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Principal Component Analysis (PCA) is a classical multivariate statistical algorithm for data 
analysis. Its goal is to extract principal features or properties from data, and to represent 
them as a set of new orthogonal variables called principal components. Although PCA 
has obtained extensive successes across almost all the scientific disciplines, it is clear 
that PCA cannot incorporate the supervised information such as class labels. In order 
to overcome this limitation, we present a novel methodology to combine the supervised 
information with PCA by discriminatively selecting the components. Our method use the 
fisher criterion to evaluate the discriminative abilities of bases of original PCA and find the 
first n best ones to yield the new PCA projections. Clearly, the proposed method is general 
to all PCA family algorithms and even can be applied to other unsupervised multivariate 
statistical algorithms. Furthermore, another desirable advantage of our method is that 
it doesn’t break the original structure of the PCA components and thereby keeps their 
visual interpretability. As two examples, we apply our method to incorporate the supervise 
information with PCA and Robust Sparse PCA (RSPCA) to improve their discriminative 
abilities. Experimental results on two popular databases demonstrate the effectiveness of 
our method.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Principal Component Analysis (PCA) [1,2] is probably 
the most popular multivariate statistical technique for data 
processing and dimensionality reduction, and has wide 
range of applications almost throughout all the scientific 
disciplines. Essentially, PCA aims at learning a subspace 
spanned by a set of mutual orthogonal bases called Prin-
cipal Components (PCs) along which data variance can be 
maximally preserved. In such PCA subspace, the structure 
of the input data can be effectively captured.
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Although PCA has obtained extensive successes [1–7], 
PCA has an obvious drawback that it cannot utilize class 
labels to improve its discriminative ability and further ben-
efit the solutions to the supervised issues. Currently, there 
are two common ways to address this problem. The first 
one is to perform another supervised projection, such as 
Linear Discriminant Analysis (LDA) [8] and Locality Pre-
serving Projections (LPP) [9], in PCA space. The second way 
is to put the class label to the end of sample vector as 
the additional dimension [5]. Although many studies have 
proved that the previous approaches can significantly im-
prove the discriminative ability of PCA, these approaches 
clearly break the original structures of the components. 
However, preserving the original structure of components 
is very important, since the components are visually in-
terpretable and represent some physic meanings in some 
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specific problems [4]. The reason why the PCs are inter-
pretable is mainly due to the fact that each component is 
generally a linear combination of input observations (vari-
ables) [4,6]. For example, in biology, each involved vari-
ables may be corresponding to a specific gene. Thus, a PC 
may indicate a gene sequence in this case. Moreover, due 
to the improvements of the L1-norm based mathematical 
works [10], improving the interpretability of PCA compo-
nent also becomes a recent hot topic in machine learning 
field [4,6,7].

In this letter, we intend to incorporate the supervised 
information with PCA by selecting the discriminative PCs 
based on the class labels. The main advantage of this 
method is that it doesn’t suffer the problem as the pre-
vious approaches do. Thus, the physic meaning of the 
component can be kept. In almost all PCA applications, 
PCs corresponding to the larger eigenvalues are selected 
for constructing the final PCA projection. This is because 
the larger eigenvalue indicates more information preserved 
along the directions of relevant components. However, for 
a supervised problem, such as face recognition and gene 
expression classification, discriminative information preser-
vation is more meaningful than whole information preser-
vation. Therefore, we can improve PCA via re-ranking PCs 
according to their discriminant abilities. Furthermore, the 
amount of PCs is adequate to provide such potential, since 
it is equal to the rank of covariance matrix of data. Mo-
tivated by the successes of LDA and fisher score based 
feature selection [8,11–13], the well known fisher crite-
rion [8] is adopted to evaluate the discriminative ability of 
each PC. After evaluation, each PC will achieve a confidence 
called fisher score and this confidence indicates its discrim-
inant ability. Due to the mutually orthogonality of PCs, PCs 
can be considered as independent with each other. Thus, 
we can directly sort the PCs based on the fisher scores 
and select the d most discriminative PCs to yield the new 
PCA projections. We apply our method to PCA and a very 
recent PCA algorithm named Robust Sparse PCA (RSPCA) 
[4] to evaluate the effectiveness of our method. The exper-
imental results from two popular databases demonstrate 
that we present a remarkable improvement to the PCA al-
gorithms.

2. Methodology

We begin by introducing some notions. The d × n ma-
trix W = [w1, · · · , wn] presents the whole PCA projec-
tion where the d-dimensional column vector wi denotes 
the ith basis of PCA (Principal Component). Matrix X =
[x1, · · · , xn] ⊂Rm is the sample matrix and the class labels 
are denoted as a vector C = [1, 2, · · · , p]. Matrix Xc, c ∈ C
denotes the subset whose samples are belonging to class c. 
Matrix Y = [y1, · · · , yi, · · · , yp] ⊂ Rm, i ∈ C denotes the 
mean space of samples where yi is the mean of samples 
belonging to the class i.

Motivated by the successes of LDA and the fisher score 
based feature selections [8,11,12], we evaluate the discrim-
inant ability of each PC using fisher criterion. The idea of 
Fisher criterion is derived from LDA. It measures the dis-
criminative ability of each PC by computing the ratio of the 
trace of its between-class scatter matrix to the trace of its 
within-class scatter matrix. And this ratio is the so-called 
fisher score. Since the projected samples on each PC are 
all scalars, the between-class scatter matrix actually is the 
variance of the means of different classes, and the within-
class scatter matrix is actually the sum of the variances of 
the homogenous samples. Therefore, the basis evaluation 
function is finally formulated as follows

F(wi) = σ(wi
T Y )

∑

c∈C
nc · σ(wi

T Xc) + ε

= wi
T (Y − Ȳ )(Y − Ȳ )T wi

∑

c∈C
nc wi

T (Xc − X̄c)(Xc − X̄c)T wi + ε
(1)

where σ(t) is the variance of t and nc indicates the sample 
number of class c. Matrix Ȳ has the same size as matrix 
Y and each column is the column mean of the matrix Y . 
Similarly, matrix X̄c is a same size matrix whose column 
is the column mean of the matrix Xc . ε is a very small 
positive constant for avoiding diving by zero.

The greater value of the numerator of Equation (1) in-
dicates the larger distance between each two classes. The 
smaller value of the denominator of Equation (1) indicates 
the smaller distance between each two homogenous sam-
ples. Thus, it can be easily deduced that the larger fisher 
score means the stronger discriminating power of the rel-
evant component. Moreover, according to Equation (1), 
clearly, Fisher criterion and LDA share the same objective 
function. The only difference between them is that the 
projection matrix W in LDA is treated as a variable while 
the projection matrix W in Fisher criterion is considered 
as an input. Therefore, LDA learns its own projections 
while Fisher criterion is deemed as a kind of evaluation 
metric which is employed to evaluate the discriminating 
power for a given projection (base).

The principal components can be considered as mu-
tually independent under PCA framework, since they are 
orthogonal with each other. Thus, the most d-dimensional 
discriminative PCA projection is constructed by the com-
ponents corresponding to the first d largest fisher scores. 
The detail of how to select discriminative components is 
described in Algorithm 1.

Algorithm 1 Selecting Discriminative Components.
Require:

The training data X ;
The sample class labels L;
The original d × n PCA projections W = [w1, · · · , wn]; The amount of 
selected discriminative components m where m ≤ n;

Ensure:
The output d × m discriminative PCA projections D;

1: Define a temporary array F to store the fisher scores.
2: for each i ∈ [1, n] do
3: Calculate the fisher score f of the ith component by Equation (1)

with parameters of wi , X and L;
4: Put the fisher score f into the ith entry of array F ;
5: end for
6: Descendingly sort the fisher score array F , [F , index] = SORT(F ) where 

index indicates the new index of array after the sorting;
7: Re-rank the PCA projections W based on index, W = W (index);
8: Put the first m components of re-ranked PCA projections into discrim-

inative PCA projections D , D = W (:, 1 : m);
9: return D;
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Fig. 1. The toy example for illustrating our works, (a) the samples of the two classes in sample space, (b) the fisher scores and eigenvalues corresponding 
to the different PCA components, (c) the samples in the original PCA space and (d) the samples in the new PCA space which is optimized by our method.
3. Toy examples

We conduct a toy experiment in a small toy dataset to 
illustrate our proposed method. This dataset is constructed 
by us and it contains two classes with fifty samples for 
each. Fig. 1(c) presents the distribution of the samples in 
the original PCA space while Fig. 1(d) presents the distri-
bution of the samples in the optimized PCA space whose 
bases are discriminatively selected by our method. It is 
clear from these two figures that the optimized PCA space 
can better separate the samples. Furthermore, we also 
present the eigenvalue and fisher score of the components 
in Fig. 1(b). The previous observations all demonstrate that 
the discriminative ability of component is independent to 
the eigenvalue and a supervised component selection can 
improve the discriminative ability of PCA algorithms.

4. Experiments

Two popular face databases, ORL [14] and PIE [15], are 
used to evaluate the effectiveness of our method. The ORL 
database contains 400 images from 40 subjects [14]. Each 
subject has ten images acquired at different time. In this 
database, the subjects have varying facial expressions and 
facial details. We resize the face images to size 32 ×32 pix-
els. The PIE face database [15] contains 68 individual with 
41368 face images as a whole. In this paper, we selected 
a subset (C27), containing 3060 images of 68 individuals 
(each individual has 45 images). The C27 subset involves 
variations in illumination,facial expression and the size of 
each image is 64 × 64 pixels.

In these experiments, the Nearest Neighbor (NN) Clas-
sifier is used as the default classifier and all the recog-
nition rate means the top recognition accuracy. We use 
cross validation to evaluate our method on both PIE and 
ORL databases according to their sample number of each 
subject. In this letter, we take PCA and robust sparse PCA 
(RSPCA) as two cases and apply our method to improve 
their discriminative abilities. For convenience to talk, we 
name the new PCA with our improvement Discriminative 
PCA (DPCA) and name robust sparse PCA with our im-
provement Discriminative Robust Sparse PCA (DRSPCA).

Table 1 and Table 2 respectively present the recog-
nition results of PCA and RSPCA before and after us-
ing our method on ORL and PIE face databases. From 
the observations, it is clear that our method can effec-
tively improve the discriminative abilities of both these 
two PCA algorithms. With our improvement, PCA im-
proves at least 1.75%, 2.42% accuracies and RSPCA im-
proves at least 1.25%, 1.67% accuracies on ORL and PIE 
database respectively under all three different cross vali-
dation schemes. From the results, another interesting ob-
served phenomenon is that the performance of PCA is 
much better than the one of RSPCA. We mainly attribute 
this to the different intentions of PCA of RSPCA. PCA is 
developed for pruning redundancy of information while 
RSPCA is developed for improving the robustness of PCA. In 
other words, all these algorithms have not considered the 
discriminating powers of projections. Therefore, although 
RSPCA is the enhanced version of PCA, RSPCA is still not 
better at face recognition in which the discriminating pow-
ers of projections play an important role. Moreover, RSPCA 
is a robust version of PCA. It may excessively emphasize 
the sparsity of the base which can lead to more losses of 
discriminative information.
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Table 1
Recognition performance comparison (in percents) using ORL database.

Cross-validations Mean recognition rate ± standard deviation

Two-fold Three-fold Five-fold

PCA 85.25% ± 0.35% 89.72% ± 1.27% 91.25% ± 3.19%
DPCA 87.75% ± 3.89% 92.23% ± 2.10% 93.00% ± 2.44%
Improvement 2.50% 2.51% 1.75%

RSPCA 82.00% ± 1.41% 89.72% ± 2.10% 92.25% ± 2.71%
DRSPCA 85.25% ± 2.47% 91.67% ± 3.63% 93.50% ± 2.85%
Improvement 3.25% 1.91% 1.25%

Table 2
Recognition performance comparison (in percents) using PIE database.

Cross-validations Mean recognition rate ± standard deviation

Three-fold Five-fold Nine-fold

PCA 93.17% ± 3.46% 95.62% ± 5.52% 95.49% ± 8.16%
DPCA 97.42% ± 1.68% 98.04% ± 2.93% 97.91% ± 4.52%
Improvement 4.25% 2.42% 2.42%

RSPCA 90.16% ± 3.16% 94.41% ± 6.78% 94.77% ± 9.12%
DRSPCA 94.44% ± 5.45% 96.08% ± 4.99% 96.73% ± 6.15%
Improvement 4.28% 1.67% 1.96%

Fig. 2. The recognition rate versus the retained dimensions, (a) the results of PCA and DPCA on ORL database (5 trains), (b) the results of RSPCA and 
DRSPCA on ORL database (5 trains), (c) the results of PCA and DPCA on PIE database (30 trains) and (d) the results of RSPCA and DRSPCA on PIE database 
(30 trains).
We also conduct some experiments to plot the rela-
tionships between recognition rate and retained dimension 
of the PCA algorithms. As Fig. 2 shows, the PCA algo-
rithms with our improvement consistently keep on top in 
all cases in comparison with their original version. Further-
more, with our improvement, PCA algorithms can more 
easily obtain the best recognition rate with retaining less 
dimension. This phenomenon verifies that the discrimina-
tive PCA projections can be constructed by a few of PCs 
and most of PCs are actually the redundancies for discrim-
inating. Sometime, these redundancies may even corrupt 
the discriminating power of PCA. And we think this may 
be the main reason why the original PCA algorithms do 
not have the peaks of discriminating performance as same 
as their improved versions.

We draw the top six bases of PCA algorithms before 
and after component selection in Fig. 3. This experiment 
is conducted on ORL database. 200 samples with five sam-
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Fig. 3. The first and second rows are the top six bases of RSPCA and DR-
SPCA respectively, the third and forth rows are the top six bases of PCA 
and DPCA.

ples for each subject are used to training the PCA algo-
rithms. Clearly, the top six bases corresponding to the top 
six largest eigenvalues are different to the top six most 
discriminative bases. It verifies the assumption we raised 
previously that the largest eigenvalue doesn’t always mean 
the best discriminating power.

5. Conclusion

In this letter, we present a novel methodology to in-
corporate the supervised information with PCA algorithms. 
Different to the traditional ways, our method utilize the 
class labels to select discriminative components from 
whole PCs and yield them as a new PCA projections. Mo-
tivated by the successes of LDA and fisher score based 
feature selection, we use the fisher criterion to evaluate 
the discriminative ability of each component. After eval-
uation, each component will obtain a confidence named 
fisher score which indicates the discriminating power of 
the component. Therefore, we can re-rank these compo-
nents according to these fisher scores and select the most 
discriminative components. The main advantage of our 
method is that it doesn’t break the original structures of 
components. For this reason, the semantics of the com-
ponents can be kept. Apparently, our method is not only 
general to PCA algorithms but also general to the other 
unsupervised multivariate statistical algorithms.
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