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This paper presents Particle Swarm Optimization Algorithm, with dynamic weights, applied to reduce the
real power loss in a system. Particle Swarm Optimization with detailed study on weights for particle
movements is used. Generator bus voltages, transformer tap positions and switch-able shunt capacitor
banks are used as variables to control the reactive power flow. Particle Swarm Optimization has been
applied to IEEE 6 bus system to present the case. The proposed dynamic weights show better, fast and
consistent results with higher rate of convergence.
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1. Introduction

Reactive power flow optimization improves voltage profile and
also minimizes the active power loss. The flow of reactive power in
a power system can be controlled through generator voltages,
transformer taps and switch-able VAR sources.

A certain combination of these generator voltages, transformer
tap positions and reactive power from capacitor banks result in
optimized reactive power flow. The reactive power optimization
problem is thus a nonlinear combinatorial optimization problem.
The search space is multidimensional due to large number of con-
trol variables. The complexity of reactive power optimization in-
creases with increase in the size of power system.

Earlier, conventional methods were used for solving of reactive
power flow optimization. These methods usually operate with sin-
gle solution which is then optimized. The conventional methods
have a major drawback of leading towards local minima. Also the
conventional methods do not efficiently work for combination of
variables. Time consumption of these methods is also very high.
To overcome these drawbacks artificial intelligence methods such
as genetic algorithm [6], simulated annealing, tabu search [5],
Particle Swarm Optimization [7–10,14], and colony optimization
methods have been used to solve reactive power optimization
problem.

Mamandur and Chenoweth [1] have used optimization for volt-
age security and reactive power optimization, applied to different
percentage of loads. Vaisakh and Kanta Rao [3] use differential
evolution to find the optimized solution. Heuristic and evolution-
ll rights reserved.
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ary approach are implemented by Bhattacharya and Goswami [4]
to find the optimal power flow solution.

Particle Swarm Optimization has been applied for reactive
power optimization by Yoshida et al. [2], Hazra and Sinha [8]
and, Mantawy and Al Ghamdi [14]. Hybrid PSO having some addi-
tional features of other search methods [10] or some unique fea-
tures applied to PSO [9] have also been applied.

PSO search technique has been studied separately to predict the
optimized weights and factors for the search method [11–13]. Per-
am et al. [11] uses fitness ratio to calculate the weights for particle
movement in search space.

The approach proposed in this paper uses Particle Swarm Opti-
mization (PSO) technique with dynamic weights. The dynamic
weights are so called, because their values change in each iteration
as detailed in Section 3.4. A case is presented on IEEE 6 bus system
and the final optimal variable values are shown.

2. Power flow equations

The power flow equations describe the constraints governing
the flow of power in the power system. These equations or con-
straints can be classified into equality and inequality constraints.
The equality constraints are automatically satisfied through the
load flow calculations. For inequality constraints to be satisfied,
the program coding of Particle Swarm Optimization (PSO) Algo-
rithm is used. The inequality constraints are checked for violations
during the execution of the program.

Main objective equation:

F ¼min Ploss

where Ploss: System loss.
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2.1. Constraints

2.1.1. Equality constraints
2.1.1.1. Real power constraint

PGi � PDi � Vi
P

j–1
VjðGij sin hij þ Bij sin hijÞ ¼ 0
i e n: numbers of buses, except swing bus.
PGi: real power generated at bus i.
PDi: real power load at bus i.
hij: phase angle difference between bus i and j.
Gij: mutual conductance between bus i and j.
Bij: mutual susceptance between bus i and j.
Gii: self conductance of bus i.
Bii: self susceptance of bus i.
2.1.1.2. Reactive power constraint

Q Gi � QDi � Vi
P

j–1
VjðGij sin hij � Bij sin hijÞ ¼ 0
i e n: numbers of buses, except swing bus.
QGi: reactive power generated at bus i.
QDi: reactive power load at bus i.

2.1.2. Inequality constraints
2.1.2.1 Bus voltage magnitude constraint

Vi�min 6 Vi 6 Vi�max

i e N: total number of buses.
Vi�min, Vi�max: voltage limits at bus i.
Vi: voltage magnitude of bus i.

2.1.2.2. Generator bus reactive power constraint

Q Gi�min 6 Q Gi 6 Q Gi�max i 2 fNpv ;Nog
QGi�min, QGi�max: reactive power limits of generator at bus i.
Npv: Number of PV buses.
No: Swing bus.
2.1.2.3. Reactive power source capacity constraint

Q ci�min 6 qci 6 qci�max i 2 Nc

qci: reactive power source at bus i.
qc�min, qc�max: reactive power source limits.
Nc: Numbers of reactive power sources.
2.1.2.4. Transformer tap position constraint

Ti�min 6 Ti 6 Ti�max i 2 NT

Ti: tap position at transformer ‘i’.
Ti�min, Ti�max: tap position limits.
NT: Numbers of tap setting transformers.

3. Particle Swarm Optimization

3.1. Introduction

PSO search method is a non-conventional search technique. In
PSO, a number of control variable combinations are randomly cre-
ated. Each such solution is called as a particle. A particle represents
a probable solution. The collection of such particles is known as a
population. The population of particles is used to conduct searches
through multidimensional search space. The particles belonging to
a population, moving in such a way, so as to converge to a common
optimal solution is called as a Swarm.

In PSO technique, the particles change their positions after
every iteration. The change in position depends on: previous posi-
tion, best individual position, best global position and a random
velocity. The individual best position is the position that a particle
currently or previously represented and which resulted in mini-
mum objective function value for that particle. The global best po-
sition is the position which gives minimum active power loss from
the group of individual best positions of all the particles. The indi-
vidual best position, of each particle, as well as, the global best po-
sition needs to be updated in every iteration. Since PSO caters to a
multidimensional search, more than one control variable in a par-
ticle may be changed simultaneously, in between iterations.

A random velocity element is also used for changing the posi-
tion of a particle. The term maintains the randomness in the search
process. The random velocity element can be created before the
beginning of PSO iterations or can be generated during the itera-
tions. This paper generates the random velocity for each particle
at real time, which enhances the random behavior of the search.

The terms, Individual Best, Global Best and Random Velocity,
responsible for change in particle position during iterations are
associated with values called as inertia weights. These weights de-
cide the influence of each term for change in particle positions.
They are normally decided through a number of executions. In this
paper, weights are calculated at real time and are referred as ‘dy-
namic weights’. This method of calculation of weights has been
found to guide the particles towards convergence.

The search method of PSO is terminated if the stopping criteria
are satisfied. The stopping criteria can be: number of iterations,
convergence of particles to a common solution or maximum num-
ber of iterations for which the optimal solution does not change.
This paper uses maximum number of iterations for termination
of the search process. After the termination of the search process
if convergence is not achieved, the global best position shall repre-
sent the optimal solution.

3.2. Advantages and disadvantages

PSO is a non-conventional optimization technique used for
searching nonlinear multidimensional search spaces. The following
are some of the advantages of using PSO:

(a) PSO’s search includes multiple particles which reduces the
chances of getting trapped in local minima.

(b) It is a stochastic search technique, which makes it suitable
for searching vast unknown solution spaces.

(c) The problems faced by search techniques for non-differen-
tiable objective equations are also overcome in PSO.

(d) PSO technique rules for changing particle position depends
on individual as well as global best. Thus, the method nor-
mally does not get prematurely converged.

(e) PSO maintains the randomness in search during initializa-
tion of particle positions and also for change in particle posi-
tion through random velocity.

Even though PSO has multiple advantages, it also has some
inherent drawbacks.

(a) The initialization of particles in PSO is done randomly. If the
particles initialized, are located in a local space, then the
chances of getting trapped in local minima is increased.

(b) The speed of search depends on the separation of particles.
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Fig. 1. PSO algorithm.

Fig. 2. IEEE 6 bus system.

Table 1
IEEE 6 bus system data.

Start bus End bus Branch impedance Transformer tap

1 6 0.23 + j0.518
1 4 0.080 + j0.370
4 6 0.097 + j0.407
5 2 0.282 + j0.640
2 3 0.723 + j1.050
6 5 0.000 + j0.300 1.025
4 3 0.000 + j0.133 1.1

Table 2
Control variable constraints.

Transformer tap Generator bus
voltage

VAR installation
(MVAR)

T65, T43 V1 V2 Q4 Q6

Lower limit 0.910 1.0 1.1 0.0 0.0
Upper limit 1.110 1.1 1.15 5.0 5.5
Discrete value 0.91 + 16 � 1.25% 10 � 0.5 10 � 0.5
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3.3. Algorithm and flowchart

The algorithm of PSO used for searching an optimal solution for
reactive power dispatch is given in Fig. 1.

(i) Minimum and maximum values for control and state vari-
ables are set. Transformer tap positions are initiated. Ran-
dom particles are generated.

(ii) The counter is initialized to 1 and it measures each iteration.
(iii) Load flow constraints are verified.
(iv) Load flow is executed for each and every particle using fast

decoupled method. This gives the active power loss, i.e.,
the value of objective function or the fitness value for each
particle.

(v) The individual best is updated for better fitness value of a
particle.

(vi) After updating all individual best, the global best is also
updated.

(vii) Based on the values of individual best, global best and ran-
dom velocities, each particle is assigned a new position.

(viii) Stopping criteria is checked, if satisfied the search process
stops and displays the result, else proceeds for the next
iteration.

3.4. Dynamic weights

The particles in PSO change their positions in every iteration
based on individual best, global best and a random velocity. The
new position of the particle is also dependent on the weights at-
tached with these quantities. These weights can be static or dy-
namic. The static weights are determined by repeated execution
of the algorithm and set before execution of the program. The dy-
namic weights change for each iteration of PSO. The weights intro-
duced by Peram et al. [11], make use of fitness ratio. The ratio is
calculated separately for each control variable and the fitness val-
ues are taken from different particles. A novel concept is intro-
duced here. The dynamic weights, used in this paper, change in
every iteration, depending on the difference in fitness values of
the particle and the referred best positions.

The new position of a particle is calculated as:

new position ¼ old positionþ ðdifference between individual
best position and current positionÞ
� ðdifference in losses of individual best
position and current positionÞ
� scale valueþ ðdifference between global best
position and current positionÞ
� ðdifference in losses of global best position and
current positionÞ
� scale valueþ random value � signisðÞ
� scale value

where scale value: to scale the calculated value in variable
range.

signis : function which generates random positive or negative val

Thus, more a particle is away from the global or individual best;
the more it will be driven towards these positions. The introduc-
tion of dynamic weights makes the search converge faster. This
method of calculation of weights was not found in the references
mentioned.
4. Results

The IEEE 6-bus system [1] (Fig. 2) was implemented using MAT-
LAB. Bus 1 is a swing bus; bus 2 is a PV bus whereas the buses 3, 5,



Table 3
State variable constraints.

PQ bus voltage PY bus reactive power (MYAR)

Lower limit 0.9 �20
Upper limit 1.1 100

Table 4
Initial state.

Bus Voltage (pu) Load (pu) Power supply (pu)

V h P1 Q1 PG, QG

1 1.05 0 0 0 0.966 0.381
2 1.100 �6.139 0 0 0.500 0.348
3 0.855 �13.83 0.55 0.13 0 0
4 0.953 �9.92 0 0 0 0
5 0.901 �13.42 0.3 0.18 0 0
6 0.933 �12.65 0.5 0.05 0 0

System total loss = 11.61 MW.

Table 5
Control variables (initial state).

V1 V2 Q4 Q6 T43 T65

1.05 1.1 0 0 1.1 1.025

Table 6
Final state.

Bus Voltage (pu) Load (pu) Power supply (pu)

V h P1 Q1 PG QG

1 1.100 0 0 0 0.937 0.419
2 1.150 �2.676 0 0 0.500 0.137
3 1.034 �11.44 0.55 0.13 0 0
4 0.998 �8.737 0 0 0 0.05
5 1.014 �10.98 0.3 0.18 0 0
6 0.98 �10.86 05 0.05 0 0.055

System total loss = 8.7036 MW.

Table 7
Control variables (final state).

V1 V2 Q4 Q6 T43 T65

1.1 1.15 5 5.5 0.9475 0.935
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and 6 are load buses. The switchable shunt capacitor banks are
connected on buses 4 and 6. The transformers are connected be-
tween buses 3–4 and 5–6. The load at each bus is also specified.

The line data, the control variable constraints, and state variable
constraints for the system are shown in Tables 1–3 respectively.
Tables 4 and 5 presents the initial state of the system and control
variable values in initial state. Tables 6 and 7 present the simula-
tion results after using PSO, with dynamic weights, on the system.

It is noted that all the state variables and control variables are in
their specified limits. The voltage profile of the system has also im-
proved. The active power loss has reduced from 11.61 MW to
8.7036 MW, which is a 25% reduction in total active power losses.

5. Conclusion

Reactive power flow optimization is a complex combinatorial
problem. Particle Swarm Optimization Algorithm with dynamic
weights has been successfully used to minimize the active power
losses in the system, while satisfying all power system constraints.
The proposed algorithm was found to be better at reducing losses
and convergence when compared to existing [14] methods. The
PSO Algorithm has been coded using MATLAB.
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