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ABSTRACT
Extracting features from images is an important task in or-
der to identify (classify) the patterns contained. The Evo-
lutionary Computation and Reinforcement Learning tech-
nique of Learning Classifier Systems (LCSs) has been suc-
cessfully applied to classification tasks, but rarely to image
pattern classification due to the large search space associated
with pixel data. Recently, a Feature Pattern Classification
System (FPCS), utilising Haar-like features has been intro-
duced with promising results in the image recognition do-
main. This system used a confusion-matrix to direct learn-
ing to hard to classify classes, but due to its reinforcement
learning nature was required to estimate the ground truth.
The novel work presented here adopts a supervised learning
(UCS-based) approach into the FPCS framework. This work
is compared with the original XCS-based system, updated
to include the known ground-truth of the confusion matrix
to aid comparison, albeit no longer reinforcement learning.
Results on the 10 class MNIST numerical digits recognition
task show that the XCS-based FPCS produces better classi-
fication due to its complete mapping guiding learning. How-
ever, results on the 26 class NIST character recognition task
show that the UCS-based scales better as it does not require
the complete mapping. The human readable rules produced
by each system, coupled with the competitive classification
performance compared with similar techniques, supports fu-
ture work on both the XCS and UCS-based FPCS.

Categories and Subject Descriptors
F.1.1 [Models of Computation]: Genetics-Based Machine
Learning, Learning Classifier Systems

General Terms
Algorithms, Performance
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1. INTRODUCTION
Image classification and pattern recognition remain a ma-

jor challenge for machine learning. This is mainly due to the
large-dimensionality of image data. Identifying the ‘best’
features of an image that represent a class is extremely dif-
ficult due to spareness of the features. Moreover, the image
domain requires techniques that are efficient in training and
testing stages, and yet are able to produce generalised and
accurate solutions.

This work builds on top of the Kukenys et al. Feature Pat-
tern Classification System (FPCS) [9], which was based on
Wilson’s XCS framework [19]. FPCS employs LCS for image
pattern classification in reinforcement and online scenarios.
The FPCS utilises Haar-like features for extracting informa-
tion from images to manage the large search space. FPCS
demonstrated competitive, albeit not optimal, classification
performance on handwritten numerical image recognition,
with the benefit of human rotated rules and operation in
online, dynamic scenarios.

The aim of this work is to adopt a supervised learning ap-
proach into FPCS and compare its performance with the re-
inforcement learning FPCS. A handwritten numerical dataset,
MNIST, will be used to compare the performance of the two
systems. In addition, the impact of confusion matrix and ‘di-
vide and conquer’ approaches on image classification will be
investigated. The knowledge in the confusion matrix will be
used by the reinforcement and supervised FPCS to provide
a guided search for similar classes of the problem. Finally,
the scalability of the supervised method will be measured
by applying it to an alpha-numerical handwritten dataset.

Traditional ensemble classification methods such as bag-
ging and boosting [13] have been used to address ambiguity
between different classes of a problem. However, such meth-
ods follow a bottom-up approach by creating separate clas-
sifiers for each sample. These classifiers are then integrated
to create one single output. This leads to a large and com-
plex network of knowledge. In contrast, the pattern recog-
nition system developed in this work follows a top-down ap-
proach where an LCS is formed for the entire system. The
LCS utilises a ‘divide and conquer’ for resolving confusions
by constructing separate classifier systems for problematic
classes. Therefore, the LCS-based system is more efficient
for large and complex problem domains. Moreover, the in-
formation in the proposed LCS-based system is human read-
able which is useful in understanding of complex systems.

The structure of the paper is as follows. Section 2 provides
the related work including learning classifier systems concept
and its application in the image domain. It also describes
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a sUpervised LCS known as UCS. Section 3 describes the
encoding details of the Haar-like features for construction
of rule conditions. Moreover, it explains the reinforcement
learning Feature Pattern Classification System (FPCS) and
sUpervised Feature Pattern Classification System (UFPCS).
Section 4 provides the details of the confusion matrix ap-
proach for resolving confusion between similar classes. Sec-
tion 5 provides the experiments and their details. Section
6 discusses the results, and finally section 7 provides the
conclusion and future work.

2. BACKGROUND

2.1 Learning Classifier Systems
Learning Classifier Systems (LCSs) model an agent inter-

acting with an environment using a set of sensors for observ-
ing and collecting information about the environment. Once
the current state is observed, the agent performs an action
and receives a numerical reward from the environment. An
agent in LCS learns by attempting to maximize its amount
of reward.

LCS, benefits from the integration of evolutionary com-
puting, reinforcement learning or supervised learning and
heuristics for creating adaptive systems. Most implemen-
tations of LCS use the XCS formulation [19]. XCS utilises
reinforcement learning and uses an accuracy-based fitness
to map the states of the environment and agent’s actions
to reward. In order to produce maximally general rules,
XCS requires a complete mapping from each state to the
entire action set (one rule for each possible action) during
the training period. Non-optimal actions for a given state
are mapped to work as the optimum actions. This leads
to an extremely large population in domains encompassing
a large number of possible actions. In contrast, supervised
LCS-based frameworks may only create one rule for every
state of the environment based on the available ‘correct’ ac-
tion (since the the ground truth data is available).

2.2 Supervised Learning Classifier Systems
This work employs the sUpervised Classifier System (UCS)

developed by Bernadó-Mansilla and Garrell-Guiu [2]. The
UCS framework is designed for supervised problems where
the ‘correct’ action is available during the training.

UCS and XCS share the same principle since both systems
use a niche GA and define fitness based on accuracy. The
agent in the UCS framework has two modes of operation:
explore and exploit. Algorithms 1 is executed by the agent
in the explore mode.

In this algorithm, initially the agent observes the current
state of the environment, s, and forms a match set (loop
in line 3). If the current action is not present in the match
set covering is triggered to create a rule that its condition
matches the current state. Since the correct action (a) is
known in supervised scenarios, the UCS framework suggests
forming a correct set, Cs, that contains all classifiers of the
match set, M , that advocate action a. Each classifier in
the UCS framework has an additional field, correct track,
that is increased every time the classifier is selected as part
of a correct set. Moreover, each classifier has an accuracy
field which replaces the prediction in the XCS framework.
A classifier accuracy is calculated as:

accuracy =
correctTrack

experience
(1)

Algorithm 1: explore
Data: s: observed state;a: correct action; P:

population of rules; M: match set ; c:
classifier ∈ P ;Cs correct set

s=observe();1

foreach c in P do2

if c.condition.matches(s.condition) then3

M .add(c);4

if !M .contains(a) then5

P .add(createClassifier(s,a));6

foreach c in M do7

if c.action== a then8

Cs.add(c);9

foreach c in Cs do10

c.correctTrack++;11

foreach c in M do12

c.experience++;13

c.accuracy = c.correctTrack / c.experience;14

c.fitness= c.accuracyε15

updateActionSetsize(M.sum(numerosity));16

runGA();17

Where experience is the number of times that a classifier
has been selected as part of a match set. In UCS calcula-
tion of fitness is different from XCS. UCS calculates fitness
according to equation 2.

fitness = accuracyaccuracy−threshold (2)

The agent updates the sizeof its match set by having the
sum of the numerosity of all the classifiers in the match set.
At the end of the explore mode, the agent executes a Genetic
Algorithm (GA) to evolve the population of classifiers. Two
classifiers are selected from the correct set and two offspring
are produced by applying crossover and mutation on their
conditions, such that both offspring match the current state
of the environment.

The agent may also execute subsumption. Subsumption,
combines specific classifiers and creates more general, accu-
rate classifiers. In addition, it may delete classifiers from the
population in situations where the number of classifiers has
exceeded the defined limit.

In the exploit mode, the agent does not perform any learn-
ing and predicts the associated class for each input state.
The best action for each example is selected via system vote,
which represents weighted fitness of all the classifiers in the
matchset.

2.3 Related work
LCS has been used in various fields including gene ex-

pression classification [17] and data mining [15] but rarely
applied to the image recognition domain due to the large
search space of making the feature extraction difficult. LCS
has been used to address automatic target recognition [7,
14] to identify objects of interest based on data collected
from sensors in the robotics filed. Ravichandran et al. [14]
employed an XCS-based LCS in such a domain. They define
three types of features including global, spatial and spectral
to extract important information of an image. The global
features were defined based on Principal Component Anal-
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Figure 1: Haar-like features. The feature values are calculated by subtracting sums of pixel intensities in
neighbouring rectangular regions A, B, C, D. Position and scale of features on images are important.

ysis (PCA) coefficients and represent the global information
for an object. The spatial features captured region informa-
tion, and spectral features represent the localised intensity
based on dominant scatters in an image. These features
were then encoded to an string that was used by the LCS
for creating classifier rules. Frey and Slate [6] used LCS
for handwritten letter recognition. The authors calculated
16 numerical attributes for creating each image condition
where these values represent statistical features of the pixel
distribution of images. The work of Frey and Slate was per-
formed more that 20 years ago and their reported results
were not promising.

All works described in this section use inflexible features
that cannot be easily scaled to more sophisticated problems
e.g., complex and large images.

3. CLASSIFICATION METHOD

3.1 Haar-like features
Traditional learning classifier systems use a ‘don’t care’

symbol (#) in a classifier’s condition in the ternary alphabet.
The # symbol represents a field in the LCS condition that
matches any attribute of the environment state. The #
symbol enables LCS to produce generalised rules. Even so
alphabets are not suited to encoding LCS conditions in the
image domain since they are computationally expensive and
intractable considering the large number of pixels in real
images.

Haar-like features from the image domain are used to cre-
ate rule conditions by extracting rectangular features from
images and calculating the total pixel intensity in each rect-
angle. The final value is computed by measuring the differ-
ence between sums of the neighbouring rectangles. Figure 1
shows various types of Haar-like features used in both sys-
tems. The FPCS (and UFPCS) utilises the integral image
proposed by [18]. When using the integral image, the value
of each pixel in the image is replaced by sum of all pixel
values to its left and above (equation 3). The integral im-
age(II) is calculated once for each image.

II(x, y) =

x,y∑
i,j=1

I(i, j), (3)

3.2 Encoding Haar-like features
Each Haar-like feature in the FPCS framework includes lo-

cation l = (x, y) and scale u = (width, height) of the feature
f . Thus the value of each feature f(s, l, u) can be calculated
with a few lookup calls in the integral image II.

In addition, each f(s, l, u) includes a threshold between
tlow and thigh. The threshold values enable the FPCS to
form binary decision rules that identify whether the desired

level of contrast between neighbouring rectangular regions
exist. The rule condition in the FPCS can be constructed
using the following formalism:

ci = c(f, l, u, tlow, thigh),

ci(s) =

{
true, if tlow < f(s, l, u) < thigh

false, otherwise

Although valuable information can be extracted from im-
ages using Haar-like features, a single feature is not sufficient
for representing information required in complex and large
images e.g., a single Haar feature on an image of digit ‘3’
is not adequate for its identification. Therefore, we utilise
a ‘messy’ encoding with appropriate operators [10], which
allows for construction of complex features by joining mul-
tiple single features using a logical ‘and’ operator. Such
an approach creates comprehensive features and forms rule
conditions that suit complex learning systems (equation 4).

c(s) = c1(s) ∧ . . . ∧ cm(s) (4)

3.3 Feature Pattern Classification System
The Feature Pattern Classification System (FPCS) em-

ploys Haar-like features, and is based on the XCS frame-
work [19]. FPCS uses a prediction mechanism to predict a
reward for a classifier, and a reinforcement learning to up-
date agent’s prediction. The classifier fitness in the FPCS is
based on the accuracy of the predicted reward.

3.4 Supervised Feature Pattern Classification
System

The sUpervised Feature Pattern Classification System (UF-
PCS) follows the same naming convention of the UCS. The
UFPCS utilises supervised learning for the FPCS system
based on the UCS framework [2]. The UFPCS framework
performs covering in the explore mode if the selected action
is not correct. This is to compensate for non-comprehensive
representations of Haar-features since Haar-features do not
contain information on the entire image.

4. CONFUSION MATRIX FOR DIVIDE AND
CONQUER

Confusion matrices [8] are useful tools for identifying areas
of confusion between correct (ground truth) and predicted
classes in classifier systems. They facilitate resolving highly
confused classes by providing quantifiable analysis of con-
fusions. Such information can be used to create a guided
learning with special focus on commonly confused classes.

By considering confusion matrices, pairs with the highest
confusion values can be selected to resolve confusion. In
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this work, we develop a two-level classifier system where the
first level identifies the current state, and the second level
resolves confusion based on the output of the first level. Such
approaches are known as ‘divide and conquer’ or hierarchical
systems in the field of machine learning [16].

4.1 Confusion matrix for FPCS
The information in the confusion matrix is not trivially

available to the agent in the FPCS framework since the ‘cor-
rect’ action is not known by the agent. Therefore, the agent
in the FPCS requires a mechanism that enables it to obtain
such information (i.e., to estimate the correct state). In or-
der to address this issue, the agent in the FPCS records a
unique (state,action,reward) triplets for every state of the
environment. Every time a new state is observed the agent
selects the correct action by selecting the action with the
highest reward for the state.

The ‘divide and conquer’ is implemented by considering
the confusion matrix after the number of entries has reached
a threshold. It picks pairs of actions (actionA, actionB) with
the highest confusion error in the confusion matrix and sets
up a separate classifier system for the confused classes.

4.2 Confusion matrix for UFPCS
UFPCS utilises a novel confusion matrix. Since the ‘cor-

rect’ action is known in the UFPCS, the confusion matrix is
formed by comparing the system output against the actual
class and recording the outcome. Therefore, the UFPCS
is capable of finding confused classes by sorting the confu-
sion matrix and forming separate classifiers for commonly
confused classes.

5. EXPERIMENTS

5.1 Datasets
The UFPCS has been tested on MNIST and NIST datasets.

Both datasets contain images of real world and thus provide
a realistic test problem. In particular, MNIST has been
widely used for evaluating performance of various methods
on the handwritten-digit recognition problem, and serves as
a standard for comparison between performance of different
pattern recognition methods.

The MNIST benchmark [11] contains 60,000 training ex-
amples for handwritten digits: 0 ... 9. It contains binary
image data of 28× 28 pixels. Note that no preprocessing is
performed on the training set in our examples while prepro-
cessing is known to improve the classification accuracy. In
addition, MNIST provide 10,000 test images that are col-
lected from a different group of people.

The NIST dataset contains alpha-numerical characters and
provides total of 62 classes (10 classes for digits, 26 classes
for uppercase and lowercase letters). It contains images of
32× 32 pixels. The data in the NIST is not in a common
format. Therefore, it was converted to a binary format so it
can be used for the classification task. Similar to MNIST,
NIST has a separate independent test set.

5.2 Implementation details
Table 1 shows the parameters used in the experiments.

These parameters are inherited from UCS project [2] except
µ = 0.4 which is higher than the UCS (0.04 in UCS) due
to the variation in the Haar features. Six types of Haar-
features presented in Figure 1 were used including a single

Table 1: Parameters used in the FPCS and UFPCS
frameworks.

parameter name symbol UFPCS FPCS

fitness fall-off α NA 0.1

accuracy threshold ε0 10 10

fitness exponent ν NA 5

learning rate β 0.2 0.2

GA threshold θGA 25 25

classifier threshold for deletion θdel 20 20

classifier threshold for subsumption θsub 20 20

crossover probability χ 0.8 0.8

mutation probability µ 0.4 0.4

rectangle sum, two, three and four rectangle difference. A
horizontal and vertical features were considered for the two,
three and four Haar types.

5.3 Comparing performance of the FPCS with
UFPCS on MNIST dataset

The population size of rules is constrained to 60,000 clas-
sifier for the FPCS but it is decreased to 12,000 for the UF-
PCS as suggested in [2]. All the experiments are executed
for 4,000,000 generations. In each generation a random im-
age example is selected from the training set and presented
as the current state to the LCS agent. All results presented
here are averaged over 30 runs.

The FPCS and UFPCS were executed on the MNIST
dataset for 4,000,000 generations. The FPCS and UFPCS
required 15-20 and 2-6 hours receptively. The training time
of the UFPCS is shorter than the FPCS due to lower num-
ber of rules in the population. The FPCS framework creates
10 (number of classes in the MNIST) rules when performing
covering. However, the UFPCS only covers for the ‘correct’
known class resulting in a smaller population. Therefore, in
UFPCS each example is compared against a relatively small
population requiring less training time.

Figure 2 compares performance of the FPCS with UF-
PCS on the training data. The FPCS achieves 91% accuracy
while the UFPCS reaches to 94% accuracy on the training
set after 4,000,000 iterations. When testing the system us-
ing the test data, FPCS and UFPCS achieved 90±1% and
94±1% respectively.

Figure 2: Comparison of accuracy rate of the FPCS
and UFPCS on MNIST dataset.

Table 2 shows the confusion matrices recorded on the in-
dependent test set of the MNIST after 4,000,000 generations
when applying FPCS. According to Table 2 the FPCS com-
monly confuses for example (3,8),(4,9),(2,7),(5,6). Note that
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Table 2: Confusion matrix recorded on MNIST when applying FPCS. Rows correspond to system classifica-
tion, columns correspond to actual classes (E estimated, A actual).

E\A 0 1 2 3 4 5 6 7 8 9

0 96±0 0±0 1±0 0±0 0±0 1±0 1±0 0±0 1±1 1±0
1 0±0 98±0 0±0 0±0 0±0 0±0 0±0 1±0 1±0 1±0
2 0±0 0±0 90±1 2±1 0±0 0±0 0±0 2±1 1±0 0±0
3 0±0 0±0 1±0 89±2 0±0 3±1 0±0 1±0 2±1 1±1
4 0±0 0±0 1±0 0±0 94±1 0±0 1±0 0±0 2±1 2±1
5 0±0 0±0 0±0 1±0 0±0 86±2 1±0 0±0 2±1 1±0
6 0±0 0±0 1±0 0±0 1±0 1±0 94±1 0±0 1±0 0±0
7 0±0 0±0 1±1 2±1 0±0 1±0 0±0 91±1 2±1 2±1
8 0±0 0±0 1±0 1±1 0±0 1±1 0±0 1±0 86±4 1±0
9 0±0 0±0 0±0 1±0 3±1 1±0 0±0 2±1 2±1 88±1

the confusion between the selected pairs is relatively sym-
metrical around the ‘correct’ diagonal e.g., FPCS estimates
‘9’ when presented with a ‘4’, and vice versa.

5.4 Confusion matrix guided learning

5.4.1 Divide and conquer in FPCS
In order to examine whether the knowledge captured in

the confusion matrix (Table 2) can improve the performance
of the FPCS framework, a simple ‘divide and conquer’ mech-
anism consisting of a two-level LCS is developed.

Figure 3 compares performance of the benchmark FPCS
with the FPCS that utilises a ‘divide and conquer’ mecha-
nism on the training set of the MNIST. It shows that using
‘divide and conquer’ improves the performance by 4±1% on
the independent test set.

Figure 3: Comparison of accuracy rate of the bench-
mark FPCS and FPCS using ‘divide and conquer’ on
MNIST dataset.

5.4.2 Divide and conquer in UFPCS
The divide and conquer is also applied to the UFPCS. The

information in the confusion matrix can be made available to
the agent. The agent ranks the confusion matrix and forms
separate classifiers for classes that are commonly confused.

As figure 4 demonstrates, the ‘divide and conquer’ does
not improve the performance in the UFPCS significantly.
According to the confusion matrix in Table 3, clear confu-
sion between classes is not present (except for (4,9)). For
instance, when a digit ‘2’ is presented to the system, the
UFPCS highly confuses that with ‘7’, although when a ‘7’

is presented, the agent rarely estimates that as a ‘2’. There-
fore, UFPCS produces less confusion but its performance is
slightly better than the FPCS.

Figure 4: Comparison of accuracy rate of UFPCS
and UFPCS using ‘divide and conquer’ on MNIST
dataset.

5.5 Comparing performance of the UFPCS on
NIST dataset

The NIST dataset contains 208,363 training examples for
uppercase letters, 178,997 training example for lowercase let-
ters, and 60,089 example for digits. The test set includes
11,941 uppercase, 12,000 lowercase and 5,646 digit exam-
ples. We created separate datasets for uppercase, lowercase
and digits and trained the system separately on each file to
limit the number of classes seen by the LCS.

5.5.1 FPCS performance on NIST
Applying FPCS to problems with a large number of classes

is not efficient due to a need for very large population size.
The FPCS required 60,000 rules to be trained properly for
only 10 digit classes of the MNIST dataset. When consider-
ing problems with a larger number of classes, e.g., uppercase
or lowercase letters, the population size must be increased to
a very large number due to correct and incorrect rules e.g.,
350,000 to accommodate rules required for different classes
in addition to different niches within a class. Figure 5 shows
examples of ‘a’ and ‘g’ from the NIST lowercase data file.

Several experiments were executed using the FPCS on
lowercase and uppercase training set of the NIST. These
experiments have been run for two weeks (on modern desk-
top PCs over a university grid) without convergence in the
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Table 3: Confusion matrix recorded on MNIST when applying UFPCS. Rows correspond to system classifi-
cation, columns correspond to actual classes (E estimated, A actual).

E\A 0 1 2 3 4 5 6 7 8 9

0 98±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 1±1 0±0
1 0±0 99±0 0±0 0±0 0±0 0±0 0±0 1±0 0±0 0±0
2 0±0 0±0 94±1 1±0 1±0 0±0 0±0 1±0 0±0 0±0
3 0±0 0±0 1±1 91±1 1±0 1±0 0±0 1±0 1±0 0±0
4 0±0 0±0 0±0 0±0 94±1 0±0 1±0 0±0 0±0 1±1
5 1±0 0±0 0±0 3±1 0±0 92±2 1±0 2±1 0±0 0±0
6 1±1 0±0 0±0 0±0 1±0 0±0 94±1 0±0 0±0 0±0
7 0±0 1±0 3±1 0±0 0±0 0±0 0±0 91±2 0±0 0±0
8 1±0 0±0 0±0 1±0 2±1 1±0 1±0 3±1 86±4 1 ±1
9 1±0 1±1 0±0 1±0 3±1 1±0 0±0 2±1 1±0 89±2

Figure 5: Examples of different ways in which letters
‘a’ and ‘g’ can be written.

performance of the system, which was considered impracti-
cal. This questions efficiency of FPCS in the image domain
for problems with a relatively high number of classes.

5.5.2 UFPCS performance on NIST
Due to JVM heap size memory limit on windows, train-

ing was performed on separate uppercase and lowercase files
where each file was divided into four parts. The UFPCS
was trained for 1,000,000 generations, 12,000 population, on
each part before loading the next part of the data. After
running the initial set of experiments, it was observed that
the system was only able to sustain rules produced for the
last part of the training. The deletion mechanism of the
UCS removes rules that have not been used for a long pe-
riod of time. This is mainly due to the fact that in the
NIST dataset all examples of the same class are presented
together e.g., all the examples of letter ‘A’ are presented in
the first partition of the dataset and are not repeated again.
These results confirm Butz and Sigaud ’s finding [3] that
deletion method of accuracy-based classifier systems do not
suit problems where samples are non-uniformly distributed.

A sub-sampling was performed on each of the NIST up-
percase and lowercase files. The examples were randomly
selected from the original dataset. The number of examples
in all the classes were approximately the same (1500 for each
class). Figure 6 shows the results of the UFPCS when ap-
plied to uppercase, lowercase, and digits on the NIST (sep-
arately).

As Figure 6 depicts, digits accuracy rate is 95%, uppercase
letters 83% and lowercase letters 76%. The rules produced

Figure 6: Comparison between accuracy rate of
uppercase and lowercase letters, and digits in the
NIST.

by these systems were applied to two test sets. The first test
set was formed by randomly selecting 10,000 examples from
the training set, and the second test set was formed by using
the hsf 4 dataset of NIST which contains unseen examples.
Table 4 shows the accuracy of the UFPCS on NIST using
the two test sets.

The difference between accuracy rate on training and test-
ing of lowercase and uppercase classes on the test set (hsf 4)
is due to lack of presence of some examples in the training
set.

Table 4: Performance accuracy of UFPCS on the
NIST dataset.

dataset Training Subsampled data hsf 4
Digits 95% 95% 90%

Uppercase 83% 84% 78%
Lowercase 76% 76% 67%

6. DISCUSSION
The sUpervised Feature Pattern Classification System (UF-

PCS) achieves higher accuracy compared with the XCS-
base, reinforcement learning, Feature Pattern Classification
system (FPCS). The improvement in the accuracy of UF-
PCS is due to availability of ‘correct’ actions during the
training phase that leads to construction of correct rules in
the population.
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Figure 7: Examples of character images and learnt matching Haar-like features. The classifier learnt for
each character contains the Haar-based condition and action, as well as some statistics that allow humans to
interpret rules.

Confusion matrices were employed to identify highly con-
fused classes of the problem. The information in the confu-
sion matrix facilitated construction of a hierarchical classi-
fier system by utilising a ‘divide and conquer’ mechanism.
The ‘divide and conquer’ improved the performance of the
FPCS. The FPCS create a complete mapping between in-
put data and all the possible classes of the problem thus
introducing a large amount of confusion into the system.
The reinforcement learning of the FPCS is in charge of im-
proving the fitness of the correct rules while the deletion
mechanism removes rules that have high rate of providing
a wrong estimate. Since the ‘correct’ action is not known
in the FPCS, the number of rules with incorrect actions in
the system is high and there may be some cases that the
reinforcement and deletion mechanism of the XCS do not
remove such rules thus increasing the chance of confusion
in the system. The UFPCS did not highly benefit from the
‘divide and conquer’. It was observed that there was lack
of clear confusion between classes when using UFPCS. This
can be due to low rate of initial confusion in the system due
to adding rules that advocate ‘correct’ actions.

Table 5: Number of rules for each class of the prob-
lem in the MNIST dataset.

Class 0 1 2 3 4
Number of rules 3476 3419 3623 3687 3123

Class 5 6 7 8 9
Number of rules 4063 4751 3664 2581 4005

By considering knowledge of the confusion matrix in Ta-
ble 3, it can be inferred that the supervised method has
provided stronger rules for certain classes of the problem for
instance, ‘6’ since whenever a ‘0’ is presented, it frequently
estimates that as a ‘6’ while it never estimates ‘6’ for a ‘0’.
Table 5 shows the number of rules in each class when using
UFPCS without having the ‘divide and conquer’ implemen-
tation. The UFPCS has produced 3,476 rules for class ‘0’
and 4,751 rules for ‘6’.

Ensemble approaches have achieved high accuracy on the
MNIST dataset in general. Convolutional networks [5] and
Deep Belief Networks (DBN) [12] are example of such meth-

ods and have achieved 99.52% and 99.2% accuracy rate on
the MNIST respectively (note that the authors of [5] have
performed normalisation on the data). The best results on
MNIST using Haar features was achieved by Casagrande [4]
(98.69%).

NIST has not been widely used in the literature. The best
results on the NIST is 83% and is reported in [1]. Please
note that 83% accuracy is achieved on all of the 62 classes
of the NIST dataset. The results reported in this paper were
achieved without performing any form of preprocessing on
the MNIST and NIST datasets.

6.1 Rule transparency
Figure 7 shows an example of the sample rules produced

by the UFPCS for letters ‘g’ and ‘a’. Note the some classi-
fier conditions are intuitively interpretable while others are
harder to interpret. The FPCS and UFPCS construct some
statistical values for each classifier based on its performance
for instance, the rule that corresponds to the letter ‘g’ in
Figure 7 has been used 28 times (experience:X), and has a
numerosity of 2 (N) meaning that the system has produced
this rule twice. This rule has a relatively low fitness (F)
and high accuracy (A). The HAAR values represent differ-
ent types of Haar features. The rules for the letter ‘a’ can
be interpreted similarly.

7. CONCLUSIONS AND FUTURE WORK
This work compared an XCS-based FPCS with an UCS-

based (UFPCS) for image classification. Performance on
the well-known MNIST dataset for numerical recognition
(10 classes) was competitive when compared with other ap-
proaches that used Haar-like features. However, non-human
readable approaches have achieved higher classification ac-
curacies (e.g., [5, 12]).

In order to improve the classification accuracy perfor-
mance the concept of confusion matrices to guide a divide
and conquer approach was introduced into both systems.
The complete map philosophy of FPCS led to a symmetric
matrix, which enabled sub-LCS to resolve confused states to
a degree (91±1% improved to 95±1%). Note that this ap-
proach requires the ground truth to be available to form the
known confusion matrix, so is not pure reinforcement learn-
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ing. Importantly, this work shows that the confusion matrix
for UFPCS was asymmetric, so could not easily be used to
guide a divide and conquer approach similar improvements
(albeit performance did not suffer).

The complete map approach did not scale well to the
character recognition task, due to the number of classes
(26 classes per set) requiring multiple rules for both cor-
rect and incorrect action mapping. Analysis of the domain
also showed that niches were present within a class further
increasing the search space for rules. In contrast UFPCS
performed well on these datasets (NIST uppercase and low-
ercase) as it did not attempt to form a complete mapping,
only allocating the necessary rules for each class.

In domains with a small number of classes, the XCS-based
system appears promising as the complete mapping high-
lights confusions, so can guided divide and conquer learn-
ing. As the number of classes increases, the number of re-
quired rules increases substantially, supporting the use of
UCS-based systems.

Our future work will consider increasing the number of
classes to 62 and test the performance of the UFPCS on
the NIST dataset. In addition, we attempt to improve the
accuracy of the system by replacing Haar-like features with
more high-level features (e.g., features that capture curves
and lines) that mimic biological pattern recognition mecha-
nisms.
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