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The presence of energy hubs in the future vision of energy networks creates an opportunity for electrical
engineers to move toward more efficient energy systems. At the same time, it is envisioned that smart grid
can cover the natural gas network in the near future. This paper modifies the classic Energy Hub model to
present an upgraded model in the smart environment entitling ‘‘Smart Energy Hub’’. Supporting real time,
two-way communication between utility companies and smart energy hubs, and allowing intelligent
infrastructures at both ends to manage power consumption necessitates large-scale real-time computing
capabilities to handle the communication and the storage of huge transferable data. To manage
communications to large numbers of endpoints in a secure, scalable and highly-available environment,
in this paper we provide a cloud computing framework for a group of smart energy hubs. Then, we use
game theory to model the demand side management among the smart energy hubs. Simulation results
confirm that at the Nash equilibrium, peak to average ratio of the total electricity demand reduces
significantly and at the same time the hubs will pay less considerably for their energy bill.
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Introduction The second category comprises different methods of controlling
Recently, energy consumptions growth has led researchers to
suggest integrated view of energy systems with multiple energy
carriers, instead of focusing on a single one. By coupling different
energy infrastructures, such as natural gas and electricity
networks, the integrated system aims at attaining an optimal
solution instead of two sub-optimal ones [1].

The Energy Hub (EH) model and concept was proposed by Geidl
for the first time [1]. In the simple definition, an EH is a multi-
generation system, where various forms of energy carriers are
converted, stored and distributed using a converter system such
as combined heating and power (CHP) to meet the energy demands
[1]. The studies related to the applications of EH can be categorized
in two different groups. The first group dealt with financial aspects
of deploying EH in residential, commercial and industrial sectors
[2–11]. In [2], authors calculated required financial parameters to
analyze feasibility of an energy hub plant. Determining the optimal
size of elements in an energy hub consisting of CHP, auxiliary
boiler, absorption chiller, battery, and heating storage have been
investigated in [3]. In [4], Kienzle et al. proposed a financial valua-
tion method for the energy hubs with conversion, storage, and
demand side management (DSM) capabilities.
and optimizing operation of an energy hub [5–10]. In [5], the
optimal operation of an energy hub is investigated by applying
non-linear programming. In [6], the optimization model of a
residential energy hub has been presented to incorporate into
automated decision making technologies. Arnold in [7] applies a
model of predictive system control approach for an energy hub
with respect to the loads which are completely probabilistic.
Additionally, Parisio et al [8] propose a control mechanism for an
energy hub based on robust optimization (RO) technique which
is less sensitive to converter efficiencies. In [9], a distributed con-
trol method has been applied to a system consisting of several
interconnected hubs to shape the demands by incentivizing
customers. Finally, in [10], the storage level controlling of an
energy hub has been developed based on responding to the energy
prices. In comparison with the existing studies, we modify EH in
the smart environment, and we name it a Smart Energy Hub
(S.E. Hub). We also consider interaction between the S.E. Hubs in
the DSM programs.

By increasing the penetration level of CHP and micro-CHP in
several countries [11], and also realizing the smart grid (SG) in
electrical networks, it is not farfetched to have a smart natural
gas infrastructure in the near future. Therefore, the development
of new methods for demand side management (DSM) in natural
gas and electricity networks simultaneously seems imperative.
Techniques used for DSM can be categorized in two different
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Fig. 1. The general model of an Energy Hub.
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groups: voluntary load management programs [12–14], and direct
load control [15]. Among these methods smart pricing is one of the
efficient tools that can encourage users to consume electricity
more wisely [16]. Recent increases in energy price make consum-
ers to be more active in DSM programs, and to shift the energy
consumption to off-peak hours for reducing their energy bills
[17]. Although most of the existing studies were successful to
achieve optimal solutions for the DSM, they neglect the fact that
considerable portion of the consumers, especially in the industrial
sectors, do not have shiftable loads in reality. This paper deals with
this issue by introducing S.E. Hubs which enables consumers with
must-run loads, i.e. with strict energy consumption scheduling
constraints, to be active in DSM programs.

So far, most of the proposed demand response systems have
been based on master-slave architecture [12–17]. Utility’s energy
management system (EMS) interacts with customers’ EMS individ-
ually. Basically, master-slave architecture is host-address centric
communication (the senders and the receivers need to know their
addresses (e.g., IP address) for communication) and is good for a
small scale network due to its simplicity. However, from system
protection perspective, master-slave architecture for demand
response has several potential drawbacks [18–20]. It is possible
that home’s smart meters and EMS can be compromised by cyber
attackers. From scalability perspective, the maximum numbers of
clients are limited by the server’s capacity. Additionally, when
demand response operates as an iterative process the communica-
tion latency between a master and slaves can be high. Hence, if the
utility wants to deploy a large-scale demand response program,
the utility’s EMS server must be able to resolve the potential
problems listed so far.

Motivated by mentioned drawbacks, in this paper we propose a
model for utilizing the cloud computing technology, a next-
generation computing paradigm, in the smart grid domain. Cloud
Computing refers to manipulating, configuring, and accessing the
applications online [21]. It offers online data storage, infrastructure
and application [22]. Computing, software and data services can be
used by end users without knowledge of the users’ IP address or
configuration of the systems. Cloud computing is probably the
simplest and best fitted way for smart grids due to its scalable
and flexible characteristics, and its capability to manage large
amounts of data [23]. The utility company and customers interact
through the cloud, and the functions for realizing demand response
are performed in a cloud rather than in the utility’s EMS. From util-
ity’s perspective, cloud appears to be an information system that
takes an input from utility (e.g., the amount of power deficit),
processes the information, and gives an output to utility (e.g.,
how much to reduce loads per customers and at which incentive
price) [24–27].

In this paper we present a cloud-base architecture that embeds
SG in to a cloud environment and we explore how CC can play an
effective role in DSM game among a group of S.E. Hubs.

The rest of this paper is organized as follows. The S.E. Hub
model is introduced and in Section ‘Smart Energy Hub; definition
and modeling’. In Section ‘DSM in a group of S.E. Hub’, DSM in a
group of S.E. Hubs is modeled with three configurations and infor-
mation management methods. In Section ‘DSM game optimization
problem’, DSM game among S.E. Hubs based on CC configuration is
formulated and solved by using distributed projected gradient
algorithm. Simulation results and discussions are given in Section
‘Simulation and discussion’, the paper is concluded in Section
‘Conclusion’.

Smart Energy Hub; definition and modeling

A general model of an energy hub is presented in Fig. 1 [1].
Power conversion through the hub is modeled as follows.
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where Pin
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b;i; . . . ; Pin

x;i are the input energy carriers’ power of ith S.E.
Hub and Pout

a;i ; P
out
b;i ; . . . ; Pout

x;i are the output energy carriers’ powers,
and Cab denotes the coupling factor between input energy carrier
a and output energy carrier b energy flow.

A simple energy hub with two inputs (electricity and natural
gas) and two outputs (electrical and heating loads) is shown in
Fig. 2.

The matrix equation for the above-mentioned energy hub is
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where ki is the dispatch factor that determines the amount of
natural gas dividing between the auxiliary boiler and the CHP in
ith S.E. Hub. Parameters gtrans.,i, gboiler,i denote the efficiencies of
the transformer and the auxiliary boiler, respectively. gh

chp;i;g
e
chp;i

are the heating and the electrical efficiency of the CHP.
Eqs. (3) and (4) introduce new variables Pin

chp;i and Pin
Boiler;i to

simplify (2), where Pin
CHP;i and Pin

Boiler;i are amount of natural gas that
inputs CHP and boiler.
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By using (3) and (4), Eq. (2) can be rewritten as follows.
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We call an energy hub a S.E. Hub, if the EH locates in the SG and
equipped with smart meters for both electricity and natural gas
networks with appropriate communication infrastructures (wire
or wireless network).

The overall view of a simple S.E. Hub has been illustrated in
Fig. 3. All exchanged messages between the smart meters and util-
ities are communicated through the LAN by using appropriate
communication protocols such as ZigBee, Z-Wave and KNX [28].

DSM in a group of S.E. Hub

By increasing the coverage of SG in the real world, DSM pro-
grams and their implementation turn into the hot topic for electri-
cal engineers. Researchers deal with this issue by integrating the
implementation of different components such as Home Energy
Management System (HEMS) [29], Building Energy Management
System (BEMS) [30] and Energy consumption scheduler (ECS)



Fig. 2. The structure of a simple energy hub.

Fig. 3. The overall view of a simple S.E. Hub.

Fig. 4. Applying DSM program in the system with only must run loads.
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[31]. These methods can work properly in the pilot case with a few
customers; however, in a system with a number of users these
implementation face several problems. In this section, we provide
an application of cloud computing for DSM among a group of S.E.
Hubs. First, we address crucial problems in existing approaches
for DSM without cloud. Then, we briefly discuss how these
problems can be tackled by implementation of cloud computing.
Finally, we conclude this section by proposing a cloud computing
architecture.

In smart grids, users are incentivized to be active in DSM
programs. There are two general actions by which a customer
response to the utility companies in a regular system with single
energy carrier. First, customers can reduce their electricity usage
during critical peak periods when prices are high without changing
their consumption pattern during other periods. This option
involves a temporary loss of comfort [32]. Secondly, customers
may respond to high electricity prices by shifting some of their
peak demand operations to off-peak periods, as an example, they
shift some household activities (e.g., dishwashers, pool pumps) to
off-peak periods. However, this will not be applicable for all users,
e.g., industrial loads. In this system, if a customer has only must
run loads with strict energy consumption scheduling constraints,
then he could not participate in the DSM program. However, if that
customer deploys S.E. Hub then he could benefit from third type of
DSM techniques that we are introducing in this section. In fact,
coupling between different energy carriers enables customers to
be active in DSM programs not only by shifting their energy con-
sumption, but also by changing the source of their consumed
energy. It enables customers to have two levels of DSM simulta-
neously, in both input (level I) and output ports (level II). This novel
approach is not applicable in traditional smart grids with decou-
pled energy carrier infrastructures. However, in S.E. Hubs, custom-
ers can be active in the DSM by converting natural gas to electricity
using CHPs in peak load periods instead of purchasing electricity
from the electricity utility company directly. As a result, from the
electricity utility’s point of view, the customers do not demand
electricity in peak hours; nevertheless, from the customers view
point, their electricity consumption is not altered; only the source
of supplying the electricity has been changed.
As Fig. 4 shows, the two levels of DSM are applicable here by
changing the amount of the input natural gas and electricity.
Therefore, as a general result, deploying S.E. Hub can activate the
customers, who do not have any roles in the DSM programs.

Now consider customers who have both must run and shiftable
loads. In this case, level I and level II DSM are applicable. It means
customers are able to shift their loads, and they can change their
input energy carriers at the same time.

By the above considerations, in the following subsection we
want to model a group of S.E. Hubs in three different configurations
and investigate the DSM program in each one.

DSM based on interaction between UC and each S.E. Hub

In several DSM programs that have been deployed recently [15],
the main considered factor was the interaction between UC and
each customer. For instance, in real time pricing mechanisms,
every customer responds to the time variant prices by shifting
some shiftable loads from peak hours to the off-peak periods. As
Fig. 5 demonstrates, it means each customer communicate its load
profile with the UC individually.

DSM by enabling interaction between the S.E. Hubs and the UC

The proposed configuration in Fig. 5 has some disadvantages
and may not always reach to the best solution of the energy con-
sumption problem. A more efficient DSM program should have
the objective to optimize and shape the aggregated load too [31].
For instance, peak to average ratio (PAR) only depends on aggre-
gated load; therefore, to have more efficient DSM, the interaction
among all customers should be considered. Here, natural gas and
electricity utilities are shared by several S.E. Hubs, each of which
is equipped with an automatic energy consumption scheduler
(ECS) [31]. The ECS functionality is deployed inside the smart
meters that are all connected to the power lines coming from the
energy sources to accurately monitor the energy consumption.
Each smart meter is also connected to the others smart meters
through a local area network (LAN) as depicted in Fig. 6. The smart
meters with ECS functions enable customers to figure out the best
consumption strategies.

Problems with existing approaches without cloud

In the conventional smart grid architecture (without cloud) sev-
eral problems are reported as follow:

� The master-slave architecture causes extensive exposure to
cyber-attacks such as the distributed denial of service (DDoS)
attack from the compromised nodes in the demand response
model. In master-slave architecture, the utility provider acts
as a master and the customers act as slaves.
� One of the main concerns in the existing approaches is single

failure in master-slave architecture.
� Due to the limited server capacity the maximum number of

customers who can be served is limited.



Fig. 5. Configuration A.

Fig. 6. Configuration B.
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� Without cloud, demand response is performed in a utility’s
energy management systems (EMS). Because of limited mem-
ory and storage capacity, increasing the number of customers
will be a crucial issue for energy management.
� In the conventional approaches (without cloud), using sensor

nodes and intelligent devices, an early warning system can be
integrated with the grid. However, due to limited energy and
bandwidth resources, real-time implementation is quite
difficult.

To address these issues cloud computing applications are one of
the best methods in order to have a reliable, robust and efficient
smart grid.

What is the cloud computing?

Cloud computing is an emerging computation model that pro-
vides on-demand facilities, and shared resources over the Internet.
Cloud computing, based on large storage and computational
devices, acts as a utility provider [33,34]. Cloud computing pro-
vides three distinct types of services — Platform as a Service (PaaS),
Software as a Service (SaaS), and Infrastructure as a Service (IaaS)
[35].

� Infrastructure as a Service (IaaS): IaaS is the infrastructure
service model that includes storage and virtual machines. Load
balancing in cloud computing is performed using IaaS. Users can
install access to required software through virtual machines.
These virtual devices provide on-demand facility to the custom-
ers. The IaaS service offers hardware platform to the users’
on-demand basis. Therefore, users can access the online hard-
ware platform as on-demand basis to fulfil their requirements.
Additionally, the IaaS service also supports virtualization of
resources, on which a guest user can run his/her own operating
system [36].
� Platform as a Service (PaaS): PaaS is responsible for the develop-

ment and delivery of programming models to IaaS. Users can
access such programming models through cloud and execute
their programs [36]. PaaS is responsible for the run-time execu-
tion of users’ given task. Therefore, the PaaS service completes
the requirements of building and delivering of Web-applications
without downloading and installing required software as well.
� Software as a Service (SaaS): SaaS supports all the applications in

the cloud environment. This feature of cloud computing is
accessible through Web-browsers. The SaaS service provides
the modeling of software deployment where users can run their
applications without installing it on his/her own computer.
However, this service is limited to the users, i.e., only existing
set of services is available to the customers.

The advantages of using a cloud computing model are as
follows:

� Elastic Nature: Cloud computing supports elastic nature of stor-
age and memory devices. It can expand and reduce itself
according to the demand from the users, as needed.
� Shared Architecture: Cloud computing also supports shared

architecture. Information can be shared among the users after
meeting the privacy issues, and thereby, reducing service costs
[37].
� Metering architecture: Cloud computing offers metering

infrastructure to customers [38]. In the metering system, cost
optimization mechanisms are offered to users, enabling them
to provision and pay for their consumed resources only.
� Internet services: Cloud computing can be implemented in the

existing Internet service system. Thus, it supports the existing
network infrastructure.

Now, by considering above benefits, we propose a new architec-
ture of a group of S.E. Hub in the CC frame work in the next
subsection.
DSM in CC framework

As we discussed previously, monitoring, metering, measure-
ment, and control devices in SG generate extensive data. These
overwhelming data need costly and scalable storage and com-
puting infrastructure for data processing. In a previous configu-
ration (Fig. 6) it would cause too much time spending or even
beyond S.E. Hubs’ capacity to implement such communication,
storage, and computation systems. To overcome this impedi-
ment, we apply the CC configuration as shown in Fig. 7. By using
cloud infrastructure, each S.E. Hub would access to its applica-
tions anytime, from anywhere, through a connected device to
the network.
DSM game optimization problem

As game theory is an effective approach in dealing with compli-
cated interaction, here we apply this theory to solve the DSM
problem.

Game theory is the study of conflicts and cooperation among
intelligent rational decision-makers [31], which has been used in
smart grid [31,39–43]. In this paper, the DSM problem with multi-
ple S.E. Hubs in the CC frame work is formulated as a non-cooper-
ative game model. In the following, some preliminary knowledge
about non-cooperative game will be given.



Fig. 7. Configuration C.
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Preliminaries of non-cooperative game

This type of game consists of three components [43].

� Player set N = {1, 2, . . ., i, . . ., n}: where i is the identification of a
player.
� Strategy space S: player i in a game selects strategy si from its

strategy set Si. S ¼ �n
i Si represents strategy space of the game.

Denote s = (si, s�i) as the strategy vector, where si is the player
i ’s strategy, and s�i represents all the other players’ strategies.
� Payoff: Player i ’s payoff is determined by the strategy vector s.

Nash equilibrium is the most important concept in game
theory, which is a static stable strategy vector that no player has
any incentive to unilaterally change its strategy from it. The defini-
tion of Nash equilibrium can be described as follows [43].

Definition 1. An strategy vector s� ¼ ðs�i ; s��iÞ is a Nash equilibrium
if and only if "i e N and "si e Si,

uðs�ÞP uðsi; s��iÞ

In particular, the existence of Nash equilibrium can be obtained
according to the following lemma.
Lemma 1. If the following conditions are satisfied, there exist
Nash equilibriums in the game.

� The player set is finite.
� The strategy sets are closed, bounded, and convex.
� The utility functions are continuous and quasi-concave in the

strategy space.

Group of S.E. Hubs optimization problem

In general, each S.E. Hub behaves in a selfish and rational way,
and aims to maximize its own payoff. Therefore, the competition
among them can be modeled as a non-cooperative game.

The total energy bill cost of ith S.E. Hub in one hour is calculated
as follows.

Ji ¼ Ja;iðPin
a;iÞ þ Jb;iðPin

b;iÞ þ . . .þ Jx;iðPin
x;iÞ

¼ Pin
a;i � Pra þ Pin

b;i � Prb þ . . .þ Pin
x;i � Prx

where variable Ji is the total energy bill of the S.E. Hub in an hour
and Ja,i, Jb,i, . . ., Jx,i denote the cost of each energy carrier separately.
Variables Pra, Prb, . . ., Prx are the tariff prices for the energy carriers
in ($/kWh).
Energy carrier pricing mechanism

The energy carriers’ prices should depend on the total energy
consumption of the S.E. Hubs. Therefore we can consider the
energy carriers’ prices as follow:

Pre ¼ a
X

k

Pin
e;k

� �" #a

; a ¼ a0=Ga
e ð6Þ
Prg ¼ b
X

k

Pin
g;k

� �" #b

; b ¼ b0=Gb
g ð7Þ

The effect of nonlinear relationship between load and price is
modeled by nonlinear Eqs. (6) and (7) [44,45]. Parameters a0 and
b0 are the base tariff prices in ($/kWh) and the available electricity
and natural gas capacity are denoted by Ge and Gg as constant
parameters.
DSM game modeling

Suppose all S.E. Hubs are price anticipator [44], which means
they consider the effect of their actions on the price, and are know
that the electricity and gas prices are calculated according to (6)
and (7). Each S.E. Hub wishes to locally and selfishly choose its
action in such way that minimizes its total bill cost as formulated
in (6). The strategy chosen by each S.E. Hub affects the perfor-
mance of others through affecting the electricity and natural gas
price value. Consequently, game theory provides a natural frame-
work for analyzing and developing proper DSM mechanisms for
scheduling the consumption [39–43]. In a distributed DSM setting,
each S.E. Hub attempts to minimize its own energy cost in
response to the aggregated information on the actions of the other
users. This makes the use of non-cooperative game theory an
appropriate method to address the problem, with the relevant
solution concept which is the Nash equilibrium (NE) [46]. In other
words, if all network users selfishly and locally pick their
own strategies; there will be a stable state at which no user can
unilaterally improve its payoff (NE).

In the DSM game, for ith S.E. Hub, the best strategy is the
solution of the following optimization problem when other users
are assumed to be unchanged:

min Ji ¼ Je;iðP
in
e;iÞ þ Jg;iðP

in
g;iÞ ¼ Pin

e;i � Pre þ Pin
g;i � Prg

s:t Pout
e;i ¼ gtrans;iP

in
e;i þ ge

CHP;iP
in
CHP;i ¼ Le;i

Pout
h;i ¼ gh

CHP;iP
in
CHP;i þ gboiler;iP

in
Boiler;i P Lh;i

0 6 Pin
CHP;i 6 CapCHP;i

0 6 Pin
Boiler;i 6 CapBoiler;i

ð8Þ

Variables Le,i and Lh,i are the electricity and the heating loads, and
parameters CapCHP,i and CapBoiler,i denote the capacity of CHP and
boiler, respectively.

We can identify the game as follows.

� Players are S.E. Hubs, C = {1, 2, . . ., N}.
� Strategies: each player selects its energy consumption schedule

vector, ~Xi ¼ Pin
CHP;i; P

in
Boiler;i

� �
, to minimize its pay-off:

Pin
CHP;i 2 0;CapCHP;i

i
; Pin

Boiler;i 2
h
0;CapBoiler;i

h i
.

� Payoffs: for every S.E. Hub, minus energy cost, i.e.

payoff ¼ �Jið~Xi;~X�iÞ, where Ji is the sum of electricity and natu-
ral gas costs (6).



Fig. 8. Electricity and heating demands of various users at a sample time slot.

1012 A. Sheikhi et al. / Electrical Power and Energy Systems 64 (2015) 1007–1016
Here, ~X�i ¼ ~X1; . . . ;~Xi�1;~Xiþ1; . . . ;~XN

h i
denotes the vector contain-

ing the energy consumption schedules of all S.E. Hubs other than

ith S.E. Hub.

Existence and uniqueness of NE

Theorem1. The optimization problem for each S.E. Hub is strictly
convex.

The proof of Theorem 1 is given in Appendix A.
If the cost of each S.E. Hub is strictly convex, then the payoff

function becomes strictly concave and the game will be n-person
concave game. As Rosen in [46] proved, the Nash equilibrium of
the above game exists and is unique.

The result of the game is the Nash equilibrium at which CHP
and Boiler inputs vector ~X� satisfies

Ji
~X�i ;~X

�
�i

� �
6 Ji

~Xi;~X��i

� �
ð9Þ

where ~X� ¼ ~X�1;~X�2; . . . ;~X�N
h i

.

If the energy consumption game is at its unique Nash equilib-
rium, then no S.E. Hub will benefit by deviating from ~X�.

All required calculations to determine the Nash equilibrium are
performed in the CC. Each S.E. Hub only communicates its load
profile to the CC hourly. S.E. Hubs should also communicate any
changes in capacities and efficiencies of its transformer (Captrans,i,

gtrans,i), boiler (CapBoiler,i, gboiler,i) and CHP CapCHP;i;gh
CHP;i; ;ge

CHP;i

� �
,

to the CC. It is worth mentioning that without using CC, S.E. Hubs
have to share all these information with each other via message
exchange.

Distributed projected algorithm

The above optimization problem suggests a distributed algo-
rithm based on projected gradient method [44] to determine the
Nash equilibrium. The computation is done in the CC and results
will be reported to each S.E. Hub.

At 1th iteration:
Customers reports their required loads Le,i and Lh,i, and any

changes in (Captrans,i, CapCHP,i, CapBoiler,i, gtrans,i, gboiler,i, gh
CHP;i,

ge
CHP;i) to the CC.

At kth iteration:
Customer ith update ~Xk

i ¼ Pin
CHP;i; P

in
Boiler;i

� �k

i2C
according to the

following iterative equations:

~Xkþ1
i ¼ Proj ~Xk

i � l~rk
i

n o
ð10Þ

where Proj(�) is the projection on to feasible region, and l > 0 is a
constant step size. In [47,48], it was shown that for small enough
step size l, this algorithm converges to optimal point. The details
of the method are discussed in Appendix B. Accordingly, we can
write

Pin
CHP;i

kþ1
¼ Proj Pin

CHP;i

k
� l: @Ji

@Pin
CHP;i

( )
ð11Þ

Pin
Boiler;i

kþ1
¼ Proj Pin

Boiler;i

k
� l:

@Ji

@Pin
Boiler;i

( )
ð12Þ

Based on [47,48], the projection to the feasible region is described in
Appendix C.

Simulation and discussion

In this section, numerical examples are provided for verifying
the DSM game. In our benchmark system, we consider there exist
N = 10 S.E. Hubs that are served by one power substation and one
natural gas resource. We assume that each S.E. Hub has only must-
run loads, i.e., with strict energy consumption scheduling con-
strains. All S.E. Hubs have equal daily electrical and heating loads
equal to 200 kWh and 120 kWh, respectively. The electrical and
heating demand in a sample day at 20:00 are shown in Figs. 8
and 9 shows the daily heating and electrical load of 5th S.E. Hub.

For the purpose of study, DSM program in two different config-
urations have been simulated. The first is the system without inter-
action among users (configuration A), and the second is the system
with DSM game in CC framework (configuration C).

By applying the proposed algorithm and recursive equation in
Section ‘DSM game optimization problem’, the DSM game among
S.E. Hubs leads to the following result shown in Fig. 10.

Convergence of energy carriers’ price at the sample time slot is
shown in Fig. 11.

Energy carrier price

We perform the second group of simulations to evaluate the
performance of the proposed method to modify power demand,
energy carrier prices, and energy bill for each S.E. Hub. Firstly, to
have a benchmark to compare our results with, we present a con-
ventional system that supplies its electrical and heating loads
through power grid and boiler, respectively. Note that, DSM cannot
be possible in such system since the loads are must run. The daily
heating and electrical load of fifth S.E. Hub are shown in Fig. 12.

When the DSM game is played (configuration C), all S.E. Hubs
actively participate in this game. It means in the electricity peak
hours, i.e. 18:00–23:00, they decrease the input electricity con-
sumption and supply their loads with natural gas instead. Hence,
the electricity price is reduced up to 43% (at 22:00) in the peak
hours.

S.E. Hub payment

The proposed DSM game leads to less energy bill for each S.E.
Hub. In Fig. 13 total daily bill before and after playing the game
for 5th S.E. Hub is depicted. From Fig. 13 participating in the
DSM game results considerable reduction in the S.E. Hub’s total
energy bill cost. The daily total energy bill cost was 16.6 $ and
has been reduced to 11.8 (i.e. 28.9%) after running the defined
game.

Comparing peak to average ratio

The proposed DSM game leads to less S.E. Hubs payment; it is
also beneficial for the electricity grid by reducing the PAR in the
aggregated load demand. The PAR for energy carrier a is calculated
as follows.



Fig. 9. Daily heating and electrical loads of the fifth S.E. Hub.

Fig. 10. Convergence of CHPs and boilers inputs for 10 S.E. Hubs (sample time slot).

Fig. 11. Energy-carriers prices in a sample time slot.

Fig. 12. Energy prices in a day hours.

Fig. 13. Total daily cost before and after playing the game for the fifth S.E. Hub.
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PAR ¼
max

t¼1;2;...;24
Pin

a ðtÞP
t¼1;2;...;24Pin

a ðtÞ=24
ð13Þ

When the S.E. Hubs do not participate in the DSM game, the PAR is
1.66 and 1.28 for the electricity and natural gas, respectively. At the
same condition, when they are price anticipating and play in the
DSM game, the PAR for electricity grid reduces to 1.45 (i.e., 13% less)
and increases to 1.39 (i.e. 8% more) for natural gas grid, respectively.
Fig. 14 shows the aggregated electricity and natural gas load
demand with and without DSM game.
Communication requirement for the proposed configuration

As it was discussed before, sharing the minimum requisite data
of the S.E. Hub is one of the significant features of using CC. In this
subsection, the exchanged messages size (total bytes) between S.E.
Hubs is considered as another indication to compare the proposed
configuration with a system which has regular interaction among
all the S.E. Hubs. In the proposed configuration, each S.E. Hub is
asked to submit its parameters to the CC every day. Note that, each
parameter occupies 4 bytes memory. In return, the CC determines
the payment and the allocated power of each S.E. Hub by solving
the game according to the cost functions.

In practice, it may be preferable for the S.E. Hubs to communi-
cate only with a trusted CC instead of sharing total load profile
with each other. In a regular system that they have to interact with
others, to determine Nash equilibrium, each S.E. Hub informs the
others whenever it changes its power consumption. The message
is sent every time that one of the S.E. Hubs updates its power
consumption information.

The average size of messages exchanged in one day (24 h)
between various users in the proposed configuration, and the
regular one are presented in Table 1. As illustrated in Table 1, the
regular method requires much more messages size, and processing
time comparing with CC framework.



Fig. 14. Total electricity and natural gas demands before and after DSM game.

Table 1
Comparing exchanged messages’ average size (total bytes) data in the regular and CC
configuration.

Number of S.E. Hubs Exchanged messages’ size (Byte)

Config. B Config. C

2 9600 768
5 96,000 1920
10 432,000 3840
20 1,824,000 7680
30 4,176,000 11,520

Fig. 15. The costs of adopting proposed configuration.
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The operational cost in the proposed configuration

As we discussed in the previous sections, the sophistication of
the SG may lead to a highly complex information management sys-
tem. For traditional electric utilities, realizing such complicated
information systems may be costly or even beyond their capacity.
Therefore, it would be a good option to get the information
technology sector involved and outsource some tasks to the clouds,
which provide cost-effective computing and storage solutions.

Here for comparing configurations B and C, the two terms of
operational cost are calculated: network cost and cloud service
cost.

Networking providers own the communications and network
infrastructure, and provide the information transmission. There-
fore, they receive the cost of their service from S.E. Hubs for each
bytes of data transmission.

The cloud managers provide storage and computing services.
Each cloud manager has one pricing policy (including transfer-in,
transfer-out, storage, and computation pricing), while different
clouds may have different pricing policies. Here for simplicity, it
is assumed that we should pay a constant payment for renting a
sufficient cloud service for each S.E. Hub in a month [49].

If the cost of data transmission and cloud service are 5 cents/
kByte and 50 $/(month hub) [49] respectively, the total operational
cost is computed as Table 2 in one year for 10 S.E. Hubs.

As we see, the total cost is reduced by using proposed configu-
ration. It is noteworthy that if the number of S.E. Hubs is increased,
Table 2
Comparing operational cost in regular and CC configuration.

Config. B Config. C

Message exchange cost ($) 7884 70.08
Cloud service cost ($) 0 6000
Total cost ($) 7884 6070.08
the proposed configuration becomes more economical. The costs,
benefits, and net present worth of adopting configuration C in com-
parisons with B are illustrated in Fig. 15.
Conclusion

In this study, we have introduced Smart Energy Hub (S.E. Hub),
which is an Energy Hub (EH) in smart grid environment. Then, we
described how this system can enable users with must run loads to
participate in DSM program. To facilitate the information manage-
ment among a group of S.E. Hubs we proposed a new configuration
based on cloud computing (CC) system. In this model, S.E. Hubs
communicate their load profiles to the CC to reach an optimal
DSM based on the game theoretic approach. The result of the game
leads to a proper strategy for each S.E. Hub to minimize their
energy bill. The projected sub gradient optimization method is
applied to achieve the NE, and the existence and uniqueness of it
has been proved. To evaluate the proposed method, a benchmark
with ten S.E. Hubs has been investigated. Simulation results con-
firm that the proposed DSM game can reduce the PAR in electricity
grid. In addition, the daily energy charges of each S.E. Hub have
been reduced significantly. Finally, while our analysis focused only
on simulation results of S.E. Hub, in future studies, we can consider
a real world case and endorse simulation results with that.
Appendix A

To prove the convexity, the feasible set and the objective func-
tion have to be convex.

The answer feasible set of optimization problem is:

Lh;i 6 Pout
h;i ¼ gh

CHP;iP
in
CHP;i þ gboiler;iP

in
Boiler;i

0 6 Pin
CHP;i 6 CapCHP;i

0 6 Pin
Boiler;i 6 CapBoiler;i

ðA:1Þ

The feasible combination set of Pin
CHP;i and Pin

Boiler;i is convex.
The objective function is

Ji ¼ Je;i þ Jg;i ¼ Pin
e;i � Pre þ Pin

g;i � Prg ðA:2Þ

If the hessian matrix of the objective function is positive definite,
the function will be strictly convex.
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By using the hessian of the summation and multiplication, we
have

r2ðf 1�g1þ f 2�g2Þ¼ g1�r2f 1þ f 1�r2g1þðrf 1Þ�ðrgT
1Þ

n
þ rg1Þ�ðrf T

1Þ
� o

þ g2�r2f 2þ f 2�r2g2

n
þ rf 2Þ�ðrgT

2Þþðrg2Þ�ðrf T
2Þ

� o
ðA:3Þ

The differentiation and hessian of elements of (A.2) are as below.

rPin
e;i ¼

@Pin
e;i

@Pin
CHP;i

@Pin
e;i

@Pin
Boiler;i

2
664

3
775 ¼ �ge

CHP;i

0

� �
ðA:4Þ
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g;i

@Pin
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g;i

@Pin
Boiler;i

2
664

3
775 ¼ 1

1

� �
ðA:5Þ

r2Pin
e;i ¼ r2Pin

g;i ¼ 0 ðA:6Þ

rPre ¼
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Boiler;i
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By doing some algebraic computation, the hessian matrix of
objective function becomes

r2Ji ¼
Aþ B B

B B

� �

A ¼ ge
CHP;i

2aaða� 1Þ
X

k

Pin
e;k

� �" #a�2

þ 2ge
CHP;i

2aa
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e;k

� �" #a�1

B ¼ bbðb� 1Þ
X

k

Pin
g;k

� �" #b�1

þ 2bb
X

k

Pin
g;k

� �" #b�1

ðA:11Þ

If a, b > 1, all of principal minors become positive. Therefore, the
hessian matrix is positive definite.

Appendix B

To solve constraint optimization problem

min f ðxÞ
s:t: x 2 C

ðB:1Þ

where f:Rn ? Rn and C # Rn are convex. The projected gradient
method is given by
~Xkþ1 ¼ Proj ~Xk � k~gk
� �

ðB:2Þ

Proj(�) is projection on C, and ~gk ¼ rf ~Xk
� �

. For linear equality

constraints A~X ¼ b projection of z onto ~XjA~X ¼ b
n o

is

ProjðzÞ ¼ z� AT AAT
� ��1

Az� bð Þ

¼ I � AT AAT
� ��1

A
� �

zþ AT AAT
� ��1

b ðB:3Þ

Projected sub gradient update is

~Xkþ1 ¼ Proj ~Xk � k~gk
� �

¼ ~Xk � k I � AT AAT
� ��1

A
� �

~gk ðB:4Þ

For inequality constraints aTx P b, we have

ProjðxÞ ¼
xþ b�aTx

kak2
2

a if aTx < b

x otherwise

(
ðB:5Þ
Appendix C

At kth iteration:
Customers ith update ~Xk

i ¼ Pin
CHP;i; P

in
Boiler;i

� �k

i2C
according to the

following iterative equations.

Pin
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The projection is based on the following equations.
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While,
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