts and

quantified the high level reliability and availability properties

for each mechanism. We also presented a methodology to

select fault tolerance techniques based on user’s requirements.

Our future work will mainly focus on extending the models

presented in this paper to a larger scale in order to adapt with

dynamically changing Cloud computing system attributes.

ACKNOWLEDGMENTS

This work was supported by the Italian Ministry of Research

within the PRIN 2008 project “PEPPER” (2008SY2PH4), and

by the Università degli Studi di Milano within the “UNIMI per

il Futuro – 5 per Mille” project “PREVIOUS”.

REFERENCES

[1] C. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and P. Samarati,
“A privacy-aware access control system,” Journal of Computer Security

(JCS), vol. 16, no. 4, pp. 369–392, September 2008.
[2] C. Ardagna, E. Damiani, R. Jhawar, and V. Piuri, “A model-based

approach to reliability certification of services,” in Proc. of DEST-

CEE’12, Campione d’Italia, Italy, 2012, pp. 1–8.
[3] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield, “Remus: high availability via asynchronous virtual machine
replication,” in Proc. of NSDI’08, San Francisco, USA, pp. 161–174.

[4] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” ACM Computer

Communication Review, vol. 41, no. 4, pp. 350–361, 2011.
[5] R. Guerraoui and M. Yabandeh, “Independent faults in the cloud,” in

Proc. of LADIS’10, Zurich, Switzerland, 2010, pp. 12–17.
[6] R. Jhawar, V. Piuri, and M. D. Santambrogio, “A comprehensive

conceptual system-level approach to fault tolerance in cloud computing,”
in Proc. of SysCon’12, Vancouver, BC, Canada, 2012, pp. 1–5.

[7] R. Jhawar, V. Piuri, and M. D. Santambrogio, “Fault tolerance manage-
ment in cloud computing: A system-level perspective,” IEEE Systems

Journal, 2012 (to appear).
[8] S. Kim, F. Machida, and K. Trivedi, “Availability modeling and analysis

of virtualized system,” in Proc. of PRDC’09, Shanghai, China, 2009, pp.
365–371.

[9] G. Koslovski, W. L. Yeow, C. Westphal, T. T. Huu, J. Montagnat, and
P. Vicat-Blanc, “Reliability support in virtual infrastructures,” in Proc.

of CloudCom’10, Indianapolis, USA, 2010, pp. 49–58.
[10] W. E. Smith, K. S. Trivedi, L. A. Tomek, and J. Ackaret, “Availability

analysis of blade server systems,” IBM Systems Journal, vol. 47, no. 4,
pp. 621–640, 2008.

[11] A. Undheim, A. Chilwan, and P. Heegaard, “Differentiated availability
in cloud computing slas,” in Proc. of Grid’11, Lyon, France, 2011, pp.
129–136.

[12] W. E. Vesely and N. H. Roberts, Fault Tree Handbook. Government
Printing Office: U.S. Nuclear Regulatory Commission, 1987.

[13] K. Vishwanath and N. Nagappan, “Characterizing cloud computing hard-
ware reliability,” in Proc. of SoCC’10, Indianapolis, USA, pp. 193–204.

[14] VMware, “White paper: Vmware high availability concepts, implemen-
tation and best practices,” 2007.

[15] VMware, “White paper: Protecting mission-critical workloads with
vmware fault tolerance,” 2009.

[16] W. Zhao, P. Melliar-Smith, and L. Moser, “Fault tolerance middleware
for cloud computing,” in Proc. of CLOUD’10, Miami, USA, pp. 67–74.


