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Abstract—Continuous growth in network link rates poses a
strong demand on high speed IP lookup engines. While Ternary
Content Addressable Memory (TCAM) based solutions serve
most of today’s high-end routers, they do not scale well for
the next-generation [1]. On the other hand, pipelined SRAM-
based algorithmic solutions become attractive. Intuitively multi-
ple pipelines can be utilized in parallel to have a multiplicative
effect on the throughput. However, several challenges must be
addressed for such solutions to realize high throughput. First,
the memory distribution across different stages of each pipeline
as well as across different pipelines must be balanced. Second,
the traffic on various pipelines should be balanced.

In this paper, we propose a parallel SRAM-based multi-
pipeline architecture for terabit IP lookup. To balance the
memory requirement over the stages, a two-level mapping scheme
is presented. By trie partitioning and subtrie-to-pipeline mapping,
we ensure that each pipeline contains approximately equal
number of trie nodes. Then, within each pipeline, a fine-grained
node-to-stage mapping is used to achieve evenly distributed
memory across the stages. To balance the traffic on different
pipelines, both pipelined prefix caching and dynamic subtrie-to-
pipeline remapping are employed. Simulation using real-life data
shows that the proposed architecture with 8 pipelines can store a
core routing table with over 200K unique routing prefixes using
3.5 MB of memory. It achieves a throughput of up to 3.2 billion
packets per second, i.e. 1 Tbps for minimum size (40 bytes)
packets.

I. INTRODUCTION

IP lookup with longest prefix matching is a core function
of Internet routers. It has become a major bottleneck for
backbone routers as the Internet continues to grow rapidly
[2]. With the advances in optical networking technology, link
rates in high speed IP routers are being pushed from OC-
768 (40 Gbps) to even higher rates. Such high rates demand
that IP lookup in routers must be performed in hardware. For
instance, 40 Gbps links require a throughput of 8 ns per lookup
for a minimum size (40 bytes) packet. Such throughput is
impossible using existing software-based solutions [3].

Most hardware-based solutions for high speed IP lookup
fall into two main categories: TCAM (ternary content ad-
dressable memory)-based and DRAM/SRAM (dynamic/static
random access memory)-based solutions. Although TCAM-
based engines can retrieve IP lookup results in just one clock
cycle, their throughput is limited by the relatively low speed
of TCAMs. They are expensive and offer little flexibility for
adapting to new addressing and routing protocols [4]. As

shown in Table I, SRAM outperforms TCAM with respect to
speed, density and power consumption. However, traditional
SRAM-based solutions, most of which can be regarded as
some form of tree traversal, need multiple clock cycles to
complete a lookup. For example, trie [3], a tree-like data
structure representing a collection of prefixes, is widely used
in SRAM-based solutions. It needs multiple memory accesses
to search a trie to find the longest matched prefix for an IP
packet.

TABLE I
COMPARISON OF TCAM AND SRAM TECHNOLOGIES (18 MBIT CHIP)

TCAM SRAM

Maximum clock rate (MHz) 266 [5] 400 [6], [7]
Power consumption (Watts) 12 ∼ 15 [8] ≈ 0.1 [9]

Cell size (# of transistors per bit) [10] 16 6

Several researchers have explored pipelining to improve
the throughput significantly. Taking trie-based solutions as
an example, a simple pipelining approach is to map each
trie level onto a pipeline stage with its own memory and
processing logic. One IP lookup can be performed every clock
cycle. However, this approach results in unbalanced trie node
distribution over the pipeline stages. This has been identified
as a dominant issue for pipelined architectures [11], [12].
In an unbalanced pipeline, the “fattest” stage, which stores
the largest number of trie nodes, becomes a bottleneck. It
adversely affects the overall performance of the pipeline for
the following reasons. First, it needs more time to access the
larger local memory. This leads to reduction in the global clock
rate. Second, a fat stage results in many updates, due to the
proportional relationship between the number of updates and
the number of trie nodes stored in that stage. Particularly dur-
ing the update process caused by intensive route insertion, the
fattest stage can also result in memory overflow. Furthermore,
since it is unclear at hardware design time which stage will
be the fattest, we need to allocate memory with the maximum
size for each stage. This results in memory wastage.

To achieve a balanced memory distribution across stages,
several novel pipeline architectures have been proposed [13],
[14]. However, their non-linear pipeline structures result in
throughput degradation, and most of them must disrupt on-
going operations during a route update. Our previous work



[15] proposed a linear pipeline architecture with a fine-grained
node-to-stage mapping scheme to distribute nodes of a leaf-
pushed uni-bit trie evenly to different pipeline stages. It can
achieve a high throughput of one lookup per clock cycle, as
well as support write bubbles [12] for incremental updates
without disrupting router operations.

However, improvement in memory access speed is rather
limited. Thus it becomes necessary to employ multiple
pipelines which can operate concurrently to speed up
IP lookup. Memory and traffic balancing among multiple
pipelines become new problems. Similar to the above analysis
of how the fattest stage affects the global performance of a
pipeline, the largest pipeline which stores the largest number of
trie nodes will become a performance bottleneck of the multi-
pipeline architecture. Distinct from TCAM-based solutions,
memory balancing is the primary challenge for SRAM-based
pipeline solutions. On the other hand, similar to TCAM-based
solutions, traffic balancing is needed to achieve multiplicative
throughput improvement. Previous works on parallel TCAM-
based IP lookup engines use either a learning algorithm to
predict the future behavior of incoming traffic based on its
current distribution [16], [17], or IP or prefix caching to utilize
the locality of Internet traffic [18], [19]. We claim that both
schemes can be adapted for SRAM-based solutions.

This paper addresses both problems: memory and traffic
balancing for an SRAM-based parallel multi-pipeline archi-
tecture. This paper makes the following main contributions.

• To the best of our knowledge, this work is the first
discussion of parallel SRAM-based pipeline solutions for
next-generation terabit routers.

• A novel two-level mapping scheme is proposed to balance
the memory distribution over multiple pipelines and over
all pipeline stages.

• Based on the analysis of current routing tables, a simple
but efficient method is proposed for trie partitioning.

• Both pipelined prefix caching and dynamic subtrie remap-
ping are incorporated to balance the traffic among multi-
ple pipelines.

• Our results demonstrate that the SRAM-based pipelined
algorithmic solution is a promising alternative to TCAM-
based solutions for future high-end routers. The proposed
8-pipeline architecture can store a full core routing table
with over 200K unique prefixes using 3.5 MB of memory.
It can achieve a high throughput of up to 3.2 billion
packets per second, i.e. 1 Tbps for minimum size (40
bytes) packets.

The remainder of this paper is organized as follows. Section
II reviews the background and related works. Section III pro-
poses a parallel architecture with multiple memory-balanced
linear pipelines, called the Parallel Optimized Linear Pipeline
(POLP) architecture. The two problems of memory and traffic
balancing are discussed in Sections IV and V, respectively.
Experiments are conducted in Section VI to evaluate the
performance of POLP. Section VII concludes the paper.

II. BACKGROUND

A. Trie-based IP Lookup
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Fig. 1. (a) Prefix set; (b) Uni-bit trie; (c) Leaf-pushed uni-bit trie.

The nature of IP lookup is longest prefix matching (LPM).
In algorithmic solutions, the most common data structure for
LPM is some form of trie [3]. Trie is a binary tree, where
a prefix is represented by a node. The value of the prefix
corresponds to the path from the root of the tree to the node
representing the prefix. The branching decisions are made
based on the consecutive bits in the prefix. A trie is called a
uni-bit trie if only one bit is used to make branching decision
at a time. The prefix set in Figure 1 (a) corresponds to the
uni-bit trie in Figure 1 (b). For example, the prefix “010*”
corresponds to the path starting at the root and ending in node
P3: first a left-turn (0), then a right-turn (1), and finally a
turn to the left (0). Each trie node contains two fields: the
represented prefix and the pointer to the child nodes. By using
the leaf-pushing optimization [20], each node needs only one
field: either the pointer to the next-hop address or the pointer
to the child nodes. Figure 1 (c) shows the leaf-pushed uni-bit
trie derived from Figure 1 (b).

Given a leaf-pushed uni-bit trie, IP lookup is performed
by traversing the trie according to the bits in the IP address.
When a leaf is reached, the prefix associated with the leaf
is the longest matched prefix for the IP address. The time to
look up a uni-bit trie is equal to the prefix length. The use of
multiple bits in one scan can increase the search speed. Such
a trie is called a multi-bit trie. The number of bits scanned at
a time is called stride. Some optimization schemes [21]–[23]
have been proposed to build memory-efficient multi-bit tries.



For simplicity, we consider only the leaf-pushed uni-bit trie in
this paper, though our ideas can be applied to other forms of
tries.

B. Memory-Balanced Pipelines

A number of researchers have pointed out that using pipelin-
ing can dramatically improve the throughput of trie-based
solutions. A straightforward way to pipeline a trie is to assign
each trie level to a different stage, so that a lookup request can
be issued every clock cycle. However, as discussed earlier,
this simple pipeline scheme results in unbalanced memory
distribution, leading to low throughput and inefficient memory
allocation [13], [24].

Basu et al. [12] and Kim et al. [23] both reduce the memory
imbalance by using variable strides to minimize the largest
trie level. However, even with their schemes, the size of the
memory in different stages can have a large variation. As
an improvement upon [23], Lu et al. [25] propose a tree-
packing heuristic to balance the memory further, but it does not
solve the fundamental problem of how to retrieve one node’s
descendents that are not allocated in the following stage.
Furthermore, a variable stride multi-bit trie is difficult for
hardware implementation especially if incremental updating
is needed [12].

Baboescu et al. [13] propose a Ring pipeline architecture
for trie-based IP lookup. The memory stages are configured
in a circular, multi-point access pipeline so that lookups can be
initiated at any stage. The trie is split into many small subtries
of equal size. These subtries are then mapped to different
stages to create a balanced pipeline. Some subtries have to
wrap around if their roots are mapped to the last several stages.
Though all IP packets enter the pipeline from the first stage,
their lookup processes may be activated at different stages.
Hence all the IP lookup packets must traverse the pipeline
twice to complete the trie traversal. The throughput is thus 0.5
lookups per clock cycle. Kumar et al. [14] extend the circular
pipeline with a new architecture called the Circular, Adaptive
and Monotonic Pipeline (CAMP). It has multiple entrance and
exit points so that the throughput can be increased at the
cost of output disorder and delay variation. It employs several
request queues to manage access conflicts between the new
request and the one from the preceding stage. It can achieve
a worst-case throughput of 0.8 lookups per clock cycle, while
maintaining balanced memory across pipeline stages.

Due to the non-linear structure, neither the Ring pipeline
nor CAMP under worst cases can maintain a throughput of
one lookup per clock cycle. Also, neither of them supports
well the write bubble proposed in [12] for the incremental
route update. Our previous work [15] adopts an optimized
linear pipeline architecture, named OLP, to achieve a high
throughput of one output per clock cycle. Supporting nops
(no-operations) in the pipeline offers more freedom in mapping
trie nodes to pipeline stages. After using a fine-grained node-
to-stage mapping scheme, trie nodes are evenly distributed
across most of the pipeline stages. In addition, OLP supports
incremental route updates without disrupting the ongoing IP

lookup operations. This paper extends the idea of OLP to
map multiple tries to one pipeline, while keeping the memory
requirement across stages balanced.

C. Parallel IP Lookup Engines

Most published parallel IP lookup engines are TCAM-
based. They partition the full routing table into several blocks
and make the search process parallel on different blocks.
Power efficiency and througput improvement can be obtained
by such parallelism [16].

To partition the routing table, Zane et al. [8] propose
two schemes: bit-selection and trie-based architectures. In the
former, selected bits are used to index different TCAM blocks
directly. However, prefix distribution imbalance among the
TCAM blocks may be quite high, resulting in low worst-
case performance. The latter scheme splits the trie by carving
subtries out of the full trie. This can have a much better worst-
case bound. Subtrie-to-block mapping is implemented using
an index logic consisting of a TCAM and an SRAM. Since
those subtries may be on different levels of the trie, different
numbers of bits are used to index different subtries. Such
a scheme is difficult for SRAM-based solutions, where the
index tables are addressable memory with a constant number
of address bits.

Traffic balancing is a difficult problem for parallel IP lookup
engines [26]. Many solutions have been proposed, including
learning-based block rearrangedment [16], [17] and IP / prefix
caching [18], [19]. The former requires periodic reconstruction
of the entire routing table, which is impractical for SRAM-
based solutions due to the high cost to update. Because of
Interent traffic bias, prefix caching is effective for speeding up
the lookup throughput [19], and is adopted in our architecture.
However, prefix caching can only handle the short-term bias
due to the limited size of cache. In this paper, we combine a
small SRAM-based pipelined prefix cache with an incremental
subtrie remapping scheme to achieve balanced traffic among
different pipelines.

III. POLP ARCHITECTURE OVERVIEW

We propose a parallel architecture with multiple memory-
balanced linear pipelines, called the Parallel Optimized Linear
Pipeline (POLP) architecture, shown in Figure 2.

The architecture consists of P pipelines, each of which
stores part of the entire routing trie. Figure 2 shows an
architecture with P = 4. The trie is partitioned into disjoint
subtries using the initial bits of the prefixes. We propose
an approximation algorithm to map the subtries to pipelines,
while keeping the memory requirement over different pipelines
balanced. Within each pipeline, a fine-grained node-to-stage
mapping is employed to balance the trie node distribution
across stages. The details are discussed in Section IV.

We need a small memory, called Destination Index Table
(DIT), to store the mapping between subtries and pipelines.
Initial bits of the IP address of an incoming packet are used to
index DITs to retrieve the pipeline ID to which the packet will
be routed. A packet is directed to the pipeline which stores its
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corresponding subtrie. By searching the DIT, the packet also
retrieves the address of the subtrie’s root in the first stage of
the pipeline. W of DITs can be used in parallel to process W
packets simultaneously. Figure 2 shows an architecture with
W = 3.

To balance the traffic among the pipelines, we cache the
popular prefixes in W small pipelines, called pipelined prefix
caches (PPCs). The memory requirement across the stages
in each PPC is balanced using the same scheme as that to
balance the P main pipelines which store the entire trie.
Since the PPCs store a small portion of the trie, the output of
PPCs is only a subset of the next-hop address table. W next-
hop address translation (NAT) tables are used to translate the
PPC’s outputting “next-hop addresses” to the actual next-hop
addresses in the routing table.

Since the cache size is commonly small, prefix caching
can only exploit the short-term traffic bias. To balance the
long-term traffic among pipelines, we propose an exchange-
based algorithm to remap subtries to pipelines in a dynamic
fashion. It balances the traffic without reconstructing the entire
routing table. The details of prefix caching and dynamic
subtrie remapping are discussed in Section V.

IV. MEMORY BALANCING

This section studies the memory balancing over the multi-
pipeline architecture. Three problems are addressed.

1) Partitioning the entire routing trie in a simple but effi-
cient way

2) Mapping subtries to different pipelines so that each
pipeline has approximately the same number of nodes

3) Mapping trie nodes to the pipeline stages so that the
memory requirement across the stages is balanced.

We first give the following definitions.

Definition 1: Two subtries are disjoint if they share no
prefix.

Definition 2: The size of a trie is the number of nodes in
it.

A. Trie Partitioning

To partition the trie, we use a scheme called prefix expan-
sion [20], shown in Figure 3 (a). Several initial bits are used
as the index to partition the trie into many disjoint subtries.
The number of initial bits to be used is called the initial stride,
denoted I .

A larger I can result in more small subtries, which can
help balance the memory distribution when mapping subtries
to pipelines. However, prefix expansion may result in prefix
duplication where a prefix may be copied to multiple subtries.
Hence a large I can result in many non-disjoint subtries. For
example, if we use I = 4 to expand the prefixes in Figure
1 (a), the prefix P3 whose length is 3 will be copied to two
subtries. One subtrie with the initial bits of “0100” has the
prefixes P3 and P4, and the other with “0101” has the prefixes
P3 and P5. Prefix duplication results in memory inefficiency
and may increase the update cost. If two subtries containing
a same prefix are mapped onto two pipelines, a route update
related to that prefix needs to update both pipelines.

We study the prefix length distribution based on four
representative routing tables collected from [27]: rrc00, rrc01,
rrc08 and rrc11. Their information is listed in Table II. We
obtain the results similar to [28]: few prefixes are shorter than
16. Hence, using an I of less than 16 should not result in
much duplication of prefixes. To find an appropriate I , we
consider various values of I to partition the above four routing
tables. We examine the prefix expansion ratio (PER) which
is defined in Equation (1).

TABLE II
REPRESENTATIVE ROUTING TABLES

Routing table Location Date # of prefixes # of prefixes with length < 8 # of prefixes with length < 16

JPIX (rrc06) Otemachi, Japan 20071130 239332 0 1926 (0.80%)
MAE-WEST (rrc08) San Jose, USA 20040901 83556 0 495 (0.59%)

MIX (rrc10) Milan, Italy 20071130 236991 0 1939 (0.82%)
PAIX (rrc14) Palo Alto, USA 20071130 243731 0 1949 (0.80%)
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PER =
∑K

i=1 PrefixCount(Ti)
PrefixCount(To)

(1)

where K denotes the number of subtries after partitioning,
PrefixCount(Ti) the number of prefixes in the i th subtrie,
and PrefixCount(To) the number of prefixes in the original
trie. Figure 4 shows the prefix expansion ratio for various
values of I . Using an I of less than 12 results in little prefix
duplication. In the following discussion, we use I = 8 for
default. This does not result in any prefix duplication and
guarantees all the resulting subtries are disjoint.

B. Subtrie-to-Pipeline Mapping

The partitioning scheme in Section IV-A may result in
many subtries of various sizes. For example, we use I = 8
to partition the tries corresponding to the four routing tables
shown in Table II. We obtain the trie node distribution over
resulting subtries, as shown in Figure 5.

The problem now is to map those subtries to multiple
pipelines while keeping the memory requirement of the
pipelines balanced.
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To formulate the problem, we use the following notations.
• K denotes the number of subtries.
• P denotes the number of pipelines.
• Ti denotes the i th subtrie, i = 1, 2, · · · ,K.
• Si denotes the set of subtries contained by the i th

pipeline, i = 1, 2, · · · , P .
• size(.) denotes the size, i.e., the number of nodes, of a

subtrie or a set of subtries.
We seek to assign each subtrie to a pipeline so that all

pipelines have an equal number of trie nodes. Hence the
problem can be formulated as Equation (2).

min max
i=1,2,··· ,P

size(Si) (2)

with constraint (3):

⋃

i=1,2,··· ,P
Si = {Tj | j = 1, 2, · · · ,K} (3)

The above optimization problem is NP-complete. This can
be shown by a reduction from the partition problem [29].
We use an approximation algorithm to solve it, as shown in
Figure 6. According to [29], in the worst-case, the resulting
largest pipeline may have 1.5 times the number of nodes as
in the optimal mapping. Figure 3 (b) illustrates an example
of mapping 3 subtries to 2 pipelines. The effectiveness of this
algorithm is verified in Section VI.



Input: K subtries: Ti, i = 1, 2, · · · ,K.
Output: P pipelines, each of which contains a set of subtries

Si, i = 1, 2, · · · , P .
1: Set Si = φ for all pipelines, i = 1, 2, · · · , P .
2: Sort {Ti} in the decreasing order of size(Ti), i =

1, 2, · · · ,K.
3: Assume that size(T1) ≥ size(T2) ≥ · · · ≥ size(TK).
4: for i = 1 to K do
5: Find Sm: size(Sm) = minP

j=1 Sj .
6: Assign Ti to the m th pipeline: Sm ← Sm ∪ Ti.
7: end for

Fig. 6. Algorithm: subtrie-to-pipeline mapping.

C. Node-to-Stage Mapping

We now have a set of subtries for each pipeline. Within
each pipeline, the trie nodes should be mapped to the stages
while keeping the memory requirement across stages balanced.
Using the following definition and notations, the problem can
be formulated as (4) with the constraint (5).

Definition 3: the height of a trie node is the maximum
distance from it to a leaf node.

• H denotes the number of pipeline stages.
• Mi denotes the number of nodes mapped to the i th stage.
• T denotes a subtrie, and Sp the set of subtries assigned

to the pipeline.
• size(.) denotes the size, i.e., the number of nodes, of a

subtrie.
• Rn denotes the number of remaining nodes to be mapped

onto stages;
• Rh denotes the number of remaining stages onto which

the remaining nodes will be mapped.

min max
i=1,2,··· ,H

Mi (4)

H∑

i=1

Mi =
∑

T∈Sp

size(T ) (5)

It is not hard to solve the above programming problem and

obtain the optimum value of Mi =

∑
T∈Sp

size(T )

H . However,
since our architecture requires the pipeline be linear, the
following constranit must be met.

Constraint 1. If node A is an ancestor of node B in a subtrie,
then A must be mapped to a stage preceding the stage to which
B is mapped.

We use a simple heuristic to perform the node-to-stage
mapping. As Figure 3 (c) shows, by supporting nops, we allow
the nodes on the same level of a subtrie to be mapped onto
different pipeline stages. This provides more flexibility to map
the trie nodes and helps achieve a balanced node distribution
across the stages.

We manage two lists, ReadyList and NextReadyList.
The former stores the nodes which are available for filling the
current stage, while the latter stores the nodes for filling the

Input: Sp: the set of subtries assigned to the pipeline.
Output: H stages with mapped nodes.

1: Create and initialize two lists: ReadyList = φ and
NextReadyList = φ.

2: Rn =
∑

T∈Sp
size(T ), Rh = H .

3: Fill the roots of the subtries into Stage 1.
4: Push the children of the filled nodes into ReadyList.
5: Rn = Rn −M1, Rh = Rh − 1.
6: for i = 2 to H do
7: Mi = 0.
8: Sort the nodes in ReadyList in the decreasing order of

the node height.
9: while Mi < Rn/Rh and Readylist �= φ do

10: Pop node from ReadyList and fill into Stage
i. The popped node’s children are pushed into
NextReadyList.

11: end while
12: Rn = Rn −Mi, Rh = Rh − 1.
13: Merge the NextReadyList to the ReadyList.
14: end for
15: if Rn > 0 then
16: Return Failure.
17: else
18: Return Success.
19: end if

Fig. 7. Algorithm: node-to-stage mapping.

next stage. Since Stage 1 is dedicated for the subtries’ roots,
we start with filling the nodes which are children of the roots
into Stage 2. When filling a stage, the nodes in ReadyList
are popped out and filled into the stage in the decreasing order
of their heights. If a node is filled, its children are pushed
into the NextReadyList. When a stage is full or ReadyList
becomes empty, we move on to the next stage. At that time, the
NextReadyList is merged into ReadyList. By this means,
Constraint 1 can be met. The complete algorithm is shown in
Figure 7.

D. Skip-Enabling in the Pipeline

To allow two nodes on the same subtrie level to be
mapped to different stages, we must implement the NOP
(no-operation) in the pipeline. Our method is simple. Each
node stored in the local memory of a pipeline stage has two
fields. One is the memory address of its child node in the
pipeline stage where the child node is stored. The other is the
distance to the pipeline stage where the child node is stored.
For example, when we search the prefix 110 in Figure 3, the
first two bits, 11, direct the packet to the pipeline starting
with node e. Then when we search the following bit 0 from
Stage 1, we will get (1) node P7’s memory address in the
Stage 3, and (2) the distance from Stage 1 to Stage 3. When
a packet is passed through the pipeline, the distance value is
decremented by 1 when it goes through a stage. When the
distance value becomes 0, the child node’s address is used to
access the memory in that stage.



V. TRAFFIC BALANCING

Both prefix caching and learning-based dynamic remapping
are employed to balance the traffic among multiple pipelines.
The former can benefit from the locality of traffic, while the
latter can handle the long-term traffic bias.

A. Pipelined Prefix Caching

The caches store the most popular and most recently
searched prefixes. We use the scheme proposed in Section
IV-C to construct each cache as a linear pipeline with bal-
anced node distribution across stages. It can achieve a high
throughput of one output every clock cycle and supports
incremental update by inserting write bubbles [12], [15]. If
a packet has cache miss, it will be marked and directed to the
main pipeline. After such a packet retrieves the lookup result,
a cache updating process is triggered. The default updating
algorithm is the Least Recently Used (LRU) algorithm.
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Fig. 8. (a) The request 010101 looks up the trie and retrieves the longest
matched prefix P3. (b) The portion of the trie to be cached.

In a leaf-pushed trie, all prefixes are stored at the leaves.
One prefix may be duplicated into multiple leaves, such as P3
in Figure 8 (a). However, when an IP packet traverses the trie,
the packet finally arrives at only one leaf. If this packet triggers
a cache update, only the nodes along that traversed path are
cached. For example, as Figure 8 shows, if the incoming IP
lookup request is 010101, it retrieves the longest matched
prefix P3. Though there are two leaf nodes representing the
same prefix P3, only the nodes along the path the request has
traversed are cached. In addition, to keep those nodes in a leaf-
pushed trie structure, some “miss” nodes are added. A packet
has a cache miss if it reaches a “miss” node in the cache. Note
that, such a cached path has 2 nodes on each level. Hence, to
add/remove a path from the cache, at most two write bubbles
are needed to update the cache.

B. Dynamic Subtrie-to-Pipeline Remapping

Due to their finite sizes, the caches may not capture long-
term traffic bias. The initial subtrie-to-pipeline mapping does
not take into account traffic bias. Some pipelines may be busy
while others receive few packets. To handle this problem,
we propose an exchange-based updating algorithm to remap
periodically some subtrie that includes popular prefixes to the
pipelines. In addition to the notation in the previous sections,
we define the following notation to describe the algorithm
shown in Figure 9. After each exchange of two subtries, the

contents of the DITs in the architecture need to be updated as
well.

• p denotes a prefix.
• SP (T ) denotes the set of prefixes contained in the subtrie

T .
• PV (p) denotes the popularity value of a prefix p, i.e.,

the number of times p has been retrieved.
• PV (T ) denotes the popularity value of a subtrie T .

PV (T ) =
∑

p∈SP (T ) PV (p).
• PV (Si) denotes the popularity value of the i th

pipeline which contains a set of subtries Si. PV (Si) =∑
T∈Si

PV (T ).

Input: P pipelines, each of which contains a set of subtries.
Output: P pipelines with possibly different subtrie sets.

1: Find the c th pipeline whose popularity value PV (Sc) =
minP

i=1 PV (Si).
2: Find the h th pipeline whose popularity value PV (Sh) =

maxP
i=1 PV (Si).

3: Find the subtrie Tcc ∈ Sc and the subtrie T ′
hh ∈ Sh:

F (Tcc, T
′
hh) = minT∈Sc,T ′∈Sh

F (T, T ′).
4: if 0 < PV (Thh)−PV (T ′

cc) < PV (Sh)−PV (Sc) then
5: Exchange Tcc and Thh between the c th and the h th

pipelines.
6: end if

Fig. 9. Algorithm: subtrie-to-pipeline remapping.

In the above algorithm, F (T, T ′) is the evaluation function
to select two subtries from the two pipelines for exchange.
It is defined as F (T, T ′) = size(T )−size(T ′)+ε

PV (T )−PV (T ′) , where ε is a
number in [0,1]. ε is used to differentiate two subtries that
have equal size. In our architecture, we set ε = 0.5. The
proposed evaluation function prefers two subtries that have
small variation in size while there is a wide gap in their
popularity values.

For each remapping, only two subtries are exchanged be-
tween two pipelines. The traffic distribution among pipelines is
balanced by incremental updating rather than by reconstructing
the entire routing table.

VI. PERFORMANCE EVALUATION

In this section, we conduct simulation experiments to eval-
uate the effectiveness of our proposals for both memory and
traffic balancing.

The major architecture parameters include:

• The number of pipelines, denoted P
• The number of PPCs, denoted Pc

• The number of pipeline stages, denoted H
• The number of PPC stages, denoted Hc

• Cache size, i.e. the maximum number of prefixes allowed
to be cached, denoted C

• Queue size, i.e. the maximum number of packets allowed
to be queued in one queue, denoted Q.



A. Memory Balancing among Pipelines and across Stages

At first, we conducted experiments on the four routing tables
given in Table II. In these experiments, I = 8, P = 8,H = 25.
We obtained the size of each pipeline as shown in Figure 10.
The size of each pipeline was normalized by (6) where the
notations are same as in Section IV-B.

size(Si)normalized =
size(Si)

minP
j=1 size(Sj)

, i = 1, 2, · · · , P.

(6)
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Fig. 10. Node distribution over 8 pipelines.

Then, we did the experiment on one routing table, rrc08.
We kept I = 8 but changed the number of pipelines,
P = 4, 6, 8, 10, to observe the memory balancing among the
pipelines. Figure 11 depicts the results.
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Fig. 11. rrc08: Node distribution over 4, 6, 8, 10 pipelines.

According to Figures 10 and 11, the memory distribution
among multiple pipelines can be balanced by using the pro-
posed subtrie-to-pipeline mapping algorithm.

Next, we mapped the routing table rrc14 to 8 pipelines each
of which has 25 stages. I = 10. The trie node distribution over
the stages is shown in Figure 12. Except the first several stages,
all the stages have almost equal numbers of trie nodes.
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Fig. 12. rrc14: Node distribution over stages.

B. Effectiveness of Prefix Caching and Dynamic Remapping

Due to unavailability of public IP traces associated with
their corresponding routing tables, we generated the routing
table based on the given traffic trace. We downloaded the real-
life traffic trace AMP-1110523221-1 from [30]. It has 769.1
K packets. We extracted the unique destination IP addresses
from it to build the routing table. The resulting routing table
has 17628 entries.

In this experiment, P and Pc were increased while P = Pc.
H = Hc = 25, Q = 2, and C = N

100 where N denotes
the number of prefixes in the pipelines. We used different
caching and remapping options to observe their effects on
the scalability of the throughput speedup. The results are
shown in Figure 13. When neither caching nor remapping was
enabled, the throughput speedup exhibited poor scalability.
The throughput speedup was only 2.5× with 8 pipelines. If
remapping was enabled, the throughput speedup was improved
to over 5×. It was improved to over 7.5× when caching was
also enabled. Figure 13 also reveals that prefix caching makes
larger contribution than dynamic remapping in realizing high
throughput speedup. But dynamic remapping helps balance the
traffic among pipelines, as shown in Table III. In most cases,
dynamic remapping can be treated as an option since it has
high overhead but little effect on the throughput improvement,
provided that prefix caching has been enabled.

C. Overall Performance

Based on the previous experiments, we estimate the overall
performance of an 8-pipeline 25-stage POLP architecture. As
Figure 12 shows, for the largest backbone routing table rrc14
with 243731 prefixes, each stage has fewer than 8K nodes. A
13-bit address is enough to index a node in the local memory
of a stage. Since the pipeline depth is 25, we need an extra
5 bits to specify the distance. Thus, each node stored in the
local memory needs 18 bits. The total memory needed to store
the entire routing table in an 8-pipeline 25-stage architecture
is 18 × 213 × 25 × 8 = 28 Mb = 3.5 MB, where each stage
needs 144 Kb of memory.

As Figure 13 shows, the throughput speedup can be higher
than 7.5×. Considering the SRAM clock rate can achieve 400



TABLE III
TRAFFIC DISTRIBUTION OVER 8 PIPELINES

Pipeline ID 1 2 3 4 5 6 7 8

Traffic (wo/ caching wo/ remapping): % 40.5236 9.6331 4.0006 2.6216 3.6447 21.3734 10.4136 7.7895

Traffic (wo/ caching w/ remapping): % 12.9584 12.3785 12.7875 13.5601 11.9651 12.5037 12.0192 11.8275

Traffic (w/ caching wo/ remapping): % 79.1632 3.3235 1.3207 0.8595 1.2351 7.8816 3.5323 2.6840

Traffic (w/ caching w/ remapping): % 12.8495 14.6272 10.3928 12.6681 12.0809 12.9220 11.8098 12.6496
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Fig. 13. Throughput speedup with different numbers of pipelines (P =
Pc = 1, 2, 4, 6, 8).

MHz (see Table I), the overall throughput of the 8-pipeline
architecture is 3.2 billion packets per second, i.e. 1 Tbps for
the packets with the minimum size of 40 bytes.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposed a parallel SRAM-based multi-pipeline
architecture for terabit trie-based IP lookup. A two-level
mapping scheme was proposed to balance the memory re-
quirement among pipelines and across stages. We designed
the pipelined prefix caches and proposed an exchange-based
dynamic subtrie-to-pipeline remapping algorithm to balance
the traffic among multiple pipelines. The proposed architecture
with 8 pipelines can store a core routing table with over 200K
unique routing prefixes using 3.5 MB of memory, and can
achieve a high throughput of up to 3.2 billion packets per
second, i.e. 1 Tbps for minimum size (40 bytes) packets.

We plan to study the traffic distribution in real life routers,
which has a large effect on the cache performance. Future
work also includes applying the proposed architecture for
multi-dimensional packet classification.
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