Testing Web Applications: A Survey

Mouna Hammoudi

ABSTRACT

Web applications are widely used. The massive use of web
applications imposes the need for testing them. Testing web
applications is a challenging process given that it needs to
account for the dynamic, asynchronous and interactive na-
ture of web applications. Various strategies exist for testing
web applications such as capture-replay and programmable
web testing. However, test suites created in this manner
are brittle and easily break when changes are applied to the
web application under test. Furthermore, web applications
continuously evolve and new versions of web applications are
constantly released in order to fix bugs, respond to changing
requirements, modify layouts, etc. The continuous evolution
of web applications might lead to test suite obsoleteness. In
this scenario, the test suite that was created for the first
version of the web application would become outdated and
would require repair. In this paper, we present a survey rel-
ative to testing web applications. We selected eight papers
that discuss topics related to testing web applications. The
topics that are discussed in this paper are: Test repair, test
breakage prevention, test maintenance, capture-replay test-
ing versus programmable web testing and faults within web
applications.

1. INTRODUCTION

Web applications evolve quickly in order to fix bugs, change
layouts and respond to changing requirements. Regression
testing for web applications is essential in order to ensure
that changes being made did not damage the existing func-
tionalities. Manual black box testing of web applications
is an expensive and laborious process. Hence, software en-
gineers create test scripts in order to automate the test-
ing process. Creating test scripts is difficult and expensive
given that software testers need to consider all the possi-
ble input combinations capable of revealing faults [7]. Test
scripts can serve regression testing purposes to ensure that
no bugs were introduced in a new release of the web appli-
cation under test. Nevertheless, releasing a new version of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

a web application might break the initial test scripts due
to functionality and user interface changes within the web
application. Simple changes such as deleting a web element,
displacing it, adding new elements could lead to test ob-
soleteness [4]. Manually repairing test scripts is an expen-
sive process that requires software engineers to analyze the
changes that were applied to the web application and un-
derstand why such changes could cause test breakages [7].
Test repair is a complicated process that requires a deep
understanding of the logic encoded within the test scripts.
Such a process is even more complicated in situations where
the software engineer attempting to repair the tests is dif-
ferent from the one who wrote them. Grechanik et al state
that professional testers prefer discarding old test scripts and
creating new ones rather than fixing them. Creating tests
for web applications represents a significant investment [4].
Thus, repairing broken tests would be more cost efficient
than rewriting them from scratch. Due to such consider-
ations, researchers created new techniques and tools that
aim at facilitating test script maintenance and preventing
test breakages.

In this paper, we present a survey based on the analysis
of eight papers that address the following topics: (1)Test re-
pair, (2) prevention of test breakages and facilitation of test
maintenance, (3) empirical studies related to testing web ap-
plications. It is essential to conduct this survey given that
addressing issues related to test fragility requires a profound
understanding of the state of the art. This survey would in-
form researchers about the limitations and the weaknesses of
the existing techniques used to test web applications. Also,
it would enable researchers to create superior approaches
that would not suffer from such limitations and that would
outperform existing approaches.

We provide brief overviews of the papers that we have
taken into consideration while conducting this survey. Each
paper is listed under its category.

Test Repair:

Some researchers created techniques for automatically re-
pairing test scripts in the face of evolving web applications.

e Choudhary et al present WATER [3], a tool that sug-
gests test repairs to software engineers. WATER sug-
gests repairs for obsolete locators, obsolete assertions,
newly added form elements and deleted form elements.

e Leotta et al suggest the use of a multi-locator approach
in order to repair test cases. Whenever a test breaks
due to the use of an obsolete locator within the new
version of the web application, the multi-locator ap-
proach determines the web element that the test case

failed to locate within the new version of the web ap-
plication under test [9].

e Alshawan et al present a novel testing technique that
makes use of user session data for testing web appli-
cations. They propose an automated technique for re-
pairing session data whenever changes are made to the
web application under test [5].

Prevention of Test Breakages and Facilitation of
Test Maintenance:

Some researchers created techniques for preventing test
breakages and facilitating test maintenance in the face of
evolving web applications.

e Leotta et al created an approach called ROBULA used
for preventing test breakages. ROBULA reduces web
test case aging through the generation of robust XPath
locators that are less likely to break whenever the web
application evolves [8].

e Yandrapally et al created a new record/replay approach
that identifies web elements based on their contextual
clues. Their technique identifies the web element of
interest based on other elements surrounding it. This
technique automates the process of test case creation
and prevents future test breakages that could occur
due to the web application’s evolution [19].

e Stocco et al developed a technique for creating web
objects automatically. This technique reduces the ef-
fort required in order to maintain tests whenever the
web application evolves. This technique addresses the
problem of test code duplication. Whenever changes
are made to the web application under test, the tester
only needs to repair the cause of the break once. Such
a repair would be automatically propagated to all tests
using the broken element [16].

Empirical Studies:
Some researchers conducted empirical studies related to
web applications and their testing mechanisms.

e Some researchers analyzed the process of test creation.
These researchers conjecture that the manner in which
the initial test suite was created for the first version of
the web application might impact the robustness of
the test suite in the face of web application changes.
Leotta et al conducted an empirical study to compare
the efforts required for test creation and test evolu-
tion using capture/replay web approaches versus pro-
grammable web approaches. They present data prov-
ing that capture/replay constitutes an approach that
incurs high costs relative to test maintenance and test
creation [7].

e Other researchers attempted to understand the nature
of faults within web applications. Marchetto et al pro-
duced a web fault taxonomy that categorizes faults
encountered in web applications. Such a taxonomy
can be used by researchers in order to seed realistic
faults within web applications for experimental pur-
poses. These seeded faults would be representative of
real web application faults [11].

2. BACKGROUND

In this section, we present background that is required to
understand the remainder of this paper.

2.1 Web Application Evolution

Developers usually apply changes to their web applica-
tions as a means for meeting new requirements, adding new
functionalities, fixing bugs, etc. Leotta et al [8] define two
types of changes that can be applied over web applications:
(1) Structural changes and (2) Logical Changes. Structural
changes refer to all the changes that modify the page lay-
out and structure such as re-styling or changing a web el-
ement’s locator. For example, a structural change could
be that the id="Password” of a text field is changed into
id="Pwd”. Logical changes refer to all the changes mod-
ifying the logic of the web application under test such as
functionality addition, functionality modification, function-
ality deletion, etc [8].

2.2 Tool Fragility

Web applications can be tested using different types of
tools. First generation tools rely on screen coordinates in
order to locate and manipulate web elements within the
web application under test. These tools produce fragile test
suites that are dependent on screen resolution and window
size used while testing the web application under considera-
tion. Second generation tools counterbalance the drawbacks
of first generation ones by offering simple web element se-
lection mechanisms. The web element of interest is located
according to its position within the DOM tree of the web
page under test [7]. Tests that are created using second
generation tools are fragile as well, given that their execu-
tion is dependent on the DOM tree of the web page under
test [7]. Simple changes affecting the DOM tree of a web
application could cause a test to break. Third generation
tools test web applications based on image recognition of
web elements within the user interface of the web applica-
tion under test. Tests created using third generation tools
are fragile as well, given that simple changes affecting the
visual appearance of a web element could cause the test to
break. For instance, changing the size and the color of the
web element of interest might cause the test to break. Re-
searchers have aimed at addressing test fragility by creating
new techniques and approaches [7].

2.3 Web Application Tests

It is important to understand the components and the
structure of test cases. Tests are typically populated with a
set of commands driving test execution and instructing the
browser to perform specific actions during the test execu-
tion process [14]. In order to illustrate a command’s struc-
ture, we consider the example of Selenium IDE, which is a
record/replay tool used for recording a sequence of user in-
teractions and replaying them. Each command within a test
case consists of a three tuple <action, locator, value>. The
action command specifies which action (click, select, etc)
needs to be applied during the test execution process. The
locator component specifies the web element that needs to
be selected and manipulated during test execution. Finally,
the value component specifies the value that needs to be in-
put within a certain web element during test execution [14].
For instance, ”John” could be specified as a value to be in-
put within the "First Name” text field of the web page under

click(City or Airport (+])

chars = ''.join(random.sample(string. letters,
type(chars)

Figure 1: Typing a string within a text field in Sikuli
IDE

test. An example of a command is the following three tuple
<type, id="firstname”, ”John”>. Such a command would
instruct the replay engine to type the value ”John” within
the text field with id="firstname”. Although the example
shown above is relative to Selenium IDE, the three compo-
nents still apply to test scripts created using other tools.
Among third generation tools, we list Sikuli which is a tool
used for testing web applications based on image recogni-
tion. Figure 1 represents an extract from a Sikuli test case
instructing the input of a randomly generated string value
within the text field ”City or Airport”.

We notice that each component of the three tuple <action,
locator, value> is present within the test extract represented
in figure 1. The action "type” is specified in the third line of
the test script. The locator is represented in the first line of
figure 1 as a screen shot of the text field ”"City or Airport”.
The value component of the three tuple is represented by
the string ”chars”, which is passed as an argument to the
“type” command in line 3 and randomly generated in line 2
of figure 1.

2.4 Web Element Locators

Locators are used for identifying and applying actions to
web elements of interest. There are two major classes of
locators: Attribute-based locators and structure-based loca-
tors. Attribute-based locators identify an element based on
its name/value pair within the DOM tree of the web page
under test [19]. Id, Name and LinkText are examples of
attribute-based locators. The locator "id=FirstName” is an
attribute-based locator which identifies the text field "First-
Name” based on its ID. Structure-based locators identify an
element based on its position within the DOM tree of the
web page under test. The path leading to the web element
under test is used as a locator strategy for structure-based
locators [19]. CSS selectors, XPaths, DOM locators are ex-
amples of structure based locators. For instance, the loca-
tor 7/ /div/button[1]” is a structure-based locator and more
specifically, an XPath that identifies the first button posi-
tioned after a div within the DOM tree of the web page
under test.

3. STUDY METHODOLOGY

We adopted a systematic approach in order to select pa-
pers to be taken into account within this survey. We chose
”Google” as a search engine and we typed the following key-
words: "testing”, ” test fragility”, "regression testing”, "web
applications”, "automatic repair”, "repair suggestion”; "tests
breakages”, "breakage prevention”, "test maintenance”, "test
evolution”, "test robustness”. We examined the results out-
put by Google and we only retained conference papers and

journal articles among those results. We examined the set

of conference papers and journal articles obtained and we
selected the most related ones to the object of our survey.
Also, we wanted to ensure diversity in the topics covered by
our survey so we chose three papers related to test repair,

15) }three papers related to the prevention of test breakages and

the facilitation of test maintenance. Finally, we chose two
papers presenting empirical studies that investigate different
research questions in the context of web application testing.

4. TOPICS RELATED TO WEB APPLICA-
TION TESTING

4.1 Test Repair

4.1.1 WATER: Web Application Test Repair

Choudhary et al address the issue of test breakages by
creating a technique that automatically suggests test re-
pairs [3]. They create a novel repair strategy that suggests
repairs related to locators, assertions, newly added form el-
ements and/or deleted form elements within the new release
of the web application under test. The technique presented
by Choudhary et al is innovative given that no research has
suggested repairs for obsolete values and deleted /added form
elements in the new version of the web application under
test. Also, no research has attempted to repair locators
based on comparing web element properties in the two ver-
sions of the web application under test [3]. Choudhary et
al propose a novel categorization of the changes that can be
applied over a web application:

-Structural Changes involve the addition, the deletion or
the modification of a DOM node or a DOM attribute [3].
-Content changes involve the modification of a DOM node’s
text or HTML content. Such changes cause failures at the
level of the assertions that verify the content of the modified
DOM node [3].

-Blind changes are defined as changes applied to the server
side of a web application. Such changes are not noticeable at
the level of the client side of the web application. Therefore,
the authors do not attempt to repair test breakages caused
by blind changes in web applications [3].

The authors also define four problems that could be caused
by the changes that were previously enumerated. Struc-
tural changes could cause (1) non-selection, (2) mis-selection
and (3) form data problems. The non-selection problem
refers to the inability of a test case to select a DOM node
that was successfully identified in the older version of the
web application under test [3]. The mis-selection prob-
lem refers to the selection of an unintended element in the
newer version of the web application [3]. The form data
problem refers to the use of inappropriate input values
within form elements. This problem is caused by the dele-
tion, the addition or the modification of form elements [3].
The addition of form elements imposes the use of specific in-
put values for such elements. Hence, the test case needs to
be augmented with appropriate commands applying values
to the newly added form elements. In contrast, the deletion
of one or more form elements requires the deletion of all test
script commands involving the deleted form elements. Con-
tent changes could lead to the obsolete content problem.
This problem is encountered when the value of the assertion
does not match the actual value of the DOM node under
consideration [3].

Choudhary et al created a technique to automatically sug-
gest test repairs for the four problems previously identified.
The approach is composed of two major steps namely (1)
collecting test data and (2) suggesting repairs. The data
collection phase consists of gathering information relative to
the old version and the new version of the web application
under test. More specifically, ten properties (id, xpath, class,
linkText, name, tagname, coordinates, clickable behavior,
visible property, zindex and hash value) are collected for all
the web elements in the old version and the new version
of the web application [3]. Also, the error/failure message
reported by the testing tool and the position (command)
at which the test script breaks are collected as well. Such
information is input to the second phase of the approach
which deals with repair suggestion [3]. The second phase of
the approach aims at suggesting repairs for the four prob-
lems previously enumerated. The non-selection problem
and the mis-selection problem are addressed by compar-
ing web element properties in the old version and the new
version of the web application under test. If any of these
properties match, an updated locator is suggested as a re-
pair strategy for the broken one [3]. The obsolete content
problem is addressed by replacing the expected value of
the assertion with the actual value of the web element un-
der test in the new version of the web application [3]. The
form data problem is addressed through the identification
of newly added web elements in the new version of the web
application using a FormDiff that compares the old version
and the new version of the web application under test. Ran-
dom values are generated for all of the added web elements
in the new version of the web application. If no repair can
be found, the technique deletes the command at which the
test case breaks and checks if the test case passes. Follow-
ing all these steps, the approach suggests a list of repairs
to the software engineer [3]. Choudhary et al implemented
their approach by creating a tool called WATER, they evalu-
ated their approach by considering 11 versions of 3 different
web applications. The results of the evaluation indicate that
WATER is capable of suggesting correct repairs 81% of the
time [3].

Limitations: WATER is a tool that automatically sug-
gests repairs for broken tests. The authors assume that the
position at which the breakage is manifested within the test
case matches the position at which the cause of the breakage
occurs. In practice, the cause of a breakage could be located
at a statement preceding its manifestation. Choudhary et
al do not suggest any method for root cause analysis.

In practice, some test cases could present ”silent break-
ages”, which are situations in which test cases do not explic-
itly break and keep performing unintended behavior till the
end of execution. The authors do not propose any solution
in order to address such breakages.

Choudhary et al suggest a repair technique based on ran-
dom generation of input values for newly added input fields
within the web application under test [3]. Random genera-
tion of input values may not be effective given that newly
added input fields may only accept restricted types of input
values. For instance, assuming that a new “date of birth”
text field is added within the web page under test, such a
text field would only expect dates as input values. The test
case would break if the user inputs a random string. Fur-
thermore, the authors do not propose any technique in order
to identify newly added input fields and differentiate them

from pre-existing ones within the first release of the web
application under test.

4.1.2 Using Multi-Locators to Increase the Robust-
ness of Web Test Cases

Leotta et al develop an approach for automatically re-
pairing broken XPath locators in a new version of the web
application under test [8]. They only consider locator break-
ages caused by structural changes in the web application
under test. They present a new type of locator called multi-
locator, which outputs the best locator among a set of loca-
tors generated by five different algorithms. The selection
procedure relies on a voting mechanism that assigns dif-
ferent weights to each locator creation algorithm [8]. The
main motivation behind the use of a multi-locator as op-
posed to an individual locator is that web element locators
are fragile individually, and non-fragile collectively. No re-
search has attempted to address problems related to locator
fragility by using a multi-locator approach. Leotta et al ad-
dress the fragilities of a single locator by creating a novel
type of locator called multi-locator, which combines the re-
sults produced by different locator generation algorithms
and outputs one single locator that corresponds to the most
voted one [8]. The multi-locator algorithm is populated with
five different XPath generation algorithms, which are used
by the following tools (1) FirePath absolute (2) FirePath
Relative ID-based (3) Selenium IDE locators (4) Montoto
and (5) ROBULA+ [8]. Given that certain locator genera-
tion algorithms tend to produce more robust locators than
others, the multi-locator approach assigns different voting
weights to each locator generation algorithm depending on
the latter’s robustness. More specifically, FirePath abso-
lute locators are assigned the weight 0.25, FirePath Rela-
tive ID-based locators are assigned the weight 0.50, Mon-
toto, Selenium IDE and ROBULA+ are assigned the weight
0.90 [8]. The multi-locator approach only considers candi-
date web elements that are uniquely identified by all XPath
locators in the new version of the web application. Leotta
et al use a mathematical formula to compute a voting score
for each web element selected by a locator. The element
with the highest vote is returned as the correct target web
element in the new version of the web application [8]. Once
the correct target web element is returned by the multi-
locator, the incorrect locators are automatically repaired by
re-executing the corresponding generation algorithms on the
DOM tree of the new web application version and generat-
ing new locators for all the broken element locators. These
repaired locators replace the broken ones and can be used as
a basis for suggesting new repairs when the web application
evolves [8]. The multi-locator approach is evaluated by con-
sidering six web applications, each having two versions and
comparing the percentages of broken locators using differ-
ent strategies (the multi-locator approach, ROBULA+, Se-
lenium IDE, Montoto, FirePath Absolute and FirePath Rel-
ative ID-based). Experimental results show that the number
of broken locators is reduced by 30% on average when us-
ing the multi-locator approach as opposed to ROBULA+,
Selenium IDE, Montoto, FirePath Absolute and FirePath
Relative ID-based [8].

Limitations: The authors only consider situations in
which all the locators point to one single web element in
the next release of the web application under test. The au-
thors do not address situations in which one locator does not

identify any web element in the next release of the web ap-
plication. Also, they do not address scenarios in which one
single locator identifies two or more elements in the next
release of the web application under test.

Leotta et al only focus on the use of XPaths as web ele-
ment locator strategies. In practice, software engineers use a
variety of other locator strategies such as ID, linktext, name,
CSS selectors and DOM locators. The authors did not con-
duct any comparative empirical evaluation justifying their
choice to focus on XPaths and exclude other types of lo-
cators. Non XPath-based locator strategies might be less
susceptible to break when testing new releases of a web ap-
plication. It might be more cost-effective to repair other lo-
cator strategies if they represent lower breakage frequencies
compared to XPaths. Locator strategies with lower break-
age frequencies would necessitate a lower number of repairs
and would thus reduce the repair effort.

4.1.3 Automated Session Data Repair for Web Ap-
plication Regression Testing

User session data constitutes an effective method for test-
ing web applications. Session data represents realistic test
scripts given that they are created by the web application’s
users [5]. Maintaining and evolving web applications could
cause session data to be obsolete given it might no longer
represent a valid session in the new version of the web ap-
plication under test. Alshawan et al propose an automated
technique for session data repair in the context of web ap-
plication regression testing [5]. No researchers have inves-
tigated regression testing for web applications using user
session data. The contributions of this paper are the follow-
ing: (1) The creation of an algorithm for regression testing
web applications through the use of session data repair (2)
The presentation of a controlled experiment’s results that
evaluate the effectiveness of the technique when applied to
10 versions of an open source web application (3) The pre-
sentation of results related to the scalability of the approach
and its applicability in situations in which daily regression
testing is applied over a web application. The repair al-
gorithm presented in this paper is composed of two major
phases: The first phase is a pre-processing white box analy-
sis step that outputs the structure of the new version of the
web application under test. The second phase extends the
first phase by using its output in order to search for obso-
lete parameter sets and invalid sequences of URL requests
within the web application [5]. The new release of the web
application and the original set of user session data are both
input to the algorithm. The output of the algorithm is a
repaired set of user session data. Two types of repairs are
applied over the session data (1) individual URL repair and
(2) Sequence repair. We present each one of these:
(1)Individual URL Repair: Given that an individual URL
might not use the same parameter, all individual URL re-
quests need to be updated in order to specify new values for
newly introduced parameters [5].

(2)Sequence Repair: A session may not correspond to a valid
sequence of URL requests in the new version of the web ap-
plication. Therefore, the sequences of URLs from the ex-
isting session database need to be updated in order exclude
any nodes and edges that no longer exist in the new version
of the web application under test. The authors conduct two
controlled experiments in order to evaluate the effectiveness
of the approach and its scalability. The results of the first

controlled experiment prove that the approach is effective.
Also, the results of the second controlled experiment prove
that the approach is scalable to more demanding scenarios,
in which daily regression testing is applied to the web appli-
cation under test [5].

Limitations: The authors only consider ten versions of one
single web application in order to evaluate their approach.
The results of the empirical evaluation may be completely
different when considering other types of web applications.
It is necessary to apply the approach to a variety of web
applications in order to make generalizable conclusions re-
garding the performance of the algorithm.

4.2 Prevention of Test Breakages and Facili-
tation of Test Maintenance

4.2.1 Reducing Web Test Cases Aging by Means of
Robust XPath Locators

Leotta et al state that the effort required to manually
repair web element locators constitutes one of the most im-
portant costs required for test repair [8]. They address the
issue of test aging, which refers to the obsolescence of test
scripts due to the evolution of the web application under
test. They address the issue of locator obsoleteness caused
by structural changes. Structural changes refer to changes
affecting the structure/layout of the web application under
test and leaving the application logic unaffected [8]. No re-
search has attempted to prevent locator breakages by creat-
ing more resilient locators for the web application under test.
Leotta et al create a novel algorithm called ROBULA that
generates robust XPath locators, which are more resilient to
changes made to a web application. Locators generated by
ROBULA are less likely to break when changes are made to
the web application under test [8].

ROBULA takes two inputs, namely (1) the absolute XPath
of the element to be selected and (2) the HTML page under
consideration. ROBULA initially selects all of the web ele-
ments in the web page under consideration and iteratively
refines the element until we reach the point in which the
element of interest is the only one being returned by ROB-
ULA [8]. ROBULA generates initially an XPath for all the
elements within the web page. Then, it refines the XPath
of the web element under consideration by successively aug-
menting it and applying the following transformations: (1)
Each XPath is augmented with the tag name of the par-
ent node (2) An attribute-value pair is added to refine the
parent node that was added in the first step (3) An index
position is added to refine the parent node that was added
in the first step [8]. This process is repeated until we reach
the point in which the XPath locator is able to uniquely
locate the web element of interest. ROBULA outputs a ro-
bust relative XPath expression that is capable of uniquely
selecting the web element under consideration. If the web el-
ement of interest does not have a relative XPath expression
that is capable of uniquely identifying it, ROBULA outputs
the absolute XPath locator of the target web element [8].
ROBULA is evaluated by considering six open source web
applications with two versions for each. Leotta et al eval-
uate the robustness of ROBULA by counting the numbers
of broken absolute XPath locators, broken relative XPath
locators and broken ROBULA locators in the second ver-
sion of the web application under test. Experimental results
demonstrate that a 56% reduction in fragility is achieved for

absolute XPath locators and a 41% reduction in fragility is
achieved for relative XPath locators [8].

Limitations: Leotta et al assume that shorter locators
are less susceptible to breakages when the web application
evolves. They did not conduct any empirical evaluation com-
paring short locators with long ones to verify the validity of
their assumptions. In some situations, the extra information
provided by a longer locator might be necessary to refine the
web element selection mechanism and effectively identify the
web element of interest.

While conducting the empirical evaluation of ROBULA,
the authors only consider situations in which the same web
element is present in two successive releases of the web appli-
cation under test. Leotta et al manually infer the presence of
the same web element across two successive versions of the
web application under test. They do not present any tech-
nique for automatically performing such an inference. Fur-
thermore, inferring the persistence of a web element across
two successive releases of a web application is extremely
challenging, given that the developer could change all of
the attribute-based and hierarchy-based characteristics of
the web element of interest. Changing all these characteris-
tics complicates the identification of persisting web elements
across successive releases of the web application under test.

4.2.2 Robust test automation using contextual clues

Test scripts of web applications are brittle, small changes
in the page layout are capable of breaking tests. The main
reason why test cases break is related to the inclusion of
metadata within test cases. Such meta-data reflects the
internal representation of the web application under test
and causes test breakages [19]. Yandrapally et al create
a technique for locating web elements in a web page by
completely discarding metadata [19]. They create a tech-
nique that automatically infers contextual clues in order to
uniquely locate user interface elements within the web page.
Contextual clues are defined as labels or images that are
located in the surroundings of the web element of interest.
The use of such contextual clues uniquely selects the ele-
ment of interest within the web page. The main contribu-
tion of this paper consists of the creation of an innovative
technique that identifies elements based on their contextual
clues. No research has considered the identification of an el-
ement based on its vicinity. The authors implemented their
approach in a record/replay tool called ATA-QV [19]. The
technique consists of two phases: the automation phase and
the playback phase [19]. The automation phase creates a
test script that records contextual clues for all user inter-
face elements.The playback phase replays the test suite by
analyzing the recorded contextual clues and executing the
required action(s) on the user interface element of interest.
Yandrapally et al evaluate their technique by performing
three empirical studies on five open source web applications.
The first empirical study aims at verifying the accuracy of
the technique and verifying whether ATA-QV generates the
same contextual clues that would be produced by a human
being [19]. Experimental results demonstrate that 73% of
the contextual clues produced by ATA-QV match the ones
that could be produced by a human being. The second
empirical study aims at evaluating ATA-QV’s resilience to
changes in web applications compared to other testing tools
(Sikuli, QTP, ATA). The authors considered a second ver-
sion for each of the five web applications under test, ATA-

QV was able to correctly identify all of the web elements of
interest within the new version of the web application. Also,
experimental data shows that ATA-QV outperforms Sikuli,
QTP and ATA. The third empirical study aims at measur-
ing ATA-QV’s resilience to web browser changes compared
to Sikuli, ATA and QTP [19]. Again, experimental results
showed that ATA-QYV is significantly more resilient to web
browser changes and outperforms Sikuli, QTP and ATA.
Limitations: The test scripts produced by ATA-QV could
be fragile in situations in which labels are changed. Such
changes could involve modifying a label’s name, replacing it
with an image or completely deleting it. Also, the playback
mechanism could fail in situations in which the DOM of the
web page under test is modified.

4.2.3 Why Creating Web Page Objects Manually if It
Can Be Done Automatically?

Web application evolution poses the problem of maintain-
ing test cases. Stocco et al facilitate test maintenance by
suggesting the page object design pattern [16]. The page
object design pattern aims at facilitating a test suite’s main-
tainability by limiting the duplication of code across test
cases. This approach relies on the use of objects to repre-
sent the web page elements as a series of objects. Also, it
groups the functionalities of the web application into meth-
ods, which facilitates test script reusability, maintenance
and readability [16]. Not using design patterns complicates
test script maintainability and evolution due to duplicated
code across test cases. For instance, if developers change
a certain functionality in the new version of the web ap-
plication under test, all the test cases that exercise such a
functionality would need to be updated, which is an expen-
sive process [16]. The use of page objects facilitates test
case maintainability in a way that the tester only needs to
update one single code fragment if one functionality is mod-
ified. Such an update would be automatically propagated
to all the test cases that make use of the changed function-
ality. The use of page objects separates test case specifica-
tions from their implementation. Page objects contain all
of the implementation details while the content of test cases
is only limited to testing logic [16]. There are many page
object creation tools such as OHMAP, SWD page recorder,
WTF PageObject Utility Chrome Extension [16]. Neverthe-
less these tools suffer from many limitations: First, they only
consider one page at a time and they ignore the structure
and the dynamism of web applications. Second, they only
consider a subset of web elements within the web page un-
der test. Finally, the page objects being generated by these
tools only constitute skeletons; this contradicts the motiva-
tion behind page objects, which is to encapsulate web ap-
plication functionalities into methods. Stocco et al address
these limitations by creating a novel technique for automat-
ically generating page objects for web applications. They
create a tool called Apogen (Automatic Page Object Gener-
ator), which reverse engineers a testing model through static
analysis and dynamic analysis of the web application under
test [16]. The input of APOGEN is the web application un-
der test and its output is a set of Java files making use of
page objects and separating testing implementation details
from testing logic [16].

The approach developed is composed of three different
phases: (1) a crawler, (2) a static analyzer and (3) a code
generator.

The Crawler phase makes use of the open source tool
Crawljax in order to create a state-based graph representing
the dynamic DOM states within the web application under
test along with the transitions among DOM states. For each
web page within the web application under test, the crawler
outputs its URL, the set of clickable items within the web
page, links to other states within the state-based graph, the
DOM tree for the web page and a screen shot of the web
page [16].

The Static Analysis phase analyzes the output of the
crawler phase and generates all of the necessary information
in order to create page objects. It uses some parsing mech-
anisms in order to generate meaningful class names for page
object classes and meaningful method names. Furthermore,
transitions to other states within the state-based graph are
saved within the classes. The output of this phase is a model
representing each web page within the web application [16].

The Code Generation phase consists of generating ap-

propriate code for each state within the model output by
the previous static analysis phase. More specifically, this
phase creates Java classes and populates them with web
elements, constructors and methods using the information
gathered in the static analysis phase. Stocco et al evaluate
APOGEN by comparing a manual test suite created by an
external tester with the methods automatically generated by
APOGEN. Experimental results show that 75% of the meth-
ods automatically generated by APOGEN are equivalent to
the functionalities covered by the manual test suite and 25%
of the methods automatically generated by APOGEN only
require minor modifications [16].
Limitations: The crawling phase of APOGEN is condi-
tioned by the effectiveness of Crawljax in generating a state-
based graph. Page object creation would fail in situations in
which Crawljax is unable to generate a state space for one
of the web pages under test.

4.3 Empirical Studies

4.3.1 Capture-replay vs. programmable web testing:
An empirical assessment during test case evo-
lution

Two major types of trends are used for testing web ap-
plications: (1) Capture/replay of web application interac-
tions and (2) Programmable web testing. No attempts were
made to compare the costs relative to test creation and test
maintenance using programmable web testing versus pro-
grammable web testing. Leotta et al conducted an inno-
vative empirical study that compares record/replay testing
and programmable web testing [7].

Capture/Replay web testing consists of recording a se-
quence of user interactions at the level of the web applica-
tion under test and saving that recording into a test script
that can be replayed any number of times. Test scripts cre-
ated using capture/replay tools do not require any advanced
testing skills and the creation of such test scripts incurs rel-
atively low costs. However, test scripts created using these
tools are fragile and tend to break due to the evolution of the
web application under test [7]. Such breakages are caused by
a strong coupling between the test cases and the web pages.
Test scripts could break due to minor changes applied over
the web application under test. Furthermore, test scripts
created using record/replay tools make use of hard-coded
values that need to be updated if any changes are applied

to the web application under test. These test scripts would
need to be repaired manually or re-recorded from scratch in
order to repair the break [7].

Programmable web testing requires advanced testing skills
and the programmatic creation of test scripts incurs high
costs. Programmable web testing consists of writing tests
as opposed to recording them. Such test scripts can make
use of more sophisticated programming constructs compar-
ing to tests created using a capture/replay approach. Also,
tests created using programmable web testing can take ad-
vantage of all the benefits of programming paradigms such
as modular programming, conditional execution, test logic
reuse, page objects, etc. These tests scripts can be more
easily modified than capture/replay ones [7]. Leotta et al
compare test scripts created using a record/replay approach
and test scripts created using programmable web testing.
They conduct a study that aims at: (1) Comparing the test
suite development effort while using programmable web test-
ing approaches versus record/replay ones [7]. (2) Comparing
the effort required for maintaining programmable test suites
versus capture/replay ones when a new version of the web
application under test is released [7]. (3) Determining the
number of releases after which the use of programmable test
suites becomes more convenient and more cost-effective in
comparison with record/replay test suites [7].

Answers to these research questions would inform project
managers about more suitable testing approaches given time
constraints, number of versions to be released, developers’
expertise, etc [7].

In order to respond to these questions, Leotta et al con-
sidered Selenium IDE as a record/replay approach and Sele-
nium WebDriver as a programmable web testing approach.
They considered six web applications, with each web ap-
plication having two versions. They created two equivalent
test scripts using Selenium IDE and Selenium WebDriver for
each web application under test. Also, they used the page
object design pattern for all the test cases that were created
using Selenium WebDriver [7].

Experimental results demonstrate that for all the web ap-
plications under test, the test suite creation effort using Se-
lenium IDE is significantly lower than the test suite devel-
opment effort using Selenium WebDriver. The development
effort for Selenium IDE test suites required amounts of time
ranging from 68 to 291 minutes. The development effort for
Selenium WebDriver test suites required amounts of time
ranging from 98 to 383 minutes [7].

The repair effort required for maintaining Selenium IDE
test suites is significantly greater than the repair effort re-
quired for maintaining Selenium WebDriver test suites. The
repair effort for Selenium IDE test suites required amounts
of time ranging from 46 to 95 minutes. The repair effort for
Selenium WebDriver test suites required amounts of time
ranging from 71 minutes to 120 minutes [7].

Experimental results show that the cumulative costs rela-

tive to the development and the evolution of programmable
test suites become lower than the same costs relative to
record/replay test suites after a small number of releases
(2 releases) [7].
Limitations:The authors did not discuss the types of lo-
cators used in their test suites. The repair effort may vary
according to the nature of the web element locators used in
the test suite.

4.3.2 Empirical Validation of a Web Fault Taxonomy
and its usage for Fault Seeding

Web applications are widely used, existing research aims
at developing new testing techniques for web applications.
No attempts were made to characterize the types of faults
encountered within web applications. Marchetto et al pro-
duce a web fault taxonomy that enumerates faults that could
only be encountered in web applications as opposed to generic

faults that could be encountered in any program [11]. Marchetto

et al construct an initial taxonomy in a top down manner
and refine it through four iterations of empirical validation.
Numerous groups of real bugs were extracted from real bug
tracking systems in each iteration [11]. These groups en-
abled the refinement of the taxonomy by splitting classes,
merging them, deleting them, etc. The refinement process
of the web taxonomy aimed at creating a ”good taxonomy”,
which is defined as being general, complete and exhaustive
and not ambiguous. Such a fault taxonomy can be used
by web testers in order to create test cases that target cer-
tain types of faults [11]. Furthermore, this taxonomy can
also be used by researchers for fault injection within web
applications. The reliance on the taxonomy for fault seed-
ing guarantees the injection of realistic faults encountered
within real web applications [11]. Marchetto et al identified
six major classes of web faults, namely (1)multi-tier archi-
tecture faults (faults related to the interactions between the
client, the server and the database), (2)GUI faults (faults
relative to HTML, JavaScript and Flash), (3)Session man-
agement faults, (4)Hyperlinked structure faults, (5)Protocol
based faults (HTTP, HTTPS, etc) and (6)Authentication
faults [11].

Limitations: The authors created a preliminary version
of the taxonomy based on their assumptions. Then, they
confirmed it considering online bug reports for real web ap-
plications. The process followed for creating the taxonomy
may have been more objective and accurate if the authors
built their preliminary version starting from bug reports for
real web applications. Furthermore, the authors only con-
sidered 376 bugs in total, which may not be sufficient to
generalize the applicability of the web fault taxonomy to all
web applications.

S. DISCUSSION

Root Cause Analysis. The time at which a breakage is
manifested and the position at which such a breakage is
caused within the test case may be different.

Direct breakages are manifested at the same position where
the breakage cause occurs.

Propagated breakages are not manifested immediately, but
are manifested later on subsequent test actions.

Silent breakages never manifest themselves. The test case
continues executing without explicitly breaking. In this sit-
uation, the test would no longer be testing what it was de-
signed to test. These problems suggest that we need better
techniques to map the manifestation of a break to its root
cause. Tracing back the manifestation of a break to its root
cause would facilitate automated test repair given that root
cause analysis is a pre-requisite for test repair.

IDE enhancements. IDEs could be enhanced in order to au-
tomatically update test cases and reflect changes made by a
web developer over a web application. Also, such IDEs could
allow breakage avoidance by alerting programmers regarding

test breakage risks. The IDE would approve or disapprove
developer changes made over a web application depending
on the risks incurred by these changes. These IDEs would
approve “safe” changes that would not lead to test breakages
and would disapprove "harmful” changes that might cause
test breakages. In the latter case, the IDE could propose
alternative changes that are ”safe” and that would not cause
test breakages. Furthermore, IDEs could allow breakage
prevention by forbidding developers from applying ”harm-
ful” types of changes and only allowing them to apply “safe”
changes.

Bad Smells in Tests. Numerous approaches have investi-
gated bad smells in code [18], [20], [10]. However, no ap-
proaches have been created to investigate the occurrence of
bad smells in tests made for web applications. Future re-
search could identify breakage threats in web application
tests. A technique could signal "bad smells” in test cases
by comparing two successive releases of the web application
and analyzing its test cases. In this case, "bad smells” would
represent statements that are likely to break while execut-
ing the test case for the new version of the web application.
By signaling these "bad smells” within tests, the developer
could rectify some of the code changes that he/she applied
over the web application, as a means for avoiding risks re-
lated to test breakages.

Detecting Changes in Web Application Versions. Test break-
ages are caused by changes applied over a web application.
Identifying changes made to a web application could be a
useful way for repairing tests. For instance, identifying that
a new input field was added within a web page would sig-
nify that the test case should be augmented with a state-
ment populating the newly added input field. Conversely,
detecting an input field deletion would signify that the state-
ment populating the deleted input field should be removed
from the test case. Identifying persisting input fields across
multiple versions of a web application would let us examine
their locator strategies and repair them if necessary. Also,
the identification of any added web pages would let us create
new test cases for exercising functionalities within the newly
added web pages. Similarly, identifying deleted web pages
would let us remove obsolete test cases from our test suite.
Automatic generation of input values. Numerous changes
that are made to web applications consist of the addition
of new input fields. Choudhary et al propose a technique
based on random generation of input values in order to pop-
ulate any newly added input fields in the next release of
the web application under test [3]. This technique might
not be effective in situations where newly added input fields
only accept restricted types of values. New techniques could
be devised in order to automatically generate values for the
newly added input fields. It would be more strategic to
identify the restrictions corresponding to the newly added
input fields and then generate values that satisfy those re-
strictions.

Locator Repair. Leotta et al suggest a multi-locator re-
pair technique but only consider situations in which loca-
tors identify one single element in the next release of the
web application under test [9]. In practice, there could be
situations in which a locator is not capable of identifying
any web element in the next release of the web application
under test. Also, there could be situations in which locators
identify two or more elements in the next release of the web
application. Some repair techniques could be created to ad-

dress these scenarios. In particular, some techniques could
specialize in repairing locators that are not capable of identi-
fying any element in the next release of the web application
under test. Other techniques could specialize in repairing
scenarios where locators identify two or more elements in
the next release of the web application under test. Leotta et
al present ROBULA, which is a prevention approach gener-
ating robust XPath locators [8]. Also, they suggest a repair
approach based on the use of multi-locators [9]. However,
both of these approaches focus on the use of XPath locators.
Future work could focus on the creation of similar preven-
tion and repair approaches for other classes of locators such
as ID, CSS selectors, DOM locators, name, linktext, etc.
Empirical Studies on Locators. Locators cause a consider-
able source of breakages within web application test cases.
There are multiple types of locators: ID, name, CSS selec-
tors, XPath, DOM locators, etc. Some locator types may
be more fragile than others. No empirical studies have in-
vestigated locator fragility based on the types of changes
made to the web application under test. More specifically,
we conjecture that a high number of changes applied to the
structure of the DOM would tend to break structure-based
locators. Similarly, a high number of changes applied to
web element attributes would tend to break attribute-based
locators. Future research could investigate the correlation
between locator fragility and changes made to the web ap-
plication under test. This could let developers know which
types of locators are more susceptible to break than others
considering the nature of changes made to the web applica-
tion under test. Also, this would inform developers about
locator robustness depending on the nature of changes ap-
plied to the web application under test.

Leotta et al suggest that short locators are more robust
than long ones [8]. Such an assumption motivates the cre-
ation of ROBULA as a technique that creates the shortest
possible web element locators capable of correctly identify-
ing the web element of interest. The authors only assume
that short element locators are less fragile than long ones.
They do not conduct any empirical study to validate their
assumptions. We could conjecture that in some scenarios,
the extra information provided by a longer locator might be
necessary to refine the web element selection mechanism and
be able to identify the correct web element. A short locator
might omit important information that is necessary to cor-
rectly identify the web element of interest. Future research
could investigate the correlation between locator length and
locator fragility. Such an investigation would let researchers
know about situations in which long locators are more ro-
bust than short ones. Similarly, this empirical study would
inform developers about the situations in which short loca-
tors are more robust than long ones.

6. RELATED WORK

Considerable research has been devoted to the develop-
ment of record/replay tools for testing web applications.
These tools allow software engineers to record user inter-
actions and replay them. Such recordings can be used for
regression testing new versions of a web application. Also,
these recordings can serve as bug reports demonstrating the
occurrence of the failure during the replay process. Warr [1]
is a tool that was developed for recording and replaying any
sequence of user interactions with high fidelity within a web
application. Timelapse [2] is a capture/replay tool that de-

terministically records and replays a sequence of user inter-
actions within the web application under test. Timelapse
records not only user inputs but also network callbacks.
Timelapse replays user interactions by suppressing “live”
variables and only re-delivering recorded inputs. It memo-
izes persistent JavaScript states (browser cookies, local stor-
age, etc.) and environmental data(current time, screen size,
etc.). Mugshot [12] is a capture/replay tool that allows
developers to deterministically record and replay user inter-
actions in a web application. This tool facilitates root-cause
analysis given a specific failure and offers insight into the
web application’s execution.

Other research has focused on regression testing for web
applications. Hirzel [6] proposes a selective regression test-
ing approach for testing web applications created using the
Google Web Toolkit. The technique specifies which tests
need to be rerun by comparing Java code for two versions of
the web application and tracing it back to JavaScript code.
Raina et al [15] developed an automated tool for perform-
ing regression testing at the level of web applications. The
tool achieves effective regression testing by comparing the
changes that were applied to different versions of a web ap-
plication. Zhou et al [21] developed a pattern-based auto-
mated testing framework, called UTF (User-oriented Testing
Framework) for regression testing web applications. UTF
offers an easy creation and maintenance process for web ap-
plication test scripts by identifying invariant structural pat-
terns in the DOM trees of the web pages under test.

Other researchers have developed techniques for automated
test generation at the level of web applications. Torsel [17]
developed a model-based testing technique for performing
black box testing in web applications. The approach pro-
duces fully automated test scripts for a given web applica-
tion. Milani Fard et al [13] propose an approach based on
mining human knowledge from existing test suites created
by humans. Milani Fard et al couple the inferred knowl-
edge from these test suites with the capabilities of an auto-
mated crawler in order to generate new test cases for uncov-
ered/unchecked portions of the web application.

7. CONCLUSIONS

We presented a survey discussing different topics related
to web application testing. We considered eight different
conference papers and we were able to cluster them into
three distinct categories, namely (1) test repair, (2) preven-
tion of test breakages and facilitation of test maintenance
and (3) empirical studies. This survey provides an overview
of the state of the art with respect to testing web applica-
tions. Hence, this survey could guide researchers and inform
them about the problems that have not been addressed yet
by the state of the art. This survey could orient researchers
towards problems that are worth considering as future re-
search directions in the context of testing web applications.

8. REFERENCES

[1] S. Andrica and G. Candea. Warr: A tool for
high-fidelity web application record and replay. In
Dependable Systems Networks (DSN), 2011
IEEE/IFIP 41st International Conference on, pages
403410, June 2011.

[2] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst.
Interactive record/replay for web application

[10]

[11]

[12]

debugging. In UIST 2013: Proceedings of the 26th
ACM Symposium on User Interface Software and
Technology, pages 473-484, St. Andrews, UK,
October 8-11, 2013.

S. R. Choudhary, D. Zhao, H. Versee, and A. Orso.
Water: Web application test repair. In Proceedings of
the First International Workshop on End-to-End Test
Script Engineering, ETSE 11, pages 2429, New
York, NY, USA, 2011. ACM.

M. Grechanik, Q. Xie, and C. Fu. Maintaining and
evolving gui-directed test scripts. In Proceedings of the
31st International Conference on Software
Engineering, ICSE 09, pages 408—418, Washington,
DC, USA, 2009. IEEE Computer Society.

M. Harman and N. Alshahwan. Automated session
data repair for web application regression testing. In
Software Testing, Verification, and Validation, 2008
1st International Conference on, pages 298-307, April
2008.

M. Hirzel. Selective regression testing for web
applications created with google web toolkit. In
Proceedings of the 2014 International Conference on
Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools,
PPPJ ’14, pages 110-121, New York, NY, USA, 2014.
ACM.

M. Leotta, D. Clerissi, F. Ricca, and P. Tonella.
Capture-replay vs. programmable web testing: An
empirical assessment during test case evolution. In
Reverse Engineering (WCRE), 2013 20th Working
Conference on, pages 272—281, Oct 2013.

M. Leotta, A. Stocco, F. Ricca, and P. Tonella.
Reducing web test cases aging by means of robust
xpath locators. In Software Reliability Engineering
Workshops (ISSREW), 2014 IEEE International
Symposium on, pages 449-454, Nov 2014.

M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Using
multi-locators to increase the robustness of web test
cases. In Software Testing, Verification and Validation
(ICST), 2015 IEEE 8th International Conference on,
pages 1-10, April 2015.

A. Lozano, M. Wermelinger, and B. Nuseibeh.
Assessing the impact of bad smells using historical
information. In Ninth International Workshop on
Principles of Software Evolution: In Conjunction with
the 6th ESEC/FSE Joint Meeting, IWPSE ’07, pages
31-34, New York, NY, USA, 2007. ACM.

A. Marchetto, F. Ricca, and P. Tonella. Empirical
validation of a web fault taxonomy and its usage for
fault seeding. In Web Site FEvolution, 2007. WSE
2007. 9th IEEFE International Workshop on, pages
31-38, Oct 2007.

J. Mickens, J. Elson, and J. Howell. Mugshot:
Deterministic capture and replay for javascript
applications. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’10, pages 11-11, Berkeley, CA,
USA, 2010. USENIX Association.

A. Milani Fard, M. Mirzaaghaei, and A. Mesbah.
Leveraging existing tests in automated test generation
for web applications. In Proceedings of the 29th
ACM/IEEE International Conference on Automated

(15]

(16]

(18]

(19]

(21]

Software Engineering, ASE 14, pages 67-78, New
York, NY, USA, 2014. ACM.

H. Pirzadeh and S. Shanian. Resilient user interface
level tests. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software
Engineering, ASE 14, pages 683688, New York, NY,
USA, 2014. ACM.

S. Raina and A. P. Agarwal. An automated tool for
regression testing in web applications. SIGSOFT
Softw. Eng. Notes, 38(4):1-4, July 2013.

A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Why
creating web page objects manually if it can be done
automatically? In Proceedings of the 10th
International Workshop on Automation of Software
Test, AST ’15, pages 70-74, Piscataway, NJ, USA,
2015. IEEE Press.

A.-M. Torsel. Automated test case generation for web
applications from a domain specific model. In
Computer Software and Applications Conference
Workshops (COMPSACW), 2011 IEEE 35th Annual,
pages 137-142, July 2011.

M. Tufano, F. Palomba, G. Bavota, R. Oliveto,

M. Di Penta, A. De Lucia, and D. Poshyvanyk. When
and why your code starts to smell bad. In Proceedings
of the 37th International Conference on Software
Engineering - Volume 1, ICSE ’15, pages 403—414,
Piscataway, NJ, USA, 2015. IEEE Press.

R. Yandrapally, S. Thummalapenta, S. Sinha, and

S. Chandra. Robust test automation using contextual
clues. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA
2014, pages 304-314, New York, NY, USA, 2014.
ACM.

M. Zhang, T. Hall, N. Baddoo, and P. Wernick. Do
bad smells indicate "trouble” in code? In Proceedings
of the 2008 Workshop on Defects in Large Software
Systems, DEFECTS ’08, pages 43—44, New York, NY,
USA, 2008. ACM.

J. Zhou and K. Yin. Automated web testing based on
textual-visual ui patterns: The utf approach.
SIGSOFT Softw. Eng. Notes, 39(5):1-6, Sept. 2014.

Table 1:

Summary of the Empirical Studies

Empirical | 4.3.1- Capture-replay vs. programmable web testing: 4.3.2- Empirical vah('iatlon of a
. . . fault taxonomy and its usage
Study An empirical assessment during test case evolution .
for fault seeding
;igrr}l)}ss;;;s;;gizetzgizté?;;1me, repair time for record/replay ~Create a web fault taxonomy that is
Purposes -Determine the number of releases after which programmable test ‘S;);;lfc tso faults encountered within
suites become more cost effective than record/replay test suites PP
-Install six web apps(with two releases for each)
-Create Selenium WebDriver test suites
-Create equivalent Selenium IDE test suites _Create an initial top down taxonom
-Measure the amount of time required for test suite creation at the , P . Y
. based on authors’ assumptions
level of Selenium IDE test suites and Selenium WebDriver test suites . . .
Approach -Apply four iterations in order to refine
-Measure the amount of time required for test suite repair at the level the taxonomy by splitting classes
of Selenium IDE test suites and Selenium WebDriver test suites merein clasges y deII)e tin gclasses ;} tc
-Count the number of releases after which the cumulative time for the sme ’ & ’
creation and the repair for Selenium WebDriver test suites becomes
lower than the same cost for Selenium IDE test suites

Table 2: Summary of the Approaches

4.1.2- Multi- 4.1.3- Session 4.2.2- Contextual 4.2.3- Page Objects:
Approach | 4.1.1- Water Locator Data 4.2.1- ROBULA Clues APOGEN
Repairs user Prevents locator Facilitates test script
Approach SHggests repairs Repairs broke? XPath . session ('lat.a' by') Prevents XPath })reak'ag'es .by mamtena’mce by)
Type for broken locators, locators by using a voting | performing individual locator breakages identifying elements automatically generating
yp assertions and values | procedure URL repairs and based on their page objects for the
sequence repairs contextual clues web app under test
‘Web App
Changes Structural and Structural and Structural and Structur'al
under losi Structural changes .) Structural changes .) and Logical
. ogical changes Logical changes Logical changes
considera- changes
tion
-Updated user . .
. . -More robust XPath | -Web element -Page objects encapsulating
-Repairs for all types . session data . L . 2 .
of locators -Repaired XPath locator that is applicable locators, which are localization strategies | the implementation
Solution R . (The most voted XPath § . less likely to break relying on the use details within the test case
-Repairs assertions to the new version . ; - . A
. locator) in a new release of contextual -Test scripts that are limited
-Repairs values of the web app . ” .
under test of the web app clues to testing logic

Table 1 summarizes the purposes and the approaches that
were followed for conducting the two empirical studies pre-
sented in sections 4.3.1 and 4.3.2.

Table 2 summarizes the approaches presented in this pa-
per. For all of the approaches presented in sections 4.1 and
4.2, table 2 presents the approach type, the web application
changes taken into consideration and the solution offered by
the approach.

