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Abstract

Quality of Service is an inevitable issue needing to be deal with in task scheduling of cloud computing. This paper proposes
a task scheduling algorithm based on QoS-driven for cloud computing. Firstly, in order to reflect the precedence relation of
tasks, the proposed algorithm computes the priority of tasks according to the special attributes of tasks, and then sorts tasks
by priority. Secondly, the algorithm evaluates the completion time of each task on different services, and schedules each
task onto a service which can complete the task as soon as possible according to the sorted task queue. The experimental
results based on CloudSim show that the algorithm can achieve good performance and load balancing by QoS driving from
both priority and completion time.
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1. Introduction

Cloud computing is a new mode of business computing, and it promises to provide reliable services through
“Cloud” centers built on virtualized computing and storage technologies [1]. From a “Cloud” anywhere in the
world, users can gain computing power, storage and a variety of software services by using a variety of
applications, and pay based on what they use. It is a key issue how to dispatch efficiently and reasonably tasks
of users to different resources according to the Quality of Service (QoS) requirements of both Cloud
Computing Center and users, which belongs to task scheduling.

However, the scheduling of applications for parallel and distributed computing systems is one of the most
challenging NP-complete problems [2]. Currently the NP-completeness of the scheduling problem has inspired
researchers to propose numerous heuristic algorithms, such as Min-Min, GA, SA, A*, etc [3]. Many improved
algorithms [4, 5] based on existed algorithms are proposed to meet the requirement of environments.
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QoS is the collective effort of service performance, which determines the degree of satisfaction of a user for
the service [6]. Commonly, QoS is expressed by the following qualitative measures, such as completion time,
latency, execution price, packet loss rate, throughput and reliability.

In order to meet the QoS of cloud computing, the paper [7] proposed a job scheduling algorithm based on
Berger model. The algorithm establishes dual fairness constraint. Firstly it classifies tasks by QoS preferences,
and establishes the general expectation function in accordance with the classification of tasks. Secondly it
defines resource fairness justice function to judge the fairness of the resources allocation. According to
constraints, the algorithm always assigns tasks onto the optimal resources in order to satisfy the QoS
requirements of users. In paper [8], a reliability-driven scheduling architecture was designed to meet task
dependency applications’ reliability requirements. A reliability priority rank (RRank) was introduced to
estimate task’s priority by considering reliability overheads. Furthermore, based on directed acyclic graph
(DAG), a scheduling algorithm with duplication for precedence constrained tasks was proposed to achieve
reliability for applications. Paper [9] presented slot selection algorithms in economic models for independent
job batch scheduling in distributed computing with non-dedicated resources. It divided the scheduling of the
job batch into two phases. With an eye to efficiency and economic policy, a scheduling scheme that features
multi-variant search was built. In order to maximize resource utilization and acceptance of leases for the
infrastructure as a Service (IaaS) clouds, paper [10] provided a scheduling algorithm to support deadline
sensitive leases in Haizea to minimize request rejection rate while satisfying resource allocation policies
offered by cloud provider.

This paper proposes a task scheduling algorithm based on QoS-driven in Cloud Computing (TS-QoS). The
TS-QoS computes the task priority according to attributes of task such as user privilege, the priority
expectation to be scheduled, task lengthen and the pending time of task in queue. Then tasks are sorted by the
priority. And in the scheduling process, each task is assigned onto the service with the minimum completed
time over all available services.

The rest of the paper is organized as follows: Section 2 gives related works. Section 3 gives detailed
description of the TS-QoS. Section 4 describes the simulation experiment and experiment analysis. Section 5
gives the conclusions.

2. Task scheduling Model

In order to adapt to the parallel and distributed cloud computing environment and deal with QoS scheduling,
we adopt the dynamic batching mode. In this mode, tasks are not mapped onto services as they arrive; instead
they are collected in a set that is examined for mapping. And according to the collected information including
the requirements of all tasks and the real-time state of all services, we can design more reasonable scheduling
strategy to deal with QoS.

In this paper, we deal with QoS scheduling based on following strategies: (1) the task owned higher priority
should be scheduled prior to tasks with lower priority; (2) a task should be completed as soon as possible.

2.1. The service description

In cloud computing, resources are encapsulated into services. Supposing a service set is denoted as
Service(m), then, Service(m) = {81, So, S3..., S, ..., Su}. Where, mEN, N is a natural number, and
S8;,€ Service(m), y< 1, m]. Then, we define a service §;by a multi-tuple as follows:

8= {SID, SProvider, SServicename, SAbility}

Where, each attribute of service 5; is described as follows:

(1) 7D is ID of S

(2) SProvideris the provider of §;
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(3) SServicename exposes name of service and method of service, etc;
(4) SAbility is service ability of §;, which mainly includes computing power, communication bandwidth and
storage capacity. We set SA4b:/ity = {processor, bandwidth, storagey}.

2.2. The task description

Task is medium or container that expresses or holds requirements of users. Generally task has been
classified into the independent meta-task and the dependent task. Here, we only discuss meta-task. Supposing a
meta-task set is denoted as Zask(z), then, 7ask(n) = {77, 7>, 7% ,..., 7,,..., 7,}. Where, nE /N, NV is a natural
number, and 7;€ Zask(n), /< [1, #]. Then, we define a meta-task 7;by a multi-tuple as follows:

T={71D, TUserType, TServipe, TPriorExp, TA4bilReg, 7L, TArrilime, 7State, TData}

Next is a detailed account of meta-task 7.

(1) 77D is 1D of meta-task 7

(2) 7UserZype stands by the privilege class of owner of 7. Referring to the commercial mode, we set
TUserTipe€ {4, B, C};

(3) ZServ7ipe denotes the expected services of task 77

(4) 7PriorExp is the expected scheduled priority of 77, which shows the urgency of task 7;to be scheduled.
Expected scheduled priority includes urgent priority, high priority, middle priority and low priority. So, we set
TPriorExp € {urgent, high, mid, low?};

(5) 7A4bilReq denotes the service ability expectation to execute task 7;. Responding to the service definition,
we set 7A4bilReq = {processor, bandwidth, storage};

(6) 7Z is the task length of task 7. Here we assume 7Z is the number of instructions that the loop unrolled
contained in task 7. And it shows the computing workload of the task;

(7) ZArri7ime is the submitted time of task 77;

(8) 7Srate is the current state of task 77, including idle, suspending, mapping, executing and completed;

(9) 7Data is the input data and output data, which would be stored into files.

From the definition of task, we can see that tasks maybe focus on computing, or communication, or storage,
or their combination. In next section, we only discuss the computing task.

2.3. The priority computation of tasks

The priority is a comprehensive concept. Here, we estimate and calculate priority of tasks through user
privileges, the urgency that tasks are scheduled, and the latency time queuing up and the task workload.

According to the task description, the user privilege corresponds to 7User7jpe, the urgency that tasks are
scheduled matches 7Prior£xp. Here, we just discuss the computing workload about task workload, so we
denote the task workload as 7Z. And the latency time (£7) queuing up can be calculated by the current time and
TArriTime. After introducing Z7 into priority of the task, the priority can change dynamically and increase
continuously. This can solve “starving to death” issue, and follow the “first come first served” principle.

The priority is a hybrid concept which involves many attributes of task. In order to merge attributes into
priority, we apply a normalization concept. Normalization can speed up data convergence by converting and
mapping data within a certain range, and convert a dimensional data into a non-dimensional data. And it can
dispel the adverse effect on the hybrid priority because of a wide difference among values of different attributes.
Here, we use linear conversion, the formula is as follows.

Y. = (x,— MinValue)|(MaxValue— MinValue) (1)

where, Z;is the normalization result of special attribute of task 77 .t; is the value of special attribute of task
7}, MaxValue and MinValue are the maximum and minimum value of special attribute from all tasks waiting to
be scheduled respectively.
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According to the above normalized attributes of tasks, we calculate the priority of tasks as follows.

Py=ax NTU,+ Bx NITP.+yx NITL,+wx NLT, 2)

Where, A() is the priority of task 7. o, 8,7, € [0,1] are weights of priority, and ot + f +y + @ =1. Of
course, it would have different impact on task priority by adjusting weights o, B, v,@ . N7U;, NTP; NTL;, NLT;
are the normalization for 7User7ype, 7Priorkxp, 71, L7 of task 7;respectively.

2.4. The service selection for completion time

It can reduce the completion time of tasks to complete tasks as soon as possible. Of course, to reduce the
completion time of a task would shorten latency of the remainder tasks in queue. In order to carry out the
strategy, we need to compute the completion time of each task on different services in the scheduling process.
And some terminologies about the completion time are described as follows [10].

Definition 1. The expected execution time of task 77 is the amount of time taken by service .5, to execute 77
given that .5 has no load when 7;is assigned.

Definition 2. The expected time to computed (£7C) matrix is a matrix that is stored on the scheduling
system where the mapping is stored, and contains the estimates for the expected execution times of all tasks on
all services. In an £7C matrix, the elements along a row indicate the estimates of the expected execution times
of a given task on different services, and those along a column give the estimates of the expected execution
times of different tasks on a given service. Where the enz71(7,/) is the expected execution time of task 7; on
service 5}, and we can denotes it as £7C(7).

Definition 3. The start time ($7) matrix is a matrix that is stored on the scheduling system, and it contains
the estimates for the earliest time that can be used for services after these services have executed and completed
tasks allocated on. Where the ezz71(/) is the start time of service .5, and we can denotes it as S7()).

Definition 4. The minimum completion time (4/C7) matrix is a matrix that is stored on the scheduling
system where the mapping is stored, and contains the estimates for the expected completion times of all tasks
on all services. In an #/C7 matrix, the elements along a row indicate the estimates of the expected completion
times of a given task on different services, and those along a column give the estimates of the expected
completion times of different tasks on a given service. Where the en#1(7y) is the expected completion time of
task 77 on service 5, and we can denotes it as 4/C7(7/). And the formulation of 4/C7(z/) is as follows:

MCT(, ) = ETC(, )+ ST()) A3)

From the above terminologies, we can see that the element 4/C7{z/) in an AM/C7 matrix records the total
expected completion times of different tasks on a given service ;. In fact, the total completion time of each
service is the computing load of the service. That is to say, the greater the value for the element 4/C7(7,), the
heavier the load of service ;. Load balancing is a very important metric of task scheduling, which impacts on
fairness and efficiency of the system.

To schedule each task onto a service which has the minimum value of #/C7(7,), in that way, tasks would be
completed as soon as possible. That is to say, it can help to reduce the completion time of tasks and achieve
well load balancing.

2.3, The I5-QoS scheduling algorithm

Based on the above definitions and methods, the idea of TS-QoS algorithm is as follows: firstly, to compute
the priority of tasks based on their normalized attributes in order to reveal the difference of tasks; then, to sort
and schedule tasks by their priority; in order to reduce the completion time, in the scheduling process, to set
and update MCT matrix by computing the completion time of each task on different services, and search the
minimum element value for each task in the row of updating MCT matrix, then, record the special service
relating to the minimum element value in the matrix; finally, to schedule the task onto the special service. The
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process of TS-QoS algorithm is shown as follows.

Algorithm 1: the TS-QoS algorithm
Input: Zask(7), Service(m);
Output: the scheduled list.
Begin
for task set ZasA(z)
{ quantify the value of special attributes for task 7
normalize the value of special attributes for task 7; according to the formula (1);
compute the priority of task 7;according to the formula (2);
H
sort task set Zzs#(#) by the priority of tasks;
initialize £7C matrix and #/C7 matrix;
initialize the mapping list;
for the sorted task set 7asA(7)
{ for service set Service(mr)
{ lookup for the minimum A/C7(z,) for task 77
record service §;;  // service $y has minimum completion time
}
create a new mapping pairing (77 ;) in the mapping list;
update #/C7 matrix;
delete task 7; from task set 7zsi(7);
§
for the mapping list
{ schedule task 7;on service ;according to the mapping pairing (77, 5); }
End

3. Experimental Evaluation

Cloud computing is an open platform. And it consists of multiple distributed Data Centres. Data Centre
constructs all kinds of resource pools by virtualizing physical resources, and encapsulates resources into
services. Cloud users submit their requests through a variety of cloud applications established by cloud service
providers. Subsequently user requests are formed tasks and are submitted to the Data Centre. And according to
the scheduling strategies and the monitored state of resources, Data Centre schedules each task into the
appropriate service.

To evaluate the proposed algorithm, we developed an extensive simulation platform based on CloudSim 2.1
to simulate cloud environment by creating Data Centre and many cloud users. We created Virtual Machines
(VM) to provide cloud services by Data Centre, and create many cloud tasks based on the requests of users.
Then, tasks are scheduled based on the scheduled algorithms. Here, we implement three task scheduling
algorithms: the TS-QoS algorithm, the Min-Min algorithm [3] and the Berger model [7]. The machine running
CloudSim is configured with Intel Pentium dual-core processor 2.66GHz, 4GB memory.

3. 1. The evaluating metrics

In the experiments, we tested the above three algorithm using following common metrics: execution time
span (Makesparn), the average waiting time of long task (4veragelatency) and load balancing indexing (O ).
The concepts of these metrics are as follows.

(1) Makespan is the length of the time interval beginning with the processing of the initial task and ending
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with the completion of the last required task. The AMakespan is a characteristic of the scheduling algorithm. The
smaller Makespan is, the better the performance of algorithm is.

(2) Averagelatency is measured by the ratio of the total waiting time of all long tasks and the number of all
long tasks.

(3) O is a metric that measures whether a system is well load balancing. 0 is measured by the standard
deviation of load of all nodes. The smaller O is, the better load balancing is. The formula of O is as follows:

“4)

Where, n € /is the number of computing nodes, /Vis a natural number; .X;is the load of the node 7 and X "is
the average load of all nodes. In next experiments, a node is a virtual machine.

3.2, Simulation setup

In simulation experiments, we test above metrics for three algorithms with 200~2000 tasks in 50 or 100
virtual machines respectively. The simulated parameters are set as follows.

(1) To set virtual machines according to the description in section 2.1. Where, processor is limited in [500,
600]; bandwidth is limited in [5, 10]; szorage is limited in [500, 1000];

(2) To create tasks according to the description in section 2.2. Where, long tasks account for 10% of all tasks.

And the size of long tasks is limited in [40000, 60000], the size of common tasks is limited in [10000, 20000].
In all tasks, the A class task account for 10%, the B class task is 20%, the C class task is 70%. And we set the
expectation of tasks as follows: processor is limited in [400, 800], bandwidt/ is limited in [4, 8], storage is
limited in [400, 800].

(3) To quantify attributes 7UserZipe and 7PriorExp of task as follows, set 7UserZipe< {1.2, 1.1, 1.0};
TPriorExpe{1.3,1.2,1.1, 1.0}.

(4) To set priority weights o, ,7,® as follows: a =0.4, 5 =0.3, ¥ =0.2, @ =0.1.

3.3, Experiments and results analysis

3.3.1 Effect of Makespan

Under the same environment, the tested averages of Makespan of three algorithms for 10 times with
200~2400 tasks in 50 or 100 virtual machines are illustrated in Fig 1.

= 100000 | ™ TS-QoS = 100000 | ™ TS-QoS
i B Min-Min i B Min-Min
E] 50000 3 50000 -
%_ Berger Model %_ Berger Model
P P
g 0 ] 0
200 | 400 | 800 | 1200 | 2400 200 | 400 | 800 | 1200 | 2400
B TS-QoS 377.7 | 701.9 | 921.2 |1613.6|2852.9 B TS-QoS 237.4 | 459.8 | 685.6 | 1170.7|1988.7
B Min-Min 349 | 525.5| 855 |1457.6]2786.4 B Min-Min 255.3 | 430.7 | 592.6 | 1005.1|1824.1
Berger Model | 7682.3 | 15402 | 22955 | 38471 | 76968 Berger Model |6524.6 | 12736 | 19328 | 32181 | 65139
The number of tasks The number of tasks
Fig. 1. (a) The tested averages of Makespar using SOVM (b) The tested averages of Makesparn using 100VM

Fig 1 shows that, the Makespan in the Berger model is higher than that of the TS-QoS and the Min-Min. It is
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because the Berger model always assigns tasks onto the optimal resources in order to satisfy the user
requirements for QoS absolutely. This leads that all the tasks were accumulated on few optimal resources. It
makes Makespan greater. The Makespan in the TS-QoS is similar as that of the Min-Min algorithm, because
both have same time complexity of O(7”xm) if there are n tasks and m resources. Also, it can be shown that the
Matkespan is reducing with the increase of virtual machines (VM) for the same number of tasks.

3.3.2 Effect of Averagelatency

Under the same environment, the tested averages of Averagelatency of three algorithms for 10 times with
200~2400 tasks in 50 or 100 virtual machines are shown in Fig 2.

2 so000 | | 1oQ0S 7 40000 | ™ TS-QS

;; B Min-Min 5 o000 - B Min-Min

3 Berger Model : Berger Model

] 0 ] 0

0 200 | 400 | 800 | 1200 | 2400 n 200 | 400 | 800 | 1200 | 2400

: B TS-QoS 92.97 | 213.5 | 311.5 | 555.2 | 1104.7 : B TS-QoS 39.6 | 133.4|211.7 | 403.2 | 732.8
B Min-Min 147.1 | 312.9 | 483.9 | 896.2 |1084.4 B Min-Min 80.3 |205.7 | 335.1 | 582.5|1182.6

Reroer Madel [3616.4 (7742 31 11220 | 19935 | 39013 Berger Model [2763.8| 5323 [7936.1] 13724 | 28166
The number of tasks The number of tasks

Fig. 2. (a) The tested averages of Averagelatency using SOVM (b) The tested averages of 4veragelarency using 100VM

Fig 2 shows that, the 4veragelatency in the Berger model is the highest because of its scheduling strategy
and lacking of consideration for long tasks. Compared with the Min-Min, the TS-QoS has lower
Averagelatency. This is because that the length of task has been introduced into the priority, and then long
tasks have higher priority and are scheduled earlier. Lower Averagelatency helps to reduce Makespan.

3.3.3 Effect of load balancing indexing &

Under the same environment, the tested averages of O of three algorithms for 10 times with 200~2400 tasks
in 50 or 100 virtual machines are illustrated in Fig 3.

i 20000 1 ™ TS-QoS l 10000 = ™ TS-QoS

3 B Min-Min 5 B Min-Min

g 10000 - B

§ Berger Model § Berger Model

2 0 2 0

P 200 | 400 | 800 | 1200 | 2400 P 200 | 400 | 800 | 1200 | 2400
B TS-QoS 51.3 | 88.5 | 100 | 174.9 | 289.3 B TS-QoS 319 | 52.7 | 69.4 | 95.6 | 165.1
B Min-Min 67.2 | 48.7 | 65.3 | 195.2 | 651.8 B Min-Min 41.8 | 64.9 | 70.6 | 117.6 | 199.6

Berger Model | 1072 |2148.9 [3202.6|5367.5 | 10739 Rerger Model | 662.8 |1296.7 | 1958.5 |3277.86601.3
The number of tasks The number of tasks

Fig. 3. (a) The tested averages of /oad balancing using SOVM (b) The tested averages of /oad balancing using 100VM

Fig 3 shows that O in the Berger model is the highest because all the tasks were accumulated on the few
optimal resources according to its scheduling strategy. This cause the few optimal resources had the highest
load, and the system is load imbalance. And & in the TS-QoS is lower than that of the Min-Min algorithm.
This is because that the TS-QoS algorithm assigns each task onto services which have the minimum completion
time in the process of scheduling. In additional, the long tasks have higher priority and are scheduled earlier,
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which avoids worsening load balancing. Also, it shows that O is reducing with the increase of virtual machines
(VM) for the same number of tasks.

4. Conclusions

In this paper, we propose a task scheduling algorithm based on QoS-driven in Cloud Computing. The
proposed algorithm blends many task attributes including user privilege, expectation, task length and the
pending time in queue to compute the priority and sorts tasks by the priority. And the algorithm schedules each
task onto a service which has minimum completion time. The experimental results show that the algorithm
achieves well performance and load balancing by QoS driving from both priority and completion time.
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