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The form postponement (FP) strategy is an important strategy for manufacturing firms to utilize to
achieve a quick response to customer needs while keeping low inventory levels of finished products. It
is an important and difficult task to design a supply chain that uses FP strategy to mitigate the conflict
between inventory level and service level. To this end, we develop a two-stage tandem queuing network
to model the supply chain. The first stage is the manufacturing process of the undifferentiated semi-fin-
ished product, which is produced on a Make-To-Stock basis: the inventory is controlled by base-stock
policy. The second stage is the customization process based on customers’ specified requirements. There
are two types of order: ordinary order and special order. The former can be met by customizing from
semi-finished product, while the latter must be entirely customized beginning from the first stage. The
customer orders arrive according to a Poisson process. We first derive the inventory level and fill rate,
and then present a total cost model. It turns out that the model is intractable due to the Poisson distri-
bution in the objective function. To analytically solve the problem, we use normal distribution as an
approximation of the Poisson distribution, which works well when the parameter of the Poisson distri-
bution is quite large. Finally, some numerical experiments are conducted and managerial insights are
offered based on the numerical results.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, more and more companies are enlarging product
varieties in order to fulfill demand from increasingly different
types of customers. Favorably, information techniques make the
diversification of product feasible by providing companies with
low cost platforms to interact with their customers and realize
mass customization. However, product variety has a significant im-
pact on inventory level and service performance (Lee & Tang,
1997). To offer a large variety of products in highly efficient ways,
various supply chain structures have been previously explored.
Most of them can be divided into two strategies (Zinn & Bowersox,
1988): One is the time postponement (TP) strategy which delays
delivery until customer orders arrive. The other is the form post-
ponement (FP) strategy which delays the differentiation of the
product until the detailed specification is confirmed.

Form postponement is one of the most popular and successful
strategies in mass-customizing supply chains (Lampel & Mintzberg,
1996;Ahlstrom & Westbrook, 1999). In practice, many companies
have successfully implemented the FP strategy, e.g., Dell computer,
Toyota’s ‘‘Build your Toyota’’, Amazon’s ‘‘Built your own ring’’, and
Nike’s ‘‘Design your shoes’’, etc. For maximizing efficiency of the FP
strategy, companies are showing increasing interest in incorporat-
ing the customer order decoupling point (CODP) as an important in-
put to the strategic design of manufacturing operations as well as
supply chains. CODP is defined as the point in the value-adding
chain that separates the decision based on forecast from the deci-
sion based on the detailed product specification of the order. In
other words, CODP divides the material flow that is forecast-driven
(upstream of the CODP) from the flow that is customer order-driven
(downstream of the CODP). It is also referred to as ‘‘the point of dif-
ferentiation’’ (Lee & Tang, 1997).

Since Buclin (1965) first introduced the term ‘‘postponement’’,
there have been a large number of researches on the postponement
strategy. We do not attempt to cite and discuss every significant
contribution in this area. Instead, we refer readers to van Hoek
(2001), Swaminathan and Lee (2003), Yang and Burns (2003) for
a comprehensive review. More recently, Leung and Ng (2007) use
a goal programming model to optimize production planning in a
perishable supply chain with postponement. Kumar, Nottestad,
and Murphy (2009) investigate the effect of product postponement
on distribution network supply chains by using simulation models.
Trentin, Salvador, Forza, and Rungtusanatham (2011) develop an
operational procedure to identify and quantify the opportunities
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for applying the FP strategy to a given product family. Wong, Pott-
erb, and Naimb (2011) show that the postponement strategy can
improve the performance of the soluble coffee supply chain. Shar-
da and Akiya (2011) investigate the inventory management policy
for a specific chemical plant by using a postponement strategy
simulation.

Here we focus on a few studies that are the most pertinent to our
own work, i.e., the joint optimization of CODP and the inventory le-
vel in a mass-customizing supply chain. Aviv and Federgruen
(2001a, 2001b) investigate the tradeoff between the inventory level
and redesigning cost in a form postponement supply chain, but they
do not consider the problems of congestion and order delay. Con-
versely, Su, Chang, and Feiguson (2005), Gupta and Benjaafar
(2004) and Jewkes and Alfa (2009) all capture the impact of conges-
tion on the FP strategy by using queuing models. Su et al. (2005)
compare the TP strategy with the FP strategy based on total opera-
tional cost. In their paper, the FP supply chain is actually modeled as
a two-stage Make-To-Stock (MTS) queuing network with exoge-
nous CODP position. They assume that there are n categories of cus-
tomizing processes in the downstream stage, which are also
controlled by the base-stock policy. Both Gupta and Benjaafar
(2004) and Jewkes and Alfa (2009) model the customizing process
as an Make-To-Order (MTO) queue that incorporates CODP position
optimization. The former assumes that the potential CODP position
in a multi-stage supply chain is a discrete number. The latter con-
structs a two-stage tandem queuing network in which the CODP
position is relaxed to be continuous number on the interval of (0,1).

In this paper, we address the same basic question as Gupta and
Benjaafar (2004) and Jewkes and Alfa (2009): How to optimize the
CODP position and inventory level to minimize operational cost?
Here, we develop a two-stage tandem queuing network to model
the supply chain using an FP strategy. The first stage is the manu-
facturing process of the undifferentiated semi-finished product,
which is produced on a Make-To-Stock (MTS) basis and the inven-
tory is controlled by the base-stock policy. The second stage is the
customization process based on customers’ specific requirements.
However, our model differs from Gupta and Benjaafar (2004) and
Jewkes and Alfa (2009) in the following ways: First of all, we
assume that the processing time (both replenishment process
and customizing process) are constant, instead of exponential
distributed in Gupta and Benjaafar (2004) and Jewkes and Alfa
(2009). This assumption is practicable in some cases, e.g., in
automatic production lines. It is shown that the performance
evaluation of two stage tandem queuing network with mixed
MTS and MTO is very difficult, even in case of the exponential
distributed process time. In our work, we derived the closed-form
performance measures based on the results of Zipkin (2000) and
Sherbrooke (1975), such as inventory level and unfill rate.
Secondly, we consider the effect of CODP position on the capability
of customization. It is clear that the further downward the CODP
Fig. 1. The structure of suppl
position, the more customer orders cannot be met based on
semi-finished product. We model this situation with two
categories of order: ordinary order and special order. The former
can be met by using semi-finished product, while the latter must
be entirely customized beginning from the first stage. Furthermore,
we assume that the fraction of ordinary customer orders c is a
decreasing function of CODP position h. Third, we involve the
lead-time quotation policy and the penalty cost of tardiness for
being more practical.

The rest of the paper is organized as follows. In Section 2, we
present the model description. Section 3 presents the optimization
problem. The approximation of the cost function by normal
distribution and the solution of the approximate model are given
in Sections 4 and 5, respectively. Section 6 conducts numerical
experiments to demonstrate the impact of the parameters on the
optimal policy. Section 7 concludes the paper.

2. Model description

We consider a mass-customizing supply chain that adopts the
FP strategy. The entire manufacturing process is constant (say L)
and additively separable, where ‘‘additively separable’’ means that
the process can be interrupted at any time and continued just like
without interruption. For instance, the manufacturing process is
interrupted at hL (0 6 h 6 1), then when the process is continued,
it just takes (1 � h)L to complete the entire process. Here, we refer
to h as the CODP position. In other words, the manufacturing pro-
cess of the product is composed of two sub-processes: One is the
manufacturing process for the undifferentiated semi-finished
product, the time of which is equal to hL. In this stage, the semi-fin-
ished product is produced on a Make-To-Stock (MTS) basis and the
inventory is controlled by the base-stock policy, with base-stock
level S. The other sub-process is the manufacturing process of cus-
tomization based on the semi-product, which is started after the
order arrives and the detailed product specification is confirmed.
Hence, the customization process runs based on a Make-To-Order
(MTO) basis, and the customization processing time is equal to
(1 � h)L. We can easily envision two extreme cases of the policy.
In the first case, h = 0 implies that the company adopts the pure
MTO strategy. In the second case, h = 1, implies that the company
adopts the pure MTS strategy. Additionally, the MTS process leads
to inventory holding costs: denote C(h) as the unit holding cost for
the semi-finished product. It is well known that the later the CODP
position, the larger the unit inventory holding cost will be, which
means that C(h) is an increasing function of h. Denote Ch as the unit
holding cost of finished product. It is clear that C(h) must satisfy
the following condition:

Cð1Þ ¼ Ch;

Cð0Þ ¼ 0:

�
ð1Þ
y chain with FP strategy.
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We further assume that the replenishment and the customiza-
tion are both uncapacitated. That means there are infinite servers
for replenishment and customization in the system. Therefore,
the supply chain acts as a two-stage tandem queuing network �/
hL/1? �/(1 � h)L/1, as shown in Fig. 1.

The customer orders arrive according to a Poisson process with
an arriving rate k. Denote q as the utilization of the supply chain. It
is easy to see that q = kL. There are two categories of orders. One is
the ordinary order, which can be met by using semi-finished prod-
uct to customize if the semi-finished products are available. The
other is the special order that must be entirely customized through
the whole manufacturing process and cannot be satisfied by cus-
tomization based on semi-finished product, even if the semi-fin-
ished product is not stocked out.

Let c denote the probability that an arbitrary arriving customer
order is ordinary. In other words, c is the fraction of ordinary cus-
tomer order among all the customer orders. In fact, c reflects the
likelihood of customer orders being satisfied by the customized
products based on the semi-finished products. Intuitively, the later
the CODP position, the more likely that an arrival order is of special
type, and the less chance that an order can be met by customiza-
tion based on semi-finished product. Thus, c depends on the CODP
position (denoted by h). Hence, we reasonably assume that c is a
decreasing function with respect to h, which is denoted by c(h).
In practice, c(h) can be statistically approximated using historical
data. Denote pc as the probability that an arbitrary customer will
be satisfied with the stock of finished product. We also denote pc

as the demand commonality. It is clear that c(h) must satisfy the
following condition:

cð0Þ ¼ 1;
cð1Þ ¼ pc:

�
ð2Þ

Note that when h = 0, the system is purely MTO and there is no
semi-finished product. However, all the customer must be met so
that c must be equal to 1. Thus, we should write Eq. (2) as limh?0-

c(h) = 1. For concise, we write it as c(0) = 1, which is just used for
calibrating function c(.).

Most of mass-customizing companies implement a lead-time
quotation policy. The lead-time quotation is the promised delivery
time to the customer. Usually, the market competitive equilibrium
could lead all companies to offer the same lead-time quotation.
Hence, we introduce into our model a uniform lead-time quota-
tion, T, which is an exogenous variable. We also consider a penalty
cost per order (denoted by Cp) for the delayed orders if the actual
delivery time is larger than the quotation, T. We further rule out
a trivial case of T P L, because in this case the order will never
be delayed, even though the firm adopts the pure MTO strategy.
Consequently, we shall assume T < L throughout the paper.

3. The decision model

One of the decision problems for a mass-customizing company
is to select an appropriate CODP position h and a base-stock level S
to minimize the total cost. The total cost contains two parts: One is
the inventory holding cost and the other is the penalty cost due to
tardiness. Hence, the objective function of the decision problem
can be mathematically stated as

min
h;S

pðh; SÞ ¼ CðhÞI þ CpkF; ðP1Þ

where I is the expected inventory level of the semi-finished product
and F is the expected unfill rate, i.e., the proportion of the customers
that are not satisfied within lead-time quotation.

For the sake of convenience, we define Gp(�jk) as the cumulative
distribution function (CDF) of Poisson distribution with k, and
denote Gpð�jkÞ ¼ 1� Gpð�jkÞ.
3.1. Expected semi-finished product inventory level I

Since the special orders do not consume the semi-finished prod-
ucts, then only the arrivals of the ordinary orders trigger the inven-
tory replenishment. Notice that the ordinary order arriving process
is a random partition of Poisson process. Hence, it is also a Poisson
process with rate c(h)k (see Wolff, 1989, pp:74-76). Further accord-
ing to Zipkin (2000, pp:181-186), it follows that for the base-stock
policy, the expected inventory in system is basically the expected
surplus inventory over the lead time, i.e.,

I ¼
XS�1

j¼0

GpðjjcðhÞkhLÞ: ð3Þ
3.2. Unfill rate F

Unfill rate is the proportion of the customers whose orders can-
not be delivered within lead-time quotation. For T < L, we know
that the unfill rate of the special orders always equals 1, so we just
need to derive the unfill rate of the ordinary orders. Denote W the
waiting time of an ordinary customer order. It is easy to see
W = W1 + (1 � h)L, where W1 is the waiting time for the replenish-
ment. Recall that the arriving process of the ordinary order is a
Poisson process with rate c(h)k, and then for the base-stock policy
the CDF of W1 (denoted by H(x)) is given by

HðxÞ ¼ GpðS� 1jcðhÞkðhL� xÞÞ: ð4Þ

Thus the unfill rate is given by the following proposition (see
Sherbrooke (1975)).

Proposition 1.
F ¼
1; h < 1� T

L

1� cðhÞGpðS� 1jcðhÞkðL� TÞÞ; h P 1� T
L

(
:

Proof. See Appendix A. h

Proposition 1 shows that if h < 1� T
L, then p(h,S) = C(h)I + Cpk.

The first term is always increasing in S and the second term is inde-
pendent of S, so the optimal inventory level S⁄(h) = 0 with given h in
case of h < 1� T

L. Therefore, for h < 1� T
L, the optimal strategy is

MTO, i.e., h⁄ = 0.
When h P 1� T

L, then the objective function is recast as

pðh; SÞ ¼ CðhÞ
XS�1

j¼0

GpðjjAðhÞÞ þ Cpk½1� cðhÞGpðS� 1jBðhÞÞ�; ð5Þ

where A(h) = c(h)hLk and B(h) = c(h)k(L � T) are the parameters of
the corresponding Poisson distributions.

The right hand side of Eq. (5) involves the CDFs of S Poisson dis-
tributions. We cannot get any convexity of objective function with
respect to S or h.

4. Model approximation by normal distribution

As mentioned above, the exact model (5) is difficult to be solved
accurately. In order to reveal how the behavior of the optimal solu-
tion changes with parameters, we use normal distribution to
approximate Poisson distribution. It is well known that when the
parameter of Poisson distribution is large enough, the normal dis-
tribution approximates Poisson distribution very well. In practice,
k is usually quite large in mass-customizing situations. Further-
more, by L > T and h P 1� T

L, it follows that A(h) and B(h) are large,
and thus our approximation is relevant. According to Zipkin (2000,
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pp. 206–209), the mean inventory on hand determined by Eq. (3)
has the approximation as

I � U1 �Sþ AðhÞffiffiffiffiffiffiffiffiffi
AðhÞ

p
 ! ffiffiffiffiffiffiffiffiffi

AðhÞ
p

¼ ðS� AðhÞÞU0
S� AðhÞffiffiffiffiffiffiffiffiffi

AðhÞ
p

 !
þ

ffiffiffiffiffiffiffiffiffi
AðhÞ

p
/0

S� AðhÞffiffiffiffiffiffiffiffiffi
AðhÞ

p
 !

; ð6Þ

where U1(.) is the standard normal loss function, U0(.) and /0(.) are
the CDF and the probability density function (PDF) of standard
normal distribution, respectively.

Similarly, the unfill rate has the approximation

F � 1� cðhÞU0
S� BðhÞffiffiffiffiffiffiffiffiffi

BðhÞ
p

 !
: ð7Þ

Then the objective function recasts approximately as

pðh; SÞ � ~pðh; SÞ

¼ CðhÞ ðS� AðhÞÞU0ðz1ðh; SÞÞ þ
ffiffiffiffiffiffiffiffiffi
AðhÞ

p
/0ðz1ðh; SÞÞ

h i
þ Cpk½1� cðhÞU0ðz2ðh; SÞÞ�;

where z1ðh; SÞ ¼ S�AðhÞffiffiffiffiffiffi
AðhÞ
p , z2ðh; SÞ ¼ S�BðhÞffiffiffiffiffiffi

BðhÞ
p . Consequently, we consider the

approximate optimization problem as follows.

min
h;S

~pðh; SÞ: ðP2Þ
5. Solution of the approximate model

In this section, we concentrate on model (P2). Here, the base-
stock level S is taken as a continuous variable, instead of as discrete
variable. In this case, we can analyze the concavity and convexity
of ~p with respect to S. For the sake of convenience, we first give
the following notations:

QðSÞ ¼ /0ðz1ðh; SÞÞ
ðBðhÞ � SÞ/0ðz2ðh; SÞÞ

;

DðhÞ ¼ CpkcðhÞ
ffiffiffiffiffiffiffiffiffi
AðhÞ

p
CðhÞ½BðhÞ�3=2 :

The following theorem reports the concavity and convexity of
~pðh; SÞ with respect to S.

Theorem 1.
(1) When Qð0ÞP DðhÞ; ~pðh; SÞ is strictly convex with respect to S
on (0,1);

(2) When Qð0Þ < DðhÞ; ~pðh; SÞ is strictly convex with respect to S on
(S1(h),1), and is strictly concave with respect to S on (0,S1(h)),
where S1(h) is the unique root of the following equation on
(0,B(h)),
QðSÞ ¼ DðhÞ:
Proof. See Appendix A. h

The above theorem shows that the concavity and convexity of
~pðh; SÞ sensitively depends on the parameters. Theorem 1 also
gives the clear structure of ~pðh; SÞ on base-stock level S. It gives
us the pathway to find the optimal base-stock level, with the given
CODP position. The following theorem reports the method. To sim-
plify the presentation of the following theorem, we first give four
following conditions directly.
@~pðh; SÞ
@S

jS¼0 P 0() 1
Cp

P
kcðhÞ/0

ffiffiffiffiffiffiffiffiffi
BðhÞ

p� �
CðhÞ

ffiffiffiffiffiffiffiffiffi
BðhÞ

p
U0 �

ffiffiffiffiffiffiffiffiffi
AðhÞ

p� � ; ðC1Þ

@~pðh; SÞ
@S

jS¼0 < 0() 1
Cp

<
kcðhÞ/0

ffiffiffiffiffiffiffiffiffi
BðhÞ

p� �
CðhÞ

ffiffiffiffiffiffiffiffiffi
BðhÞ

p
U0 �

ffiffiffiffiffiffiffiffiffi
AðhÞ

p� � ; ðC2Þ

@~pðh; SÞ
@S

jS¼S1ðhÞ P 0()
U0

S1�AðhÞffiffiffiffiffiffi
AðhÞ
p

� �

/0
S1�BðhÞffiffiffiffiffiffi

BðhÞ
p

� � P
CpkcðhÞ

CðhÞ
ffiffiffiffiffiffiffiffiffi
BðhÞ

p ; ðC3Þ

@~pðh; SÞ
@S

jS¼S1ðhÞ < 0()
U0

S1�AðhÞffiffiffiffiffiffi
AðhÞ
p

� �

/0
S1�BðhÞffiffiffiffiffiffi

BðhÞ
p

� � <
CpkcðhÞ

CðhÞ
ffiffiffiffiffiffiffiffiffi
BðhÞ

p : ðC4Þ

Theorem 2. Given h > 1� T
L, the optimal inventory level S⁄(h) can be

determined by investigating all the following cases:
(1) When Q(0) P D(h) and condition (C1) holds, then S⁄(h) = 0.
(2) When Q(0) P D(h) and condition (C2) holds, then S⁄(h) is the

unique root of the following equation on (0,1).
U0ðz1ðh; SÞÞ
/0ðz2ðh; SÞÞ

¼ CpkcðhÞ
CðhÞ

ffiffiffiffiffiffiffiffiffi
BðhÞ

p : ð8Þ
(3) When Q(0) < D(h) and condition (C3) holds, then S⁄(h) = 0.
(4) When Q(0) < D(h), and conditions (C2) and (C4) hold, then S⁄(h)

is the unique root of Eq. (8) on (S1(h),1).
(5) When Q(0) < D(h), and conditions (C1) and (C4) hold, let S2(h)

denote the unique root of Eq. (8) on (S1(h),1). Then S⁄(h) is
determined by
S�ðhÞ ¼ arg min
S2f0;S2ðhÞg

~pðh; SÞ:
Proof. See Appendix A. h

Theorem 2 offers a quick algorithm for finding optimal base-
stock level S⁄, given that h 2 1� T

L ;1
� 	

. Recall that the optimal
base-stock level is always zero when h 2 0;1� T

L

� 	
, so that the opti-

mal base-stock level is completely solved with the given CODP.
Unfortunately, there are no concavity or convexity properties of
~p with respect to h. Note that h 2 [0,1], so we can use grid search
on h for the optimal solution. Additionally, S1(h) can be computed
by using a bisection method, and S⁄(h) and S2(h) can be found by
using a golden section search.

6. Numerical experiments

In this section, we first investigate the effect of parameters on
the optimal policy based on a large number of numerical experi-
ments. As will be seen, patterns that emerge from these experi-
ments are reported below as observations, where we focus,
respectively, on: (i) the effect of the demand commonality; (ii)
the effect of finished product’s unit holding cost; (iii) the effect
of the penalty cost; and (iv) the effect of utilization. We also com-
ment that the insightful observations are important to operations
managers. Finally, we conduct a numerical experiment to test the
sensitivity of the optimal policy to the parameters, as well as the
accuracy of the approximation model. Throughout the section,
we set the values of the parameters as follows, unless otherwise
stated: k = 1, L = 1, T = 0.6, and Cp = 5, with which c(1 � T/
L)k(L � T) = 0.4c(0.4), and for h 2 (0.4,1],A(h) P 0.4c(0.4) and



W. Zhou et al. / Computers & Industrial Engineering 66 (2013) 643–652 647
B(h) P 0.4c(0.4). With the parameters assigned these values, the
normal approximation works well.

6.1. The effect of the demand commonality pc

We assume that C(h) is a linear function, specifically, C(h) = 2h.
However, we construct three types of c(h) as follows:

c1ðhÞ ¼ 1� ð1� pcÞh; Linear;

c2ðhÞ ¼ ð1� pcÞðh� 1Þ2 þ pc; Convex;

c3ðhÞ ¼ ðpc � 1Þh2 þ 1; Concave:

8><
>:

It is easy to be verified that all the ci(h) (i = 1, 2, 3) satisfy Con-
dition (2). Furthermore, c1(h) is a linear function, c2(h) is a convex
function, and c3(h) is a concave function.

Fig. 7 shows that the optimal policy (h⁄,S⁄) varies with pc under
the different shape of c(h). It is easy to observe that there are
different changing behaviors of h⁄ and S⁄ for the three types of
c(h). Specifically, both h⁄ and S⁄ are always increasing as the
demand commonality pc increases under c3(h). However, the
shapes of (h⁄,S⁄) under c1(h) and c2(h) are not as same as that under
c3(h). There are two structures under c1(h): when pc < 0.201, the
optimal CODP is a constant, i.e., h� ¼ 1� T

L ¼ 0:4, and in this case,
S⁄ is increasing with respect to pc; when pc P 0.201, both h⁄ and
S⁄ are increasing in pc. It is worth to note that pc = 0.201 is a discon-
tinuous point for both curves of h⁄ and S⁄. For c2(h), when
pc 6 0.819, the shapes of h⁄ and S⁄ are similar to those under
c1(h), which shows that a threshold of pc, 0.397, divides the line
into two increasing curves. However, when pc > 0.819, the optimal
strategy of the supply chain is pure Make-To-Stock, i.e., h⁄ = 1.
Furthermore, S⁄ is increasing with respect to pc. We conclude these
phenomena as Observation 1.

Observation 1. There exist two thresholds pc and �pc ðpc < �pc and
pc; �pc 2 ½0;1�Þ, such that when pc < pc; h

� ¼ 1� T
L and S⁄ is increas-

ing with respect to pc; when pc 6 pc 6 �pc , both h⁄ and S⁄ are
increasing in pc; when pc > �pc; h

� ¼ 1 (the optimal policy is pure
Make-To-Stock) and S⁄ is increasing in pc.

The observation has important implications: when demand
commonality is small, which means that the customers’ differenti-
ation becomes large, the decision maker should set CODP as small
as possible, but it will not be smaller than 1� T

L, otherwise, all of
the order will be tardy. When demand commonality is quite large,
the decision maker of the supply chain favors later differentiation
(larger h⁄) and keep higher inventory levels. It obviously makes the
inventory holding cost increase, but at the same time, the response
to the customers becomes quicker, thus avoiding higher penalty
costs for delayed orders.

It is also observed in Fig. 7 that when the demand commonality
becomes smaller (pc < 0.48 in this numerical example), the optimal
CODP position h⁄ under a concave function is larger than that under
a linear function, and the one under a linear function is larger than
that under a convex function. While the relationships are just
opposite when the demand commonality is larger (pc > 0.48 here).
The relationship between pc and S⁄ is similar to that between pc

and h⁄. It is interesting to note that when pc = 1, the optimal poli-
cies under different type of c(h) are the same: a Make-To-Stock
(MTS) strategy with an optimal base-stock level 53 in these numer-
ical examples.

6.2. Effect of finished product’s unit holding cost Ch

In this subsection, we offer several numerical examples to illus-
trate the effect of the finished product’s unit holding cost Ch on the
optimal policy (h⁄,S⁄). Here, we assume that c(h) is a linear function
and set pc = 0.3, that is, c(h) = 1 � 0.7h. Similarly, we consider three
types of C(h) as follows:

C1ðhÞ ¼ Chh; Linear;
C2ðhÞ ¼ Chh

2; Convex;

C3ðhÞ ¼ 2Chh� Chh
2; Concave:

8><
>:

It is also easy to verify that all Ci(h) (i = 1, 2, 3) satisfy Condition
(1). Furthermore, C1(h) is a linear function, C2(h) is a strictly convex
function and C3(h) is a strictly concave function.

Fig. 8 reports that the optimal policy (h⁄,S⁄) changes with Ch un-
der different types of C(h). It is similar to Fig. 7 that the threshold of
Ch (0.37 for C1(h), 1.08 for C2(h), 0.23 for C3(h)) is the discontinuous
point for both curves of h⁄ and S⁄. We observe that the behaviors of
the optimal policy under three types of C(h) are similar. To be more
specific, when Ch is sufficiently small (i.e., Ch < 0.37 for
C1(h),Ch < 1.08 for C2(h), Ch < 0.23 for C3(h)), the optimal CODP posi-
tion is a constant with value 1� T

L ¼ 0:4 and S⁄ is decreasing with
respect to Ch. On the other hand, when Ch becomes larger, h⁄ is
increasing and S⁄ is still decreasing in Ch. The result is reported
by the following observation.

Observation 2. There exists a threshold Ch, such that when
Ch 6 Ch; h

� is a constant with value 1� T
L; when Ch > Ch; h

� is
increasing in Ch. However, S⁄ is always decreasing with respect to
Ch.

Our result is similar to Observation 5 of Gupta and Benjaafar
(2004), where our optimal policy (h⁄,S⁄) is equivalent to (k⁄,b⁄) in
the work of Gupta and Benjaafar (2004). The interpretation could
be: when the finished product’s unit holding cost increases, more
valuable semi-finished products are stocked, which induces higher
unit holding cost. However, the optimal base-stock level is set to be
a lower value, which results in lower inventory level. Therefore, the
total inventory cost decreases.

6.3. Effect of penalty cost Cp

In the third numerical experiment, we show how the penalty
cost affects the optimal policy (h⁄,S⁄). To this end, we assume
C(h) is a linear function, specifically, C(h) = 2h. However, we con-
sider the same three types of c(h) just as in the first numerical
experiment. Furthermore, we set pc = 0.3. According to Fig. 9, it is
easy to obtain the following result.

Observation 3. There exists a threshold Cp, such that when
Cp 6 Cp; h

� is increasing in Cp and when Cp > Cp; h
� is decreasing

in Cp. S⁄ is always increasing in Cp.
We recognize that the observation that when Cp > Cp then h⁄ is

decreasing in Cp, is a little ‘‘counter intuitive’’. The reason could be
that the penalty cost of the tardy order is a constant and is indepen-
dent of the actual tardy time. If this is the case, the effect of reducing
total penalty cost by increasing h⁄ is limited. Thus, as penalty cost Cp

increases, the optimal strategy of the supply chain is to reduce the
CODP position h⁄ and keep higher inventory level, which can reduce
unit holding cost, and finally result in lower total inventory cost.

6.4. Effect of utilization q

In what following, we focus on the effect of utilization q. Here
we assume that both C(h) and c(h) are linear function, i.e.,
C(h) = 2h and c(h) = 1 � (1 � pc)h. Fig. 10 shows the effect of utiliza-
tion q on the optimal policy. It is easy to obtain the following
observation based on Fig. 10.

Observation 4. There exist two thresholds q and �q ðq < �qÞ, such
that when q < q, h⁄ = 0 and S⁄ = 0, that is, the optimal strategy of



Table 1
Sensitivity of optimal policy to k, Cp, Ch, pc.

k Cp Ch pc h⁄ h⁄ (%) S⁄ S⁄ (%)

1.00 5.00 4.0 0.300 0.680 – 44.3 –
0.95 5.00 4.0 0.300 0.689 +1.3 42.2 �4.7
1.05 5.00 4.0 0.300 0.675 �0.7 46.4 +4.7
1.00 5.00 4.0 0.300 0.680 – 44.3 –
1.00 4.75 4.0 0.300 0.685 +0.7 44.3 0.0
1.00 5.25 4.0 0.300 0.679 �0.1 44.4 +0.2
1.00 5.00 4.0 0.300 0.680 – 44.3 –
1.00 5.00 3.8 0.300 0.679 �0.1 44.4 +0.2
1.00 5.00 4.2 0.300 0.685 +0.7 44.3 0.0
1.00 5.00 4.0 0.300 0.680 – 44.3 –
1.00 5.00 4.0 0.295 0.684 +0.6 44.5 +0.5
1.00 5.00 4.0 0.305 0.680 0.0 44.1 �0.5
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the supply chain is pure Make-To-Order; when q 6 q 6 �q, both h⁄

and S⁄ are increasing in q; when q > �q; h� is decreasing while S⁄ is
increasing in q.

The implication of this result is: when the supply chain is quite
less congested, the decision maker of the supply chain should
adopt MTO policy and not need to worry about the penalty cost
due to the short waiting time. When the utilization increases, the
base-stock level is always increasing, while the CODP position is
increasing for a moderate utilization and decreasing for a large uti-
lization. It is worthwhile to notice that our result is quite different
from Table 2 in Jewkes and Alfa (2009). In their work, h⁄ is always
decreasing and K⁄ (corresponds to S⁄ in our work) is always
increasing in k. This pattern is the same to our result when the uti-
lization is large. Although the optimal model in Jewkes and Alfa’s
work is quite different from ours, the pattern should be similar.
Why is there so big difference between Jewkes and Alfa’s work
and ours? The truth would be that Jewkes and Alfa (2009) ignored
the effect of utilization when it is small. From Table 2 of Jewkes and
Alfa (2009), they only considered k 2 (0.1,0.9), equivalently,
q 2 (0.1,0.9) that is just a subset of q 2 [0,1] in our paper. Based
on our observation, the behavior of the optimal policy is quite dif-
ferent just when the utilization is small.

6.5. Sensitivity analysis and approximation performance

In practice, k, Cp, Ch, and pc are usually estimated by using his-
torical data. A high sensitivity of the optimal policy to parameters
implies potentially serious inaccuracies for the decision. We there-
fore investigate the sensitivity of the optimal policy to the varia-
tions of these parameters. Basically, we assume that C(h) and c(h)
are linear functions of h, say C(h) = Chh and c(h) = 1 � pch.

Table 1 reports the changes of the optimal policy with ±5%
variations of the parameters k, Cp, Ch, and pc. Overall, (h⁄,S⁄) is
Table 2
Performance of the normal approximation.

k Cp Ch pc h⁄ h�0

1 5 2 0.4 0.536 0.541
1 5 2 0.9 0.783 0.776
1 5 1 0.3 0.638 0.621
1 5 3 0.3 0.703 0.711
1 1 2 0.3 0.662 0.653

Avg. – – – – –
10 10 0.2 0.4 0.687 0.675
10 10 0.2 0.9 0.923 0.941
10 10 0.1 0.3 0.621 0.602
10 10 0.3 0.3 0.635 0.643
10 10 0.2 0.3 0.626 0.641

Avg. – – – – –
not sensitive to Cp, Ch, and pc (the changes of h⁄ and S⁄ are all less
than 1% when the parameters change by ±5% individually).
Although S⁄ is more sensitive to the change of k, the variations
are not larger than 5%.

As mentioned above, in this paper, we optimize the approxi-
mate objective function ~pðh; SÞ, instead of the original cost function
p(h,S). This may lead to the deviation from the exact optimal pol-
icy. In the following, we investigate the performance of the approx-
imation by comparing the optimal policy of p(h,S) to that of ~pðh; SÞ.
Let h�0; S

�
0

� �
denote the optimal policy of p(h,S) and we implement

grid search to determine h�0; S
�
0

� �
. Obviously, h is not larger than 1

so we will search h�0 on interval [0,1] with a step of 0.001.
However, the upper bound of S�0 is unknown. Considering that S⁄

is an approximation of S�0, we can estimate an upper bound of S�0
based on S⁄. Thus, we first solve the approximate model of ~pðh; SÞ
yielding S⁄, and then select a number that is sufficiently larger than
S⁄ as the upper bound of S�0. Specifically, for the two groups of exam-
ples in the following Table 2, we set the upper bound of S�0 equal to
100 for the first group and 200 for the second group. Then, we search
the optimal value of S from 1 to the upper bound with a step of 1.

For the sake of convenience, we define the absolute relative er-

rors of h⁄ and S⁄ as h% ¼ 100� jh
��h�0 j
h�0

% and S% ¼ 100� jS
��S�0 j
S�0

%,

respectively. From Table 2, we observe that the approximate policy
on h performs very well in average for both groups, but the approx-
imation is not so good for S in the first group. However, we can see
that when the optimal value of S⁄ becomes larger, the relative error
becomes smaller. For the second group, the average relative error
drops to 3.44%. The reason is that the example in the second group
has a larger k such that the Poisson parameters A(h) and B(h) is lar-
ger, where the normal distribution can approximate the Poisson
distribution better.

Additionally, in Table 2, Ta and T0 are the computational time of
solving the approximate model ~pðh; SÞ and solving the original
model p(h,S) by grid search, respectively. The computational time
shows that the grid search method is time-consuming when the
value of S becomes larger, but the approximate approach is very
efficient and therefore might be more practical for solving real
problems.

7. Conclusion

The form postponement strategy is an efficient tool to balance
the tradeoff between high customization and quick response. In
this paper, we developed a two-stage tandem queuing network
with constant process time to evaluate the operational perfor-
mance of a form postponement supply chain. Based on Zipkin’ re-
sult and Shebrooke’s result, we derived the closed-form
performance measures, such as inventory level and unfill rate. By
using normal approximation of Poisson distribution, we optimized
h% S⁄ S�0 S % Ta (s) T0 (s)

0.92 29.7 33 10.00 0.39 77.53
1.56 44.3 42 5.48 0.36 83.97
2.74 49.8 52 4.23 0.37 85.65
1.13 48.6 51 4.71 0.38 79.66
1.38 19.3 21 8.10 0.38 88.52

1.55 – – 6.50 0.38 83.07
1.78 122.7 127 3.39 0.39 325.8
1.91 152.3 148 2.91 0.38 342.5
3.16 128.5 123 4.47 0.37 322.8
1.24 119.2 124 3.87 0.39 332.1
2.34 121.8 125 2.56 0.39 319.2

2.09 – – 3.44 0.38 328.5



Fig. 2. Case 1.

Fig. 3. Case 2.

Fig. 4. Case 3.

Fig. 5. Case 4.

Fig. 6. Case 5.
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the CODP position h and the base-stock level S to minimize the to-
tal cost. Furthermore, we developed an efficient algorithm for find-
ing the optimal policy. Our numerical examples show that the
optimal policy is not sensitive to most of the decision parameters,
except the demand rate. Based on the numerical results, we can
gain managerial insights: (1) As the demand commonality in-
creases, the optimal policy delays the CODP position and keeps
higher base-stock levels; (2) As the finished product’s unit holding
cost increases, it is better for the supply chain to set the CODP po-
sition more closely to the finished product node of the supply chain
and reduce the base-stock level; (3) For the policy of constant pen-
alty cost, larger penalty costs causes a more forward CODP position
with larger inventory levels; (4) When the system is quite less con-
gested, the optimal policy for the supply chain is Make-To-Order,
and when the utilization is moderate, the later differentiation is fa-
vored for larger load. However, when the system becomes quite
congested, the CODP position decreases as the utilization increases.

Our research can be further extended along the following three
lines: (1) To consider that the semi-finished product inventory is
controlled by (s,S) policy; (2) To let the processing time be subject
to an arbitrary distribution; (3) To relax the assumption of inde-
pendent Poisson demand and allow for more complex demand
structure, e.g. the demand rate depends on the price and lead-time
quotation, which may be more practical.
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Appendix A. Proofs

A.1. Proof of Proposition 1

Note that the unfill rate of the special orders is always equal to
1. Furthermore, we know that if h 6 1� T

L, then all the ordinary
rders will be delayed such that F ¼ 1.

When h > 1� T
L, we have

F ¼ 1� cðhÞ þ cðhÞPrfW > Tg
¼ 1� cðhÞ þ cðhÞð1� PrfW1 6 T � ð1� hÞLgÞ
¼ 1� cðhÞHðT � ð1� hÞLÞ
¼ 1� cðhÞGpðS� 1jcðhÞkðL� TÞÞ:

The proof is now completed. h

To prove Theorem 2, the following lemma is necessary.

Lemma 1. When h > 1� T
L ;QðSÞ is strictly increasing on the interval

(0,B(h)) with respect to S.
Proof. At first, we define function

KðxÞ , S� xffiffiffi
x
p :

It is easy to see that when S > 0 and x > 0, we have

K 0ðxÞ ¼ � Sþ x
2x3=2 < 0:

Note that when h > L�T
L , then A(h) > B(h) > 0. By the monotonicity

of K(�) and S < B(h), it follows that

z1ðh; SÞ ¼ KðAðhÞÞ < KðBðhÞÞ ¼ z2ðh; SÞ < 0:

Therefore,

Q 0ðSÞ ¼
Se

1
2 z2

2�z2
1ð Þ AðhÞ�BðhÞ

AðhÞBðhÞ ðBðhÞ � SÞ þ e
1
2 z2

2�z2
1ð Þ

ðBðhÞ � SÞ2
> 0;
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which completes the proof. h
A.2. Proof of Theorem 1

Taking the first and the second derivatives of ~p with respect to S
gives
@~p
@S
¼ CðhÞU0

S� AðhÞffiffiffiffiffiffiffiffiffi
AðhÞ

p
 !

� CpkcðhÞffiffiffiffiffiffiffiffiffi
BðhÞ

p /0
S� BðhÞffiffiffiffiffiffiffiffiffi

BðhÞ
p

 !
;

@2 ~p
@2S
¼ CðhÞffiffiffiffiffiffiffiffiffi

AðhÞ
p /0ðz1ðh; SÞÞ þ

CpkcðhÞðS� BðhÞÞ
½BðhÞ�3=2 /0ðz2ðh; SÞÞ: ð9Þ
(1) It is easy to see that @2 ~p
@2S

> 0 for any given S P B(h), which fol-
lows that ~pðh; SÞ is strictly convex with respect to S on
[B(h),1).
In what following, we consider the case of S 2 [0,B(h)). With
some algebraic manipulation on Eq. (9), it follows that

Q(S) > D(h) is equivalent to @2 ~p
@2S

> 0, and Q(S) < D(h) is

equivalent to @2 ~p
@2S

< 0. Note that Q(S) ?1 as S ? B(h).
According to Lemma 1, it follows that if Q(0) P D(h), then
for any S 2 (0,1), we have Q(s) > D(h), equivalently,
@2 ~p
@2S
jS¼0 P 0. Hence, ~p is strictly convex with respect to S on

(0,1).
(2) Note that Q(0) < D(h) and limS?B(h)Q(S) =1. According to

Lemma 1, it follows that Q(S) = D(h) has a unique root S1(h)
on (0,B(h)). Furthermore, we know that for S 2 (S1(-
h),1),Q(s) > D(h), and for S 2 (0,S1(h)), Q(s) < D(h). Now the
proof is completed. h
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A.3. Proof of Theorem 2

Differentiating ~pðh; sÞ with respect to S and setting it equal to 0,
we have Eq. (8).

(Figs. 2–6 are supposed to be here.).

(1) See Fig. 2. According to Theorem 1, it follows that for any
given h h > 1� T

L

� �
, when Q(0) P D(h), then ~pðh; SÞ is strictly

convex with respect to S on [0,1). Combining condition

(C1), i.e., @~pðh;SÞ
@S jS¼0 > 0, then S⁄(h) = 0.

(2) See Fig. 3. This is the same as case (1) except condition (C2),

i.e., @ ~pðh;SÞ
@S jS¼0 < 0. Note that limS!1

@~pðh;SÞ
@S ¼ CðhÞ > 0, so Eq. (8)

has a unique root on (0,1), which is exactly S⁄(h).
(3) See Fig. 4. According to Theorem 1, it follows that there

exists a unique critical value S1(h) > 0, such that ~pðh; SÞ is
strictly concave with respect to S on [0,S1(h)) and strictly
convex with respect to S on (S1(h),1). Combining this with

condition (C3), i.e., @~pðh;SÞ
@S jS¼S1ðhÞ P 0, then ~pðh; SÞ is not

decreasing with respect to S on [0,1], which yields S⁄(h) = 0.
(4) See Fig. 5. Similar to case (3), we know that ~pðh; SÞ is strictly

convex with respect to S on (S1(h),1) and strictly concave
with respect to S on [0,S1(h)). Considering conditions (C2)
and (C4), then ~pðh; SÞ is strictly decreasing with respect to

S on [0,S1(h)). Note that limS!1
@~pðh;SÞ
@S ¼ CðhÞ > 0, so Eq. (8)

has a unique root on (S1(h),1), which is S⁄(h).
(5) See Fig. 6. Similar to the proof of case (4), we know that ~pðh; SÞ

is strictly convex with respect to S on (S1(h),1) and strictly
concave with respect to S on [0,S1(h)). From condition (C4)

and the fact limS!1
@~pðh;SÞ
@S ¼ CðhÞ > 0, then ~pðh; SÞ has a unique

optimum on (S1(h),1), which is the unique root S2(h) of Eq.
(8). By condition (C1), it follows that the potential optima of
~pðh; SÞ on [0,S1(h)) are either 0 or S1(h). For the concavity of
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~pðh; SÞ, it is easy to see that ~pðh; S1ðhÞÞ > ~pðh; S�ðhÞÞ. Hence, we
just need to compare 0 with S⁄(h) to determine the optimal
inventory level with given h. h

(see Figs. 7–10)
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