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Abstract

The study of adhesion has received considerable attention in recent years, partly due to advances in the design and fabrication of
devices. Many adhesion investigations are centered on single-spherical-contact models, which include the classic Johnson–Kend
(JKR), improved Derjaguin–Muller–Toporov (IDMT), and Maugis–Dugdale (MD) models. Based on the IDMT single-asperity mod
hesive rough surface contact models have also been developed, which are valid for elastic and elastic–plastic contact conditions. A
of the IDMT-based models is that they are only valid for application cases with low adhesion parameter values. In this research, a
rough surface adhesion model was developed by combining an extended Maugis–Dugdale (EMD) model (which is only valid for el
tacts) with an IDMT-based elastic–plastic adhesion model. The proposed model, termed the elastic–plastic hybrid adhesion mod
for the entire adhesion parameter range and also for elastic–plastic contacts. The proposed model gives results similar to the E
surface model when the contact is primarily elastic. Moreover, the proposed model was compared to an IDMT-based model (ISB
and both gave similar results for contacts with low adhesion parameter values. With high adhesion parameter values, the ISBL m
whereas the proposed model correctly predicts higher adhesion. Last, based on the stiffness of the external force, the instability f
rough surfaces in contact was also discussed, and it was postulated that a high peak value of the external force stiffness directly re
unstable contact process.
 2005 Elsevier Inc. All rights reserved.

Keywords: Adhesive contact; Extended Maugis–Dugdale; Roughness; Elastic–plastic contact; Head/disk interface
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1. Introduction

With rapid developments in micro/nano devices such
micro/nano electromechanical systems (MEMS/NEMS)
magnetic storage head–disk interfaces (HDIs), intermol
lar adhesive interactions between two surfaces have bec
increasingly important and received considerable atten
in the literature. These advances are coupled with the
velopment of advanced instrumentation, such as the at
force microscope (AFM), which enables detailed exp
mental investigations of adhesive problems down to m
cular sizes. Concurrently, a physical understanding of in
facial adhesion directly influences the successful design

* Corresponding author. Fax: +1 (217) 244 6534.
E-mail address: polycarp@uiuc.edu(A.A. Polycarpou).
0021-9797/$ – see front matter 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcis.2005.04.058
e

implementation of microdevices such as the HDI interac
in magnetic storage hard-disk drives.

For single spherical elastic contacts, there are three
jor adhesion models. The first model, suggested by Joh
et al. [1], is known as the JKR model, and it assumes
the adhesive forces are confined only in the contact area
that these forces result in a larger contact area than tha
dicted by Hertz theory. The second model, due to Derjag
et al. [2], is known as the DMT model, and it assumes t
the adhesion forces act in a ring-shaped zone of the non
tact area; i.e., there is no adhesion from within the con
area, and the Hertz profile and thus the contact area
not change. Following a debate on which of the two m
els was correct, Tabor[3] pointed out that both models a
correct and each model is valid under different conditio
Furthermore, the DMT model transitions to the JKR mo

http://www.elsevier.com/locate/jcis
mailto:polycarp@uiuc.edu
http://dx.doi.org/10.1016/j.jcis.2005.04.058


X. Shi, A.A. Polycarpou / Journal of Colloid and Interface Science 290 (2005) 514–525 515

ct area

ct area
Table 1
Summary of single spherical adhesive contact models

Reference Model acronym Comments

[1] JKR Johnson–Kendal–Roberts model:
• Adhesion is confined within the contact area
• Adhesion results in a larger contact area than Hertzian contact
• Valid for elastic contact only
• Valid for high adhesion parameter only
• Not considering noncontacting situations

[2] DMT Derjaguin–Muller–Toporov model:
• Adhesion acts in a ring-shaped zone outside the contact area
• Adhesion does not change the Hertzian profile
• Valid for elastic contact only
• Valid for low adhesion parameter only
• Not considering noncontacting situations

[5] IDMT Improved Derjaguin–Muller–Toporov model:
• Adhesion acts in a ring-shaped zone outside the contact area
• Adhesion does not change the Hertzian profile
• Valid for elastic contact only
• Valid for low adhesion parameter only
• Noncontacting situation was considered

[6] KE Kogut–Etsion model:
• Adhesion acts in a ring-shaped zone outside the contact area
• Surface profile was obtained by finite element analysis
• Valid for elastic–plastic contact
• Valid for low adhesion parameter only
• Noncontacting situation was considered

[7] MD Maugis–Dugdale model:
• Constant adhesive stress acts in a ring-shaped zone outside the conta
• Valid for wide adhesion parameter values
• Valid for elastic contact only
• Not considering noncontacting situations

[9] EMD (SP) Extended Maugis–Dugdale model (Shi–Polycarpou):
• Constant adhesive stress acts in a ring-shaped zone outside the conta
• Valid for wide adhesion parameter values
• Valid for elastic contact only
• Noncontacting situation was considered
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by adjusting the so-called “Tabor” adhesion parameter. S
sequent work by Muller et al.[4,5] numerically showed tha
indeed the JKR-to-DMT transition occurs through a dim
sionless adhesion parameter, which is related to the T
adhesion parameter. In Ref.[5], they also extended the
original work to the noncontacting situation, which is r
ferred as the improved DMT (IDMT) model. Based on t
IDMT model and using the finite element method, Kog
and Etsion[6] developed a single-asperity adhesion mod
which is valid for elastic–plastic contact.

The third single-asperity adhesion model was develo
by Maugis[7], where a continuous analytical transition b
tween the JKR and IDMT models, using the Dugdale
proximation, was developed. The Dugdale approxima
assumes a state of constant adhesive stress over some
at the gap between a contacting sphere and a flat surface
modeled as a crack tip). Kim et al.[8] proposed an exten
sion to the Maugis–Dugdale (MD) model for the case wh
the sphere is not in intimate contact with the flat surface
within the active adhesion range. In Ref.[8] they assumed
a constant (theoretical) stressσ0 for the noncontact condi
r

th
.,

tion, which overestimated adhesion and limited its effec
range. Subsequently, Shi and Polycarpou[9] proposed an
other extension to the MD model for the noncontact situa
based on the concept of adhesion work. This model,
ferred as the extended Maugis–Dugdale (EMD) model, o
comes the problems of[8]. Table 1lists the single-spherica
adhesive-contact models discussed above, along with
acronyms, main features, and limitations.

As realistic interfaces possess roughness, one nee
extend the above single-asperity models to multiaspe
models. For such cases, a widely used multiasperity
tact model is the Greenwood and Williamson (GW) s
tistical contact model[10]. The GW statistical model ha
been widely accepted due to its clear physical interpreta
and good agreement with experimental data (e.g.,[11–13]),
despite its shortcomings of scale dependency[14]. Chang
et al. (CEB model)[15] developed an adhesion model f
rough surfaces under dry contact conditions by combin
the IDMT model with an extended GW model that includ
elastic–plastic contacts. Kogut and Etsion[16] developed a
rough surface adhesion model (KE model) based on t
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improved single-asperity model[6], in which case a more
accurate (compared to Chang et al.[15]) deformed surface
profile was obtained at different approach levels. An
vantage of both CEB and KE models is that they are v
for elastic–plastic contact conditions. However, a major
advantage of these models is that since they are base
the IDMT adhesion model, they are only valid for a limit
range of low adhesion parameter values, which is unrea
in many applications, such as MEMS and magnetic stor
devices.

To overcome the limited range of the IDMT-based mo
els, one needs to employ the MD model, which is va
over a wide range of adhesion parameter values. To
end, Adams et al.[17] employed the MD adhesion mod
to model rough contacting surfaces and developed a s
dependent friction model. In their model they only cons
ered the adhesion from the contacting and intimately c
tacting asperities, ignoring the contribution from the no
contacting asperities. Morrow et al.[18] combined the MD
model with the Kim et al.[8] extension for noncontactin
asperities and developed a model for rough contacting
faces that includes adhesion from the noncontacting as
ties. However, both the Adams et al.[17] and Morrow et al.
[18] models are valid only for elastic contacting asperiti
since they directly use the MD model, which is limited
such contacts. Furthermore, these models are valid for
contact conditions only.

In many micro/nano applications, the presence of mo
ularly thin lubricants either is desired or cannot be avoid
Thin lubricant can either be deliberately applied to surfa
e.g., magnetic storage thin film disks containing a per
oropolyether (PFPE) lubricant 1–2 nm thick, or found
devices being operated in the presence of humidity, w
forms a molecularly thin water layer on the surface[19].
Stanley et al.[20] developed an adhesion model (SB
model) to take into consideration the effect of molecula
thin lubricant layers. Following the same idea, Lee[21] de-
veloped an improved SBL model (ISBL) by combining t
KE dry contact adhesion model with the SBL model. As w
the dry contact models, both the SBL and the ISBL m
els are valid for elastic–plastic contacts but limited to l
adhesion parameter values. In applications involving la
adhesion parameter values, they significantly underesti
adhesion, as shown in Section3.

Another important issue that is also addressed in this
per is the adhesion instability that may occur as surfa
move into and out of contact. Refs.[9,22] discussed this
phenomenon for the case of single-asperity spherical
tacts, where adhesion instability results in the “jump-o
and “jump-off” phenomena during the approaching and
parting processes, respectively. It was found[9] that under
displacement control, the “jump-on” and “jump-off” poin
are the same for adhesion parameter valuesλ < 0.95 and
different for λ > 0.95. In magnetic storage HDIs, such a
hesive instabilities have been experimentally observed[23]
and also numerically modeled[24]. However, the literature
n

-

-

on the instability of adhesive rough surfaces in contact
far as roughness effects are concerned, is absent.

In this paper, the EMD and ISBL models were combin
to obtain an improved adhesion model for rough cont
ing surfaces in the presence of molecularly thin lubrica
The proposed model, termed the elastic–plastic hybrid
hesion model, overcomes the difficulties of earlier mod
namely, it is valid for elastic–plastic contacts and for the
tire range of adhesion parameter values. Last, the instab
of adhesive rough surfaces in contact is discussed base
the amplitude and the stiffness of the external force.

2. Extended Maugis–Dugdale (EMD) model for
spherical contacts

2.1. Maugis–Dugdale (MD) model [7]

Maugis proposed an analytical transition between
JKR and IDMT models by combining fracture mechan
theory with the Dugdale constant stress approximation
the MD model, the contact interface was treated as a c
and the adhesive stress was constant (σ0) over a length of
l (l = c − a) at the tip of the crack, wherea and c are
the radii of the contact and adhesive zones respecti
Fig. 1depicts simulation results and sketches of the EMD[9]

Fig. 1. Extended Maugis–Dugdale (EMD) model, Case II (single sphe
(a) contacting conditions (MD model); (b) noncontacting conditions.
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single-asperity (sphere-on-flat) model using case II sphe
contact parameters, listed inTable 2. The values listed inTa-
ble 2represent realistic magnetic storage head–disk inter
parameters with case I being the roughest case (vintage
face) and case III representing current HDI technology.
energy of adhesion values represents realistic HDI va
due to the presence of the molecularly thin PFPE lubric
humidity, and contamination.Fig. 1a shows the contactin
conditions of the EMD model, which are the same as
the original MD model, andFig. 1b shows the noncontac
ing conditions of the EMD model. Shown inFig. 1a is the
constant adhesive stress,σ0, which is independent of th
approachδ. The inset ofFig. 1a shows a schematic represe
tation of the stress distribution of the MD model, along w
the diameters of the contact (2a) and adhesive (2c) zones.
By defining parameterm = c/a, the MD solution gives[7]

(1)
λA2

M

2

[√
m2 − 1+ (m2 − 2) tan−1

√
m2 − 1

]
+4λ2AM

3

[√
m2 − 1 tan−1

√
m2 − 1− m + 1

] = 1,

where the dimensionless contact radius

(2)AM = a

(
K

π�γR2

)1/3

andλ is a dimensionless adhesion parameter given by

(3)λ = 2σ0

(
R

π�γK2

)1/3

.

Note thatK is related to the reduced Young’s modulusEr
(K = 4

3Er; Er = E1/(1− ν2
1) + E2/(1− ν2

2)), R is the as-
perity radius, and�γ is the energy of adhesion. Also, th
dimensionless external loadFM is given by

FM = F

π�γR

(4)= A3
M − λA2

M

[√
m2 − 1+ m2 tan−1

√
m2 − 1

]
and the dimensionless elastic approach�M by

(5)�M = δ

(
K2

π2�γ 2R

)1/3

= A2
M − 4

3
AMλ

√
m2 − 1,

where the theoretical stress

(6)σ0 = 1.03
�γ

Z0
.

Z0 is the equilibrium spacing, which depends on the mate
lattice parameter and surface energy of the interface ma
als[25]. According to[25], for most surfaces,Z0 = 0.2 nm,
which is also adopted in this work.

Using Eqs.(1)–(6), simulations were performed using th
spherical parameters for case II (Table 2), and the results
show that the contact and adhesive zone radiia andc, re-
spectively, increase nonlinearly with increasing approach
shown inFig. 1a. Based on the MD model, the adhes
-

Table 2
Simulation parameters

Material parameters Hardness of softer
material,H (GPa)

Combined Young’s
Modulus,Er (GPa)

2.50 85.29

Surface
parameters

Plasticity
index (ψ)

η (µm−2) σ (nm) R (µm) �γ (N/m) λ

Case I 1.76 8.51 3.40 1.66 0.01 0.16
Case II 0.84 7.39 1.62 3.33 0.09 0.90
Case III 0.39 9.87 0.65 6.38 0.30 2.49

Note. Shaded area indicates the parameters needed for spherical (s
asperity) contact.

stresses outside and inside the contact regions are given

(7a)σ(r) = σ0 for a < r < c,

(7b)σ(r) = σ0
2

π
tan−1

(
c2 − a2

a2 − r2

)1/2

for r < a.

By integrating the adhesive stresses over the overall circ
area, the total adhesive forceFs is obtained as

Fs = σ0π(c2 − a2) +
a∫

0

2πr
2σ0

π
tan−1

(
c2 − a2

a2 − r2

)1/2

dr

(8)= 2σ0a
2(m2 tan−1

√
m2 − 1+

√
m2 − 1

)
.

2.2. EMD model for noncontact [9]

For the case of a noncontacting asperity, following
same idea as in the MD model of assuming a constan
hesive stress,σ(h0), acting in a circular area of radiusc
(with contact radiusa being zero), Shi and Polycarpou[9]
extended the MD model and proposed an adhesion m
that covers the full range of contact and noncontact and
associated instabilities. Based on classical contact mec
ics theory, the adhesive radiusc is obtained from the solutio
of the equation

(9)
c2

2R
+ 2σ(h0)c(π − 2)

πEr
+ h0 − hc = 0.

Also, based on the Lennard–Jones surface potential an
definition of the adhesion work, one can readily relate
normal separation at the centerh0 and the edgehc of the
adhesive zone caused by the deformation due to the pres
of adhesion,

(10)hc = h0 + 1

σ(h0)

∞∫
h0

σ(z) dz,

where the adhesive stress is given by the Lennard–Jone
face potential as

(11)σ(z) = 8

3

�γ

Z0

{(
Z0

Z

)3

−
(

Z0

Z

)9
}

.

Z is the deformed normal surface separation.
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The schematic representation of the stress distribution
the noncontact situation is shown in the inset ofFig. 1b. Dif-
ferent from the MD contact asperity model shown inFig. 1a,
the adhesive stressσ in the EMD model is not indepen
dent of the separationh0, but instead is a function ofh0.
Specifically,σ(h0) follows the Lennard–Jones surface la
Eq. (11). Using the same simulation parameters as in
contact case (spherical case II,Table 2), the simulation pre-
dictions of the EMD model give the adhesive zone rad
c vs minimum separationh0, as shown inFig. 1b. Due to
the fact thatσ(h0) has its maximum value at a separation
about 1.2Z0, the adhesive zone radiusc also has its mini-
mum value at the same point. When the separation is la
than 1.2Z0, c increases nonlinearly with increasing sep
ration. This is due to the Dugdale assumption of cons
adhesive stress[7]. Considering a sphere positioned at la
minimum separationh0, points with large separation are re
atively less attractive, and thus the forces due to its ne
points (under the assumption of constant adhesive stres
less dominant, resulting in a larger adhesive zone radiuc.
For the same sphere but at smallerh0, the adhesive stress o
the nearest points is more dominant, resulting in smaller
hesive zone radiusc. When the separation is below 1.2Z0,
due to the sharp drop ofσ(h0) with decreasing separation,c

increases sharply.
In the EMD model, the adhesion force,Fs, and approach

δ, are given by

(12)Fs = πσc2,

(13)δ = −
(

h0 + 2σc

Er

)
.

Using the single-asperity EMD full-approach-range
hesion model and the parameters listed inTable 2, simula-
tions were run to demonstrate the transition from the ID
to JKR models for single-asperity contacts. In these si
lations, three cases with adhesion parameter values of
(case I), 0.90 (case II), and 2.49 (case III), correspond
to IDMT, MD, and JKR regions, respectively, were cons
ered[22]. The roughness parameters were measured u
20×20 µm AFM scans on modern thin-film magnetic dis
Note that for the sphere-on-flat or single-asperity con
simulations, only the adhesion parameterλ, asperity radius
R, adhesion energy�γ , and reduced Young’s modulusEr,
are required for the simulations (shaded inTable 2). The
roughness parameters ofσ (standard deviation of surfac
heights) andη (areal density of asperities) as well as t
hardnessH are used in conjunction with the GW rough su
face model (Section3).

As shown inFig. 2, for all three cases, the nonconta
adhesion predictions (shown as negative approachδ values)
using the EMD model are very close to the IDMT solutio
as both models are based on the Lennard–Jones surfac
tential. Furthermore, the EMD model realizes the transi
from the IDMT model (Fig. 2a) to the JKR model (Fig. 2c).
Specifically, when the adhesion parameter is low (λ = 0.16),
the prediction of the EMD model is closer to IDMT, a
e

o-

Fig. 2. Transition from IDMT to JKR models using the single-sphere E
model: (a) case I,λ = 0.16 (IDMT); (b) case II,λ = 0.90 (MD); (c) case
III, λ = 2.49 (JKR).

shown inFig. 2a. On the other hand, when the adhesion
rameter is large (λ = 2.49), the EMD solution is closer t
the JKR solution, as seen inFig. 2c. Also, Fig. 2b shows
that when the adhesion parameter is well above the ID
range, but below the JKR range (λ = 0.90), the IDMT model
underestimates the adhesion force. In this range neithe
JKR nor the IDMT model can accurately predict the ad
sive force, and the EMD model is the only model that c
accurately predict the adhesion force.
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Fig. 3. GW rough surface model in the presence of molecularly thin lu
cant.

3. Proposed elastic–plastic hybrid adhesion model for
rough surfaces

3.1. Rough surface model

Having developed a single-asperity adhesion model
is valid for the full approach range and the full range of
hesion parameter values, one needs to extend this mod
include surface roughness and also to be valid for plastic
deformed asperities. The surface roughness is modeled
the Greenwood and Williamson statistical model[10], which
it assumes that two rough surfaces are represented b
equivalent sum rough surface in contact with a smooth pl
as shown schematically inFig. 3. The roughness is chara
terized by three parameters, namely,σ , η, R, and the asperity
heights follow a Gaussian distribution,φ(u). In such a rough
surface, at a certain mean separationd , some asperities wil
be in contact while others will be noncontacting, depe
ing on their individual interference,ω values. Referring to
Fig. 3, for a rough multiasperity contact interface, the
adhesive force is due to the individual asperity contributio
which can be grouped into four parts, namely contributi
from

(1) noncontacting asperities,
(2) lube-contacting but solid noncontacting asperities,
(3) elastic contacting asperities,
(4) elastic–plastic contacting asperities.

According to the GW model, the state of elastic–plastic
formation is characterized with a plasticity index, defined

(14)ψ = 2Er

πkH

√
σ

R
,

wherek is a maximum contact pressure factor related to
Poisson ratioν (k = 0.454+ 0.41ν) [15]. Whenψ < 0.6
the contact is purely elastic, forψ > 1 the contact is fully
plastic, and when 0.6< ψ < 1 the contact is elastic–plastic

3.2. Elastic EMD model for rough surfaces

In the case of purely elastic contacts (i.e.,ψ < 0.6), only
the first three parts of the adhesive contributions need t
considered. These are the noncontacting (1), elastic con
ing (2), and lube contacting (3) asperities. In the case o
and (2), the EMD model[9] is readily applicable, and i
valid for the entire adhesion parameter range. For the lu
contacting but solid noncontacting asperities (3), the Sta
o

g

n

-

et al. (SBL) model[20] is adopted, as it accounts for th
presence of a molecularly thin lubricant layer. The statist
sum of the three contributions gives the elastic EMD mo
for rough surfaces. Thus the total net adhesion forceFs is
obtained as

Fs = Anη

{ d−t−δA∫
−∞

fsncφ(u)du +
d−δA∫

d−t−δA

fslcφ(u)du

(15)+
d+ωc∫

d−δA

fselφ(u)du

}
,

whereAn is the nominal contact area,d is the mean sur
face separation,t is the lubricant thickness,u is the asperity
height, andωc is the critical interference at the inception
plastic deformation and is directly related to the plastic
index (ωc = σ/ψ2).

The first and third integrals,fsnc, fsel, represent the con
tributions from the individual noncontacting and elastica
contacting asperities, respectively, and could be directly
tained from the EMD model. However, due to the compl
ity of the EMD formulation, the functionsfsnc, fsel as used
in Eq. (15) are analytical functions obtained from curv
fitting the EMD numerical results, using the methodolo
described inAppendix A. Basically the numerical solutio
of the MD and EMD Eqs.(1)–(13) for a single asperity
as a function of approach (for specific parameters ofR, λ,
�γ , andZ0) are curve-fitted with nonlinear functions u
ing a least-squares method. As described inAppendix A,
these functions have complex forms in order to obtai
fitting error of less than 1%, compared to the numerical
sults. Using this method, force expressions as a functio
approach, e.g.,fsnc(δ), are obtained, so that they can be
rectly applied to the multiasperity GW rough surface mo
(Eq. (15)). Note that curve-fitting the MD model was als
proposed in Refs.[18,26,27]. However, unlike our approach
which directly fits the force–approach relationships, in th
method they separately curve fitted the force and appro
which are functions of the adhesion parameterλ.

According to Stanley et al.[20], for the individual solid
noncontacting and lube-contacting asperities (second
gral in Eq. (15)), the adhesive force is calculated using
truncated sphere on a flat and is equal to the adhesion
point-contact situation, i.e.,

(16)fslc = 2π�γR.

In the absence of molecularly thin lubricant (i.e., dry co
tact), Eq. (15) is still applicable by setting the lubrican
thicknesst = 0 and dropping thefslc term. Details of the
SBL and ISBL models are given inAppendix B.

δA in Eq. (15) is a critical approach parameter, which
due to the “necking” phenomenon observed when a sp
approaches (or departs from) a surface. As discussed in
[9,22], due to this instability and the necking phenomen
the contact will be initiated at a negative approach and
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at a zero approach. In rough surface adhesive modelinδA
is usually ignored; however, it is considered in this pap
where for a specific material pair, the value ofδA is obtained
using Eqs. (23) and (25) from Ref.[9]. TypicalδA values are
several angstroms.

As discussed in Section2 for single-asperity contacts
when the value of the adhesion parameter is large, the ID
model significantly underestimates the adhesion force. S
ilarly, for large adhesion parameter values, when the sin
asperity IDMT model is used to develop a rough surf
model, namely the SBL and ISBL models, then when
contacting asperities make a significant contribution to
hesion, which is the case once contact occurs, the mode
also underestimate the total adhesion force. In this situa
the rough surface EMD model is applicable and will g
more accurate results.

3.3. Hybrid elastic–plastic adhesion model for
rough surfaces

As discussed earlier, the EMD model is only valid f
elastic contacts, while it is expected that in a rough sur
contact, some asperities will also be plastically deform
If the contact is plastic or elastic–plastic, the rough s
face EMD model (Eq.(15)) will underestimate the adhesio
forces. Therefore, it is important to also include the ad
sion contribution from the plastically deformed asperiti
In this work, the rough surface EMD model was combin
with the KE model[16] to obtain an adhesion model (term
the elastic–plastic hybrid adhesion model) that in addi
to being valid for the full range of adhesion parameter
also valid for elastic–plastic and fully plastic conditions. T
total adhesion forceFs is then the statistical sum from th
contribution of all four types of asperities and is given by

Fs = Anη

{ d−t−δA∫
−∞

fsncφ(u)du +
d−δA∫

d−t−δA

fslcφ(u)du

+
d+ωc∫

d−δA

fselφ(u)du +
d+6ωc∫

d+ωc

fselpl1φ(u)du

(17)+
d+110ωc∫
d+6ωc

fselpl2φ(u)du

}
.

The last two terms in Eq.(17) represent the contributio
from the elastic–plastic deformed asperities and the i
grandsfselpl1 andfselpl2 are given by[16]

(18)fselpl1= 1.58πR�γ

(
u − d

ωc

)0.356(
Z0

ωc

)−0.321

,

(19)fselpl2= 2.38πR�γ

(
u − d

ωc

)0.093(
Z0

ωc

)−0.332

.

Further details of the KE model are given inAppendix B.
4. Simulation results

To demonstrate the applicability of the rough surfa
elastic EMD model, simulations were initially run usin
case III parameters (Table 2), which represent elastic conta
conditions (plasticity indexψ = 0.39) and a large adhesio
parameter value ofλ = 2.49. Under these conditions, th
elastic EMD model given by Eq.(15) is valid (elastic con-
tacts only), whereas the SBL and ISBL models will und
estimate the adhesion force sinceλ is large. The simulation
results using the EMD, SBL, and ISBL models are show
Fig. 4and it is clearly seen that the elastic EMD model p
dicts higher adhesion, which verifies the underestimatio
the SBL and ISBL models. Note also that the prediction
the SBL and ISBL models are very similar since the con
is purely elastic.

Simulations were next performed using the proposed
brid adhesion model and all the rough surface simula
parameters listed inTable 2. As discussed in Section2, the
three cases listed inTable 2cover a large range of the adh
sion parameterλ. Furthermore, they also represent elas
elastic–plastic, and plastic contact conditions, as chara
ized by the plasticity index values.

In the simulations, the ISBL rough surface adhes
model is compared with the proposed elastic EMD rou
surface model and the more general elastic–plastic hy
model, as shown inFigs. 5a–5cfor cases I–III, respectively
Before contact, at mean normal separationsh larger than 3σ
for cases I and II and larger than 5σ for case III, the adhe
sion estimates are similar for all models, since all models
based on the Lennard–Jones potential. After contact (w
the onset of contact occurs at 3σ , or ath∗ = 3 due to the sta
tistical nature of the roughness), adhesion increases ra
with decreasing mean normal separation and the three m
els predict different adhesion as the contacting asper
significantly contribute to adhesion.

Referring toFig. 5a, whenλ is small, the proposed hy
brid rough surface model gives results very close to the IS

Fig. 4. Rough surface adhesive contact—comparison between elastic
SBL, and ISBL models. Case III, predominantly elastic contact with h
adhesion parameter value.
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Fig. 5. Rough surface adhesive contact—comparison between elastic
ISBL, and hybrid elastic–plastic EMD models: (a) case I; (b) case
(c) case III.

model, which is based on the IDMT model. This is in agr
ment with the findings of single-asperity contact modeli
in which case whenλ is small (in the range of the IDMT
model), the EMD model predicts adhesion similar to t
in the IDMT model. However, whenλ is well above the
IDMT range, the IDMT model underestimates adhesion
both single-asperity contacts (discussed inFig. 2), as well as
Fig. 6. Rough surface adhesive contact—adhesive contributions from
ferent asperity groups using the hybrid elastic–plastic EMD model, cas

for the case of rough surface contact, as shown inFigs. 5b
and 5c.

Also shown inFigs. 5a–5cis the comparison between th
elastic EMD model and the proposed elastic–plastic hy
model. As expected, for elastic contact conditions, as is
case inFig. 5c, the adhesive force estimates using the ela
EMD model are identical to the estimates of the propo
elastic–plastic model (the two models are indistinguisha
in the figure). However, for elastic–plastic contact conditio
such as the case depicted inFig. 5a, the EMD elastic mode
significantly underestimates the adhesion force, espec
with significant asperity contact. Notice that case II, wh
involves some plastic deformation (ψ = 0.84), both elastic
and elastic–plastic hybrid models give similar results.

Fig. 6 shows the individual adhesion contributions fro
the different asperity groups as represented by the diffe
integrals in the elastic–plastic hybrid model, Eq.(17) (case
II in Table 2). As shown in the inset ofFig. 6, before contac
(i.e., h∗ > 3), the contribution from the noncontacting a
perities dominates the adhesion behavior, as expected.
contact is initiated (h∗ < 3), the elastic contacting asperiti
become dominant. The lube-contacting asperities have
second highest significant contribution under contact co
tions. The contribution of the elastic–plastic asperities
comes important only with very heavy contacts (h∗ < 2).

The above discussion is in terms of adhesive forc
which provide physical insight to the rough surface ad
sive problem. However, in practical applications, the ex
nal force is usually readily measured and thus it is practic
more relevant to discuss adhesive problems in terms o
external force. This issue, along with the instability iss
associated with in-contact and out-of-contact transition
discussed in Section5.

5. Instabilities for adhesive rough contacting surfaces

Even though instabilities associated with adhesive sp
ical (single asperity) contacts have been investigated in
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literature, e.g.,[9,22], the literature on the instability of ad
hesive rough surfaces is scarce. Recent technologica
vances in magnetic storage HDIs necessitated the rec
ing slider being in extremely close proximity to the rotati
magnetic disk, on the order of sub-5-nm spacing. Under s
low-spacing conditions it has been experimentally obser
that adhesive instabilities occur, causing the HDI to beco
unstable. Furthermore, it has been observed that the pre
of adhesion at the HDI causes a hysteresis phenome
where the magnitude of the interfacial forces is different d
ing touchdown (approach) and takeoff (departure) proce
[23]. These instabilities have been investigated from
system dynamics point of view, e.g., numerically using
advanced air-bearing simulator (no roughness effects)[24].
However, none of the literature specifically investigated
hesive instability in terms of the roughness effects.

A major difficulty in investigating adhesive instability i
rough surfaces is the difficulty in defining the onset of c
tact in contacting rough surfaces. Recall that in the cas
single spherical contacts or the contact of infinitely smo
surfaces, contact was defined as taking place when the
continuum surfaces were apart by a distance equal toZ0
(equilibrium spacing). A similar definition does not exist f
rough surfaces; the definition of the onset of contact need
be done in a statistical sense, as the asperity heights ar
constant but follow a certain distribution. Next, the instab
ity for adhesive rough surfaces contact is discussed base
external force behavior.

Before the related rough surface instabilities are
cussed, the calculation of the external force needs to be
dressed. In previous sections, the calculation of the adhe
force (Fs) has been presented. Similarly, one can calcu
the contact forceP , and then the external forceF can be ob-
tained asF = P − Fs. Similar to the adhesion calculatio
the contacting asperities are also divided into two group
order to calculate the contact force. One is for the ela
cally deforming asperities and the other for both elastica
plastically and fully plastically deforming asperities. For t
elastic asperities, based on the MD model[7], the contact
force is given by

(20)Pel =
d+ωc∫
d

fselφ(u)du +
d+ωc∫
d

ffφ(u)du,

whereff is a curve-fitted analytical equation for the ext
nal force based on the MD model (seeAppendix A). For
elastic–plastic and fully plastic asperities, the contact fo
is obtained by[16]

Pelpl = 2

3
πηRkωcAnH

{
1.03

d+6ωc∫
d+ωc

I1.425

(21)+ 1.4

d+110ωc∫
d+6ωc

I1.263+ 3

k

∞∫
d+110ωc

I1

}
,

-
-

e
,

t

n

-

where

(22)I b =
(

u − d

ωc

)b

φ(u)du.

Thus, from Eqs.(17) and (20)–(22), the total external force
F , is given by

(23)F = Pel + Pelpl − Fs.

As shown inFig. 7a, for different adhesion and roug
ness levels, the magnitude of the external forces given
Eq. (23) varies significantly, even though they all exhib
similar behavior (case II is also shown in the inset, w
case I having similar behavior). For the intermediate cas
(σ = 1.619 nm and�γ = 0.09 N/m), the pull-off force
(defined as the minimum external force) is only 0.6 m
whereas for the smoother case III (σ = 0.6541 nm and�γ =
0.3 N/m), the pull-off force is much higher, 93.5 mN (for th
roughest case I, the pull-off force is insignificantly sma
2.13 µN). For case III, the line ofh = 2 nm (h∗ = 3.06)
shows the point where the external force has the lar
slope, which corresponds to the peak value of the stiffn

Fig. 7. Rough surface adhesive contact—roughness and adhesion
effects (case I:σ = 3.4 nm, �γ = 0.01 N/m; case II:σ = 1.619 nm,
�γ = 0.09 N/m; case III:σ = 0.6541 nm,�γ = 0.30 N/m.) (a) Ampli-
tude of external force; (b) stiffness of external force.
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as also clearly shown inFig. 7b. With larger adhesion, th
stiffness of the external force has a larger peak value, w
may cause the contact process to become unstable. Exa
ing Figs. 7a and 7b, the highest stiffness for the smoothe
case ofσ = 0.6541 nm and�γ = 0.3 N/m occurs at a sur
face separation of 2 nm (≈ 3.06σ ). This means that when th
two surfaces come into contact at this specific point, the
hesion increases sharply, and thus the external force sh
decreases. Consequently, if there is no other force in the
tem that is sufficiently large to counterbalance this nega
external force, the surfaces will approach each other
fast (“snap” to contact) and the contact process will beco
unstable. For the rougher cases I and II, the correspon
dimensionless separations where the maximum stiffnes
cur are further away from the onset of contact condition
h∗ = 5.72 and 3.19, respectively. Furthermore, as their c
responding pull-off forces are very small, the possibility
unstable behavior is also very small.

As seen inFig. 7, the pull-off force and the adhesio
instability are greatly affected by the surface roughnesσ

and the surface energy�γ . The effect of surface rough
ness on the pull-off force has also been discussed by Sta
et al. [20]. They investigated rougher surfaces compare
the present study withσ = 11.4–286 nm, and they reporte
that smoother surfaces result in higher adhesion, and
pull-off force position also occurs at a smaller dimensionl
surface separation, which is in agreement with this work

To specifically investigate the effect of surface energy
the external force and associated instability, we conside
smoothest case III roughness parameters (extremely sm
interface), which represent current HDI technology. In th
simulations, depicted inFig. 8, the surface energy value
range from 0.04 to 0.14 N/m, which represent realisti
HDI cases, with 0.04 N/m representing PFPE lubrica
and 0.14 N/m high humidity levels. Unlike the order-o
magnitude difference in the pull–off-forces with roughne
variations discussed inFig. 7, the effect of the surface en
ergy (within the practical HDI range) is smaller, with pull-o
force values of 6.3, 19.9, and 35.8 mN for�γ = 0.04, 0.09,

Fig. 8. Rough surface adhesive contact—effect of surface energy o
external force, case III, supersmooth HDI.
-

y
-

-

h

and 0.14 N/m, respectively. Also, the corresponding loc
tions of the maximum pull-off force stiffness are simil
and areh∗ = 2.82, 2.75, and 2.80. In typical HDI appl
cations, under steady-state conditions, the external ap
force (or preload) is typically counterbalanced by the gen
ated air-bearing lift force and the magnitude of these for
is around 10 mN. Thus, when the pull-off force and its rate
change (stiffness) are significantly large (comparable to
preload), the system will easily become unstable unde
external disturbance. As seen inFig. 8, for the supersmooth
HDI (case III), the adhesion instability is important, esp
cially at high humidity levels (�γ = 0.14 N/m).

6. Summary

Despite significant advances in modeling and underst
ing single-asperity adhesion and associated instabilities
derstanding of such phenomena for rough surfaces in co
has not advanced as much. As miniature systems suc
magnetic storage devices and MEMS continue to adva
the need to understand realistic adhesive contact phe
ena (including roughness effects) is vital to the succes
design and reliability of these devices. Based on one of
classical single-asperity adhesion models (the IDMT mo
which is valid for both noncontact and contact condition
several rough surface adhesion models have been prop
using the GW statistical roughness model. These include
CEB/KE (dry contact) and SBL/ISBL (molecularly thin lu
bricated contact) elastic–plastic models. Also, based on
elastic MD single-asperity model, researchers have prop
rough surface adhesion models, which are valid for ela
contacts. The existing adhesion models are either only v
for elastic contact (MD-based) or only valid for applicatio
with small adhesion parameter values (IDMT-based).

In this paper, an elastic MD rough-surface model and
elastic–plastic hybrid model were proposed that are valid
a wide range of adhesion parameter values. Simulation
sults using the proposed models were compared to the I
model and showed similar results for low adhesion pa
meter values. Furthermore, the simpler elastic model g
results similar to those for the elastic–plastic model when
contact, as characterized by the plasticity index, is predo
nantly elastic. Last, the instability during the rough-surfa
contact process was discussed based on the external
and its rate of change with mean normal separation. It
found that the peak value of the stiffness (directly obtai
from the external force) is related to the instability of t
contacting process.
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Fig. 9. Nonlinear least-squares fitting of forces for sphere-on-flat as a
tion of approach (case II).

Appendix A. Curve-fitted simplified solutions of EMD
single-asperity model

In order to directly apply the single-asperity MD a
EMD models to rough surfaces in contact, analytical
pressions for the adhesive and external forces as a fun
of the approach and surface/material parameters are ne
However, the complexity of the MD/EMD models makes
impossible to obtain such analytical solutions. To overco
this problem, a nonlinear least-squares fitting methodo
was adopted in this work.

For a specific material pair, the parametersE, R, �γ , and
Z0 are known and one can readily obtain the numerical
lution to the MD/EMD models using Eqs.(1)–(13). From
the solution, all the relevant forces, namely the noncont
ing adhesion, contacting adhesion, and contacting exte
force, can be obtained as a function of normal appro
Then, using a nonlinear square fit method, analytical fu
tions were obtained for these forces as a function of
proach. The numerical results of the noncontacting adhe
fsnc, contacting adhesion,fsel, and external force,ff , are
represented very well by the functions

(A.1a)fsnc= fsonc+ 2Anc

π

Bnc

4(δ − δonc)2 + B2
nc

,

(A.1b)fsel= fsoc+ (Acδ + Bc)
Pc,

(A.1c)ff = ffo + Afδ
mf + Bfδ

nf ,

wherefsonc, Anc, Bnc, δonc, fsoc, Ac, Bc, Pc, ffo, Af , Bf ,
mf , andnf are fitting coefficients. In all cases, the fitting e
ror was less than 1%. Typical curve-fitted functions for
adhesion and external forces for the roughness case I
shown inFig. 9and the corresponding fitting coefficients f
this case along with cases I and III are listed inTable 3.
d.

l

,

Table 3
Fitting coefficients to MD/EMD approximations

Case I Case II Case III

fsonc 2.300× 10−4 1.400× 10−2 1.818× 10−2

Anc 8.015× 10−2 7.083× 10−1 9.649× 100

Bnc 3.153× 10−1 2.202× 10−1 2.563× 10−1

δonc 9.125× 10−2 −1.324× 10−1 −6.358× 10−2

fsoc 6.662× 10−2 1.648× 100 1.962× 101

Ac 1.338× 10−1 4.514× 100 2.644× 101

Bc 9.780× 10−3 1.170× 100 3.181× 100

Pc 6.676× 10−1 8.100× 10−1 7.992× 10−1

ffo −7.041× 10−2 −1.193× 100 −7.579× 100

Af 2.323× 100 3.341× 100 4.796× 100

Bf 2.323× 100 3.341× 100 4.796× 100

mf 1.498× 100 1.489× 100 1.468× 100

nf 1.498× 100 1.489× 100 1.476× 100

Appendix B. SBL [20] and ISBL [21] models

Stanley et al.[20] developed an adhesion model that
cludes the presence of a molecularly thin lubricant laye
a rough interface. The model is based on the IDMT sin
asperity model and the total adhesion force is given by

Fs = 8

3
πηRAn�γZ2

0

{ d−t∫
−∞

[
1

(Z0 − u + d − t)2

− 0.25Z6
0

(Z0 − u + d − t)8

]
φ(u)du + 3

4Z2
0

d∫
d−t

φ(u) du

+ 2

R

∞∫
d

∞∫
0

[
1

(u − d − t)3
− Z6

0

(u − d − t)9

]

(B.1)× sφ(u)duds

}
,

where the three integrals represent the noncontacting,
only contacting, and elastic/plastic contacting asperities
spectively. Kogut and Etsion[16] developed an adhesio
model for rough surfaces under dry contact conditions. S
sequently, Lee[21] combined the SBL model with the K
model and obtained a more accurate rough-surface adh
model that specifically includes the presence of a mole
larly thin lubricant and improved elastic/plastic behavior
the asperities. The model, termed the improved SBL (IS
model, is given by

Fs = 2πηRAn�γ

{ d−t∫
−∞

Jnc +
d∫

d−t

Jlc + 0.98

d+ω∫
d

J 0.298
−0.29

(B.2)+ 0.79

d+6ω∫
d+ω

J 0.356
−0.321+ 1.19

d+110ω∫
d+6ω

J 0.093
−0.332

}
,

where the first, second and third integrals correspon
noncontacting, lube-only contacting and elastic contac
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asperities. The fourth and fifth integrals correspond to p
tically deformed asperities and the integrands are given

(B.3)

Jnc = 4

3

[(
ε

ε − u + d − t

)2

− 0.25

(
ε

ε − u + d − t

)8
]
φ(u)du,

(B.4)Jlc = φ(u)du,

(B.5)J b
c =

(
u − d

ωc

)b(
ε

ωc

)c

φ(u)du.
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