
 Procedia Computer Science 18 (2013) 928 – 935

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.258

International Conference on Computational Science, ICCS 2013

Cost-Based Multi-QoS Job Scheduling using Divisible Load
Theory in Cloud Computing

Monir Abdullaha, Mohamed Othmanb,1

aDepartment of Information Technology, Faculty of Computer Science and Information Systems, Thamar University, Thamar, Yemen
bDepartment of Communication Technology and Network, Faculty of Computer Science and Information Technology, Universiti Putra

Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia

Abstract

The advent of cloud computing as a new model of service provisioning in distributed systems, encourages researchers to

investigate its benefits and drawbacks in executing scientific applications such as workflows. In this research, we attempt to

investigate the use of a Divisible Load Theory (DLT) to design efficient strategies to minimize the overall processing time

for scheduling jobs in compute cloud environments. We consider homogeneous processors in our analysis and we derive a

closed-form solution for the load fractions to be assigned to each processors. Our analysis also attempts to schedule the jobs

such a way that cloud provider can gain maximum benefit for his service and Quality of Service (QoS) requirement user’s job.

Finally, we quantify the performance of the strategies via rigorous simulation studies.

Keywords: Cloud computing, Job scheduling, Load balancing, Divisible load theory, Multi Quality of Services.

1. Introduction

Cloud computing is a recent trends of technology, where user can rent software, hardware, infrastructure and

computational recourse as per user basis [1]. Users can submit their jobs into cloud for computational processing

or leave their data in cloud for storage. Different users has different QoS requirement. cloud scheduler must

be able to schedule the jobs such a way that cloud provider can gain maximum benefit for his service and QoS

requirement user’s job is also satisfied.

In DLT in case of clouds, an arbitrarily divisible load without having any previous relations is divided and

first distributed among the various processors (for simplicity here the load is divided equally between the master

computers), so that the entire load can be processed in shortest possible amount of time. An important reason for

using DLT is its flexibility, tractability, data parallelism, computational difficulties [2, 3, 4].

Moreover, in order to realize the full potential of the cloud platform, an architectural framework for efficiently

coupling public and private clouds is necessary. As resource failures due to the increasing functionality and

complexity of hybrid cloud computing are inevitable, a failure-aware resource provisioning algorithm that is

capable of attending to the end-users QoS requirements is paramount [5].

∗Corresponding author. Tel.: +967-01-505258 ; fax: +967-06-425094 .
1The author is also an associate researcher at Computational Science and Mathematical Physics Lab., Mathematical Science Ins., UPM.

E-mail address: monir.yem@gmail.com, mothman@fsktm.upm.edu.my.

Available online at www.sciencedirect.com

929 Monir Abdullah and Mohamed Othman / Procedia Computer Science 18 (2013) 928 – 935

In the traditional networked computing systems such as grid environments, by and large, the number of CPUs

available is fixed. A compute cloud being an environment that is said to offer an ”elastic service” (automatic scal-

ing of resources as per the demand), motivates us to use a compute cloud system which is ideal for incorporating

changes in resource requirements [6].

Our contributions can be summarized as follows. With the principle that all participating processors stopped

computing at the same time instant, the closed-form formulas for both processing time and workload fraction for

each processor are derived. We also consider cost-based multi-QoS scheduling on a compute cloud environment

[7].

The rest of the paper is organized as follow: section 2 gives with related works; in section 3, a cloud scheduling

environment and a set of mathematical equations has been developed to formulate the problem; in section 4 we

gives the new derived DLT model to address this problem; section 5 gives the experimental results; the last part

concludes with future work.

2. Related Works

In cloud computing, end users do not own any part of the infrastructure. The end-users simply use the services

available through the cloud computing paradigm and pay for the used services. The cloud computing paradigm

can offer any conceivable form of services, such as computational resources for high performance computing

applications, web services, social networking, and telecommunications services [8].

DLT has proven to be a valuable tool in handling large-scale computational loads on networked systems for

various aerospace data and image processing applications [6]. Although DLT uses linear modeling, recent studies

also show the use of the DLT paradigm in handling computation that demands a nonlinear style of processing [9].

DLT was successfully applied for Scheduling divisible loads on large scale data Grids and produced competitive

results [10, 11, 13].

Recently, DLT paradigm was investigated to design efficient strategies to minimize the overall processing time

for performing large-scale polynomial product computations in compute cloud environments. A compute cloud

system with the resource allocator distributing the entire load was considered to a set of Virtual CPU Instances

(VCI) and the VCIs propagating back the processed results to resource allocator for postprocessing [6]. Further-

more, a programming pattern for programmers was proposed to easily develop high performance applications on

dynamic and heterogeneous cloud environments using DLT paradigm [12]. This pattern uses a performance-based

approach to distribute workloads within a program to working nodes to reduce scheduling overhead.

Moreover, the scheduling strategy should be developed for multiple workflows with different QoS require-

ments. In [7], a multiple QoS constrained scheduling strategy of multi-workflows (MQMW) was considered to

address this problem. The strategy can schedule multiple workflows which are started at any time and the QoS

requirements are taken into account. Here, the indivisible jobs only considered.

To the best of our knowledge, DLT model considering cost-based multi-QoS scheduling has not been applied

in compute cloud. In this research, a DLT paradigm will be used to address this problem.

3. Scheduling Environments and Cost Models

3.1. Scheduling model environment

The proposed model of scheduling environment mainly consists of five components [14]:

1. A set of users (cloud customers): There are lots of cloud end-users who want to get service from cloud.

They are seeking for different kind of service (like computational service, platform service, infrastructure

service) having different level of QoS (may have different cost and deadline, possibly different priority).

Users can submit their job in preprocessing unit.

2. Preprocessing unit and task classifier: This unit takes user’s job and performs some preprocessing and

classification. This unit consists of two sub components:

(a) Preprocessing unit, which is responsible to perform the attributes of different job and QoS. It also en-

codes the attributes into Users Job Attribute Vector (UJAV). The UJAV includes Expected Instruction

Count (EIC), job deadline and delay cost (Rials/ time unit).

930 Monir Abdullah and Mohamed Othman / Procedia Computer Science 18 (2013) 928 – 935

(b) Task classifier, which classifies the task based on attributes, determine by first sub-unit. For example,

job can be classified into different type based on service: Software as a Service (SaaS), Platform aaS

(PaaS) and Infrastructure aaS (IaaS). Then it sends jobs to scheduler for scheduling into an appropriate

Queue.

3. Data center /Executer: This a main component of which is responsible for providing user service. Data

center mainly consist of a number of storage resource (storage unit and storage server), a collection of

virtualized machine and a collection of computational resources (mainly processing unit). This paper con-

siders only computational resource. Each processing unit takes job from corresponding dispatcher queue

and schedule by scheduler.

4. Data center manager: It collects recent Process Unit Attribute Vector (PUAV) from different processing

unit. The PUAV includes Million Instructions Per Second (MIPS) that indicate how many instructions can

be executed by the machine per second and the cost of execution the instruction.

5. Job scheduler: It takes two inputs, one from preprocessing unit and other from datacenter manager, it

gets information what QoS is required by a user from associated UJAV and it can also determine which

processing unit can optimally satisfy that QoS from PUAV. Thus main task of the job scheduler is to perform

an optimal mapping from job to processing unit as in Fig. 1.

Fig. 1. Cloud Scheduling Environment

3.2. Optimality criterion
In all the literature related to the divisible load scheduling domain so far, an optimality criterion [2] is used to

derive an optimal solution as follows. It states that in order to obtain an optimal processing time, it is necessary

and sufficient that all the sites that participate in the computation must stop at the same time. Otherwise, load could

be redistributed to improve the processing time. The timing diagram for this distributed system in the optimal case

is depicted in Fig. 2.

3.3. Notations and definitions
The notations and definitions that are used throughout this paper are shown in Table 1.

3.4. Cost Model
Let consider the following cost factor: ωi be the cost per instruction for processing unit i and β j indicates the delay

cost of job j. Suppose, M machines with N jobs and assign these N jobs into M machines (N=M), in such an

order that following condition can be satisfied:

Form user side, finish time (T f) must be less than the worst case completion time (Twcc), scheduling must be

done such way to preserve QoS and to avoid possible starvation as:

931 Monir Abdullah and Mohamed Othman / Procedia Computer Science 18 (2013) 928 – 935

Fig. 2. Timing diagram of the distribution strategy with M Jobs and N Processors

Table 1. Notations and definitions
Notation Definition

N The total number of jobs in the system

M The Number of the processors in the system

ωi The cost per instruction for processing unit i
β j The delay cost of job j
EIC j Indicates the expected instruction count per job j
Ψ j The estimated delay cost for job j
MIPS i Indicates how many million instructions can be executed by machine j per second.

T f ≤ Twcc

This condition must be satisfied anyhow, otherwise the job is considered as a failure job and the corresponding

scheduling is illegal.

From cloud provider side, to minimize the cost spend on the job: Suppose ith machine is assigned to jth job.

Then the cost for execution job j is:

IC j ∗ ωi

where IC is the instruction count. Let Ψ j , estimated delay cost for job j, can be defined as:

Ψj =

{
0 i f Td ≥ T f

δj ∗ (T f − Td) i f Td < T f (1)

where, Td is the deadline for job j and T f is the estimated finish time, when job j is assigned to processing unit

i. Thus overall cost to execute all M jobs can be given by:

ς =

M∑
i=1

((IC j ∗ ωi) + Ψj) (2)

Thus, cloud provider’s aim is to schedule jobs (i.e find a permutation: N → M such a way which minimize the

value of:

Min(ς) = min[

M∑
i=1

((IC j ∗ ωi) + Ψj)]. (3)

932 Monir Abdullah and Mohamed Othman / Procedia Computer Science 18 (2013) 928 – 935

As there are M number of machines and N number of jobs and assuming that all machines are capable to

perform any job, then there are total M ∗ N numbers of way to assignment. And if M = N, then it need M!

assignments, which has an exponential complexity O (M!). Thus this problem is a kind of NP-Complete problem.

A probabilistic search algorithm can solve this assignment problem in finite time. Here, we will discuss the cost

model for different types of jobs.

4. Proposed DLT Cost model

In this section, the proposed DLT model for scheduling divisible load on cloud environment. The closed form

solution for the load allocation are presented. Here, we will discuss step by step the derivation of a closed form

solution by which one can calculate the optimal fraction of the load that has to be assigned to each processing

node to achieve the minimum cost and the optimal data allocation for each processor. The scheduling diagrams

for divisible and indivisible jobs are shown in fig. 3.

Fig. 3. (a) scheduling indivisible jobs; (b) scheduling divisible jobs.

Based on [4], the fraction of load of each processors is:

αi =
1

ωi ·∑M
j=1

1
ω j

(4)

The total load that will be executed by each processor is:

Li = αi ·
M∑
j=1

IC j (5)

The cost of execution load Li in processor i is:

Costi = Li · ωi (6)

All processing units will finish the processing at the same same based on the DLT model. Because of that, the

finish time T fi of each job will be:

T fi =

∑M
j=1 IC j∑M

j=1 MIPS j
(7)

The estimated delay time for job i, can be defined as:

DelayT imei = T fi − Deadlinei (8)

933 Monir Abdullah and Mohamed Othman / Procedia Computer Science 18 (2013) 928 – 935

Here also we will implement same rule of indivisible jobs (see Equation (1)).

DelayCosti = DelayT imei ∗ δi (9)

The total cost Tc for scheduling N jobs on M processors is :

Tc =
M∑

i=1

Li · ωi +

N∑
j=1

DelayCost j (10)

5. Experimental Results and Discussions

To evaluate the performance of the model, it has been simulated to find best schedule for different number of

jobs and different number of machines. A number of jobs having different attributes are generated randomly

and also a number of processing unit having random attributes are generated randomly. We have examined the

overall performance of the model by running it under 100 randomly generated cloud configurations. For instance,

N different jobs (20 , 50 and 100) having different characteristics are given generated randomly. Similarly M
different process units (10, 20, 30, 40, and 50) attributes with random characteristics are generated. When was

applied the cost model, we have varied the job parameters uniformly: job deadline (1 to 10), delay cost (1 to 10),

EIC (100 to 1000). Also we uniformly distributed process units as: MIPS (10 to 100) and ω (1 to 10).

The simulation results proved that the proposed model will give good results in terms of total cost. Thus, we

will compare the performance of the model with different random configuration. The performance of the model

was compared in Table 2.

Table 2. Total cost vs. no. of processors for different no. of jobs.

No. of Processors No. of Jobs

100 50 20

10 468795.84 127024.04 41921.60

20 254998.58 108169.19 38832.78

30 221457.88 95340.75 37729.90

40 203984.40 94794.23 37111.98

50 197773.22 92100.83 36940.18

Fig. 4 clearly demonstrated the performance of the proposed model. We can see that when the the number of

nodes increases, the total cost decreases. Under all criteria, we observe that the proposed model yields the highest

efficiency for any number of processing nodes.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 10 15 20 25 30 35 40 45 50

T
o
t
a
l

c
o
s
t

(
R
s
/

U
n
i
t

t
i
m
e
)

 No. of Processors

N=100

N=50

N=20

Fig. 4. Total cost versus no. of processors

934 Monir Abdullah and Mohamed Othman / Procedia Computer Science 18 (2013) 928 – 935

Furthermore, when delay cost is only considered the proposed model produced good results. The delay cost

is decreases as the number of processors increases. When the number of processing nodes approximately is more

than 60, the total cost is zero for any number of jobs. The plot shows that a better results is obtained as the number

of the processing nodes increases. This is expected as more processing nodes are involved in the computations.

Fig. 5 is plotted delay cost against the number of processors.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 10 20 30 40 50 60

D
e
l
a
y

c
o
s
t

(
R
s
/

U
n
i
t

t
i
m
e
)

 No. of Processors

N=100

N=50

N=20

Fig. 5. Delay cost versus no. of processors

6. Conclusion

In this paper we have successfully employed the DLT paradigm to handle a job scheduling problem in cloud en-

vironment. The use and applicability of the DLT paradigm in a compute cloud environment is demonstrated by

developing a distribution strategy that is shown to minimize the overall total cost. To this end, we designed and

analyzed a closed form solution for scheduling jobs problem and validated all our findings via rigorous simulation

experiments. As an immediate extension to this work one can attempt to consider the the impact of communi-

cation overheads and dynamic workload. It also not consider the more real-time job allocation restriction like

political concern, machine failure. Further optimization can be done with considering these issues. With such

improvements, the proposed model can be integrated in the existing cloud infrastructures in order to improve their

performance.

Acknowledgements

This work has been supported by Universiti Putra Malaysia, Research University Grant Scheme RUGS 05-01-10-

0896RU/F1 and Malaysian Ministry of High Education, Fundamental Research Grant Scheme FRGS/1/11/SG/

UPM/01/1.

References

[1] T. Sridhar, Cloud Computing: A Primer, Part 1: Models and Technologies. The Internet Protocol Journal. 12 (3) (2009), 2 – 19.

[2] V. Bharadwaj, D. Ghose, T. Robertazzi, Divisible load theory: a new paradigm for load scheduling in distributed systems, Cluster

Computing 6 (1) (2003), 7 – 17.

[3] A. Shokripour, M. Othman, Categorizing DLT researches and its applications, European Journal of Scientific Research 37 (3) (2009)

496 – 515.

[4] H. M. Wong, B. Veeravalli, Dantong Y., and T. G. Robertazzi, Data Intensive Grid Scheduling: Multiple Sources with Capacity Con-

straints, in: Proceeding of the IASTED Conference on Parallel and Distributed Computing and Systems, Marina del Rey USA, (2003),

pp. 7 – 11.

935 Monir Abdullah and Mohamed Othman / Procedia Computer Science 18 (2013) 928 – 935

[5] B. Javadi, J. Abawajyb, R. Buyya, Failure-aware resource provisioning for hybrid Cloud infrastructure, Journal of Parallel and Distribut-

ing Computing, 72(2012), 1318 - 1331.

[6] G.N. Iyer, V. Bharadwaj, S.G Krishnamoorthy. On Handling Large-Scale Polynomial Multiplications in Compute Cloud Environments

using Divisible Load Paradigm, IEEE Transactions on Aerospace and Electronic Systems, 48 (1) (2012), 820 – 831.

[7] Xu, M., Cui, L., Wang , H., Bi, Y.. A Multiple QoS Constrained Scheduling Strategy of Multiple Workflows for Cloud Computing. IEEE

International Symposium on Parallel and Distributed Processing with Applications, (2009), pp. 629 – 634.

[8] M. Mezmaza, N. Melabb, Y. Kessaci b, Y.C. Lee, E. G. Talbi, A.Y. Zomayac, D. Tuyttens, A parallel bi-objective hybrid metaheuristic

for energy-aware scheduling for cloud computing systems, Journal of Parallel and Distributing Computing, 71(2011), 1497 – 1508.

[9] J. T. Hung, and T. G. Robertazzi. Scheduling nonlinear computational loads. IEEE Transactions on Aerospace and Electronic Systems,

44(3) (2008), 1169 – 1182.

[10] M. Othman, M. Abdullah, H. Ibrahim, S. Subramaniam. Adaptive Divisible Load Model for Scheduling Data-Intensive Grid Applica-

tions. Lecture Notes in Computer Science (LNCS) , Springer, Heidelberg, 4487(2007), 446 - 453. .

[11] Othman, M., Abdullah, M., Ibrahim, H., Subramaniam, S.: A2DLT: Divisible Load Balancing Model for Scheduling Communication-

Intensive Grid Applications. Lecture Notes in Computer Science (LNCS) , Springer, Heidelberg, Part I. LNCS, 5101(2008), 246 - 253.

[12] Wen-Chung Shih, Shian-Shyong Tseng, and Chao-Tung Yang. Performance Study of Parallel Programming on Cloud Computing Envi-

ronments Using MapReduce, International Conference on Information Science and Applications (ICISA), (2010), pp. 1 – 8.

[13] M. Abdullah, M. Othman, H. Ibrahim and S. Subramaniam, New Optimal Load Allocation for Scheduling Divisible Data Grid Applica-

tions, Future Generation Computer Systems, 7 (62) (2010), 971 – 978.

[14] D. Dutta, R. C. Joshi, A GeneticAlgorithm Approach to Cost-Based Multi-QoS Job Scheduling in Cloud Computing Environment.

International Conference and Workshop on Emerging Trends in Technology (ICWET 2011), Mumbai, India, (2011), pp. 422 – 427.

