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Abstract

This paper presents an interval optimization method for the dynamic response of structures with interval para-
meters. The matrices of structures with interval parameters are given. Combining the interval extension of function with
the perturbation theory of dynamic response, the method for interval dynamic response analysis is derived. The interval
optimization problem is transformed into a corresponding deterministic one. Because the mean values and the un-
certainties of the interval parameters can be elected as the design variables, more information of the optimization results
can be obtained by the present method than that obtained by the deterministic one. The present method is implemented
for a truss structure and a frame structure. The numerical results show that the method is effective.
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1. Introduction

The deterministic optimization [1,3-5,8] of structural
behavior has been well developed for specified structural
parameters and loading conditions. However, in most
practical situations, the structural parameters and loads
are uncertain, for example, there may be measurement
inaccuracy or errors in the manufacturing process.
Therefore, the concept of uncertainty plays an impor-
tant role in the investigation of various engineering
problems. The most common approach to problems of
uncertainty is to model the structural parameters as
random variables or fields. Under the circumstances, all
information about the structural parameters is provided
by the joint probability density function (or distribution
function) of the structural parameters. Unfortunately,
probabilistic model is not the only way one could de-
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scribe the uncertainty, and uncertainty does not equal
randomness. Indeed, probabilistic methods are not able
to deliver reliable results at the required precision
without sufficient experimental data to validate the as-
sumptions made regarding the joint probability densities
of the random variables or functions involved.

Since the mid-1960s, a new method called the interval
analysis has appeared. Moore [10] and his co-workers,
Alefeld and Herzberger [2] have done the pioneering
work. The linear interval equations and nonlinear in-
terval equations have been resolved. Hansen [9] in his
book discussed the global optimization using interval
analysis. Because of the complexity of the interval al-
gorithm, it is difficult to deal with practical engineering
problems. Recently, the interval analysis method has
been used to deal with the static displacement, eigen-
value, and dynamic response analysis of the uncertain
structures with interval parameters [6,7,11]. However,
few papers can be found about the optimization of
structures with interval parameters in engineering.
Hence, it is necessary to develop an effective method to
solve the optimal problems of structures with interval
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parameters. This paper presents an interval optimization
method based on the interval analysis.

We will start with a brief review of the interval
mathematics and the results of dynamic response anal-
ysis for structures with interval parameters [11], and then
discuss the interval optimization model. Using the first-
order Taylor expansion, matrix perturbation theory of
dynamic response [12], and interval extension of func-
tions, the interval optimization problem can be trans-
formed into the approximate deterministic optimization
one. The present method is implemented for a truss
structure and a frame structure. Four numerical exam-
ples, the optimization of the dynamic response of a truss
structure and a frame structure with interval parameters,
are given. The numerical results are compared with those
obtained by the deterministic optimization method.

2. Mathematical background

In structural analysis and design, some structural
parameters have errors or uncertainties caused by man-
ufacture, installation, computation or measurement.
Therefore, it is very important to predict the errors re-
sulted from the above-mentioned uncertainties in struc-
tural design. In interval mathematics, the errors or
uncertainties are always denoted by intervals. Before we
deal with the interval optimization problems, it is nec-
essary to introduce some results in interval analysis
[2,9,10].

Let oo = (ocl,ocz,.,.,ocm)T be a structural parameter
vector with bound errors or uncertainties, where

o € ol = [oaf — Aoy, af + Aoy
then
aca = [ac —Aoc,ocCJrAa}

where

C C C
of = (af,0f,... 0

and
Ao = (Aoy, Aoy, . .. 7Aocm)T

Let o and & be the lower and upper bound vectors of
the structural parameter vector o, respectively.

In interval mathematics, a subset of real numbers R
of the form [a),a] = {t,a1 <t < a]a;,a € R} is called a
closed real interval, denoted by X = [X, X| where X and
X are the lower and upper bounds, respectively. The set
of all the closed real intervals is denoted by /(R).

The mid-point and uncertainty of an interval X' are
defined as

XC=mX')=X+X)/2 (1)

and

AX = rad(X") = (X - X)/2 2)

respectively.

A symmetric interval means an interval X’ in which
X =-X.

Let X' = [X,X] € I(R) be any interval, the relative
uncertainty of X’ is defined as §(X7) = % = %

Let X’ = [X,X] and Y’ = [Y,Y] € I(R) be any inter-
vals, we say X’ = Y’ ifand onlyif X = Y and X = Y. Let
X! = [X,X] be any real interval, X’ is called point in-
terval or degenerate interval if X =X, and then
X' =[x,x] = x.

We represent an n-dimensional interval vector as

X' =i xi . xh)T 3)

n

The set of all n-dimensional interval vectors is denoted
by I(R").

Similarly, the mid-vector and uncertainty of an in-
terval vector can be defined as

XC = (XIC7X2C7 e 7XnC)T (4)
and
AX = (AX,AX;, ... AX,)" (5)

where X and AX; are given by Egs. (1) and (2), re-
spectively.

A matrix whose elements are intervals is called an
interval matrix and denoted by A’ = [A, A], where A is a
matrix composed of the lower bounds of the intervals
and A is a matrix composed of the upper bounds of the
intervals. The set of all interval matrices is denoted by
I(R™"). The mid-matrix and uncertainty of an interval
matrix A’ are defined as
AC — A+A e Gjtay

AA o a0 (6)

and

A—A o Gy—ay
AA:T or Aaij: 5

(7)

where A© = (af) and AA = (Aay).
An arbitrary interval X’ € I(R) can be written as the
following form

X' =X+ AX" = X + AXe,
= [X¢ - AX,XC + AX)] (8)
where AX” = [-AX,AX] and e, = [-1, 1].

Similar expressions exist for the interval vector and
interval matrix. For A’ € I(R"*"), we have

Al = A+ AA" = A€ + AAey
=[AY — AA AC + AA] 9)

where AA" = [~AA, AA].
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These basic quantities will play an important role in
the following discussion.

Let X' = [x,x] and Y’ = [y,y] be the interval num-
bers, respectively, then X’ + ¥’, X’ — ¥!, X’ x ¥' and
X'/Y" are defined by the following formulas:

X'+ ¥ =[5+ [p,5] =[x+ .5 +7] (10)

X' =Y =[x - [p.3] = k- y.x )] (1)

X' x Y = [x,%] x [y,5]
= [min(xy, xy, Xy, ¥9), max(xy, xy, Xy, %)) (12)

S I Y

Yi [yl = bdx {y’y}’ ver ()
X'nY' = [max(x, y), min(x, )] (14)
X'UY' = [min(x,y), max(x, y)] (15)

Let o € R be any real number and X' = [x,x] =
X€ + AXe, € I(R) be any real interval, then

oX! = X0 = X0+ AX|uley = aX© + |o|AXey (16)

Letu= (w1, us, .. .,u,,)T € R" be any real vector and
=[A,A] = A® 4+ AAe, € I(R"™") be any real interval
matrix, then

A'u = A + AAluley (17)

u"A! = uTAC + [u|"AAe, (18)

where [u| = (luy], |ua, ..., [ua]) ", ea = [~1,1].

Let f be a real-valued function of n real variables
X1,X2,...,%,. An interval extension of f means that an
interval-valued function F of n interval variables
XLxi,. .. X!, for all x; € X! (i=1,2,...,n), possesses
the following property

7[xn7an :‘f(Xth,A..,Xn) (19)

Given a rational function of real variables, we can
replace the real variables by the corresponding interval
variables and replace the real arithmetic operations by
the corresponding interval arithmetic operations to ob-
tain a rational interval function called a natural interval
extension of the real rational function.

An interval function F is said to be inclusion
monotonic if X/ C Y/(i =1,2,...,n) implies
FX),X;5,....X)cF(1,Y;,...,Y) (20)

n

F([xy,x1], 2, x2], . ..

It is obvious that interval arithmetic is inclusion
monotonic. That is, if op denotes +,—,*/ then X/ C
Y/ (i = 1,2) implies

(X{opX;) C (¥{opY;) (21)

The interval extensions of a given function f are not
unique. For example, two expressions for function g are
given by

gV na) =T, X AL A0 (22)
—x
a

g(xa) =7, x#1, a#0 (23)
Using 4’ = [0,1] and X' = [2,3] replace a and x, two
possible evaluations can be obtained:

0 _[0,12,3]

2) [0, 1] )

([27 3]7 [07 ID = 1 = [7230] 7& g ([27 3]7 [O/ ID

2,3

Both interval results contain the exact result of f for
x € [2,3] and a € [0, 1], which is [-2,0]. The result for
g@ is precisely the range of g over the given sets, because
X! and A’ occur only once in the expression in g [9]. It
shows one important rule in interval calculation, that is,
the least times the interval parameters appear, the
sharper the interval is, which is important in interval
calculations.

Irrational functions are treated as follows. Let f be a
real irrational function of a real vector x = (x1,xp,...,
x,)". Assume that a rational approximation r(x) is
known such that |f(x) — r(x)| < ¢ for all x such that
a;<x;<b; (i=1,...,n) for some constants g; and b;.
Then f(X],X},....X!)) Cr(X{,X:,...,X]) + [—¢,¢] for
any intervals X/ C [a;,b;] (i =1,...,n). Thus the range
of f over the region with x; eX.’ (i =1,...,n) can be
bounded by evaluating r(X{,...,X!) using interval
arithmetic and adding the error bound [—¢, ¢].

This “interval evaluation™ of the irrational function
f is inclusion monotonic if the interval evaluation of r is
inclusion monotonic. The result is an interval extension
of f.

Then we have the general conclusion. Let F(X],...,
X!) be an inclusion monotonic interval extension of a
real function f(x1,...,x,). Then F(X/,..., X) contains
the range of values of f(xi,...,x,) for all x; € X] (i =
L,...,n).

It is well known that typical structural design opti-
mization problem resorts to finite element analysis in
which the objective function or the constraint func-
tions are not analytic. So it is difficult to get the exact
interval solutions of the objective function or the con-
straint functions. We can resort to the first-order Tay-
lor expansion to obtain the rational approximation of
a complex function and then apply the natural inter-
val extension to the rational approximation to get its
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interval solution. Thus the rational approximation of a
complex function is a linear function of the variables
and each variable appears only once, so the interval
solution of the rational approximation we obtain is
unique [9]. In order to justify the reasonability of this
approach, we take a function we considered early as a
simple example, that is, g(x,a) ==, x # 1, a #0. The
exact solutions of the interval value for dlﬁerent interval
variables are easy to calculated. Now we use Taylor
expansion to expand the function about the mid-points
of the interval variables to get the approximation of the
interval value. In Table 1, we give the comparison for
the interval value of the exact solution and the ap-
proximate solution for different interval variables, where
0 is the relative uncertainty of a interval variable which
is defined early in this paper. Suppose the mid-point and
the uncertainty of the exact solution are denoted as /¢
and Af, respectively. Similarly, we denote the mid-point
and the uncertainty of the approximate solution as
g€ and Ag, respectively. The error of the mid-point is the
value of |(g¢ — f€)/f*|, and the error of the interval
uncertainty is the value of |(Ag — Af)/Af].

From Table 1, we can see that the errors of the mid-
point and the interval uncertainty go up as the relative
uncertainties of the interval variables increase. In fact,
the relative uncertainties of the interval variables are
small in practical engineering problems, so the approx-
imate approach is acceptable for practical applications.

3. Interval characteristic matrices for structures with
interval parameters

Assume that the interval parameters of the structures
are denoted by

For each component of the vector, b; € b} = [b;, b, =
b+ Abje, where Ab, =% ¢ =[~1,1] and j=1,
2,...,m, m is the number of all parameters. The fol-
lowing discussions will be limited to the cases where the
interval uncertainties of the interval parameters are
small compared with the mean values, and the changes
of parameters do not lead to the change of the shape of
the element. For any b € b’, using the first-order Taylor
expansion the characteristic matrices of the element can
be expressed as

) +i<a“e SCEL
M (b) = M (b°) +Z(6Me )b:b[(b,,-fb;f) (26)

m ace )
= C:(b°) +Z< > (b, — b%)
b=b*

K¢ (b)

C(b) =

In general, it is difficult to express the stiffness, damping
and mass matrices coefficients as explicit functions of
design variables. To carry out the calculations of

K¢ (b) aM¢ (b) ) ace (b)
(ab )73(? 7La.nd “ob; )y
i) b=b i) b=b /- / b=b

the differential method is inconvenient. It is desirable to
transform the differential approach into finite element
perturbation. Let AK7;, AC]; and AMy,; be the increments
of the stiffness, damping and mass matrices of the ith
element resulting from the changes of the structural
parameter AB;, i.e.,

_ by directly using

AKS, = K(55, ..
— KBS, BB

) j7
AME, = ME(BS, ..., b + ABy, ... )

LB AB L)

» " m

(27)

b= (bi,bs,....b,)" €b = (B],05, ... b)" (24) SME(BS, BB
The mean-value of the vector b’ is AC, = C{(by,...,b; + AB,...,b,)
C C C C T e C C C
b = (b7,05,...,b5) (25) —Ci(b],...,bj,...,bm)
Table 1
Comparison for the interval value of g(x,a)
Interval variables 1 Exact solution Approximate solution Error of mid-point Error of interval
uncertainty
S [-1.03, —-0.65] g': [-1.02, —0.64] 0.71% 0.21%
=[2.4,2.6] 0.04 € -0.8393 g¢: -0.8333
a' =1[0.4,0.6] 0.2 Af:0.1893 Ag: 0.1889
ST [-1.24, —0.48] g’ [-1.21, —=0.46] 2.82% 0.84%
X =12.3,2.7 0.08 f€:—0.8575 g¢: —0.8333
a =1[0.3,0.7] 0.4 Af:0.381 Ag: 0.3778
S [-1.47,-0.31] g [-1.4, -0.27] 6.25% 1.92%
X =12.2,2.8] 0.12 € —-0.8889 g¢: -0.8333
a' =10.2,0.8] 0.6 Af:0.5778 Ag: 0.5667
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Then K7, M, and Cj, the approximation of

K¢ (b) ome (b) oce (b)
( 0b; )b:b" < b, )b:b‘ and ( 0b; )b:b

_are as follows:
S Ry
Y AB; Y AB; Y AB

(28)

Using the natural interval extension of function to
Eq. (26), one can obtain the interval characteristic ma-
trices

K; (b) = K;(b) + K, (8] —
M (b°) + ) M — b5) (29)

J=1

C(b') = CE(b) +ZC b)

M (b') =

The global stiffness and mass matrices are assembled
by using the element matrices

ZK‘ K(b) + AK(b)
:ZM:f(m: (b°) + AM(b) (30)
Zce C(b°) + AC(b)
where
K(b‘)=Zn:Kf(b") AK(5) =Y YK A
ZML (b) AM(b) = - iMjJAb, (31)

i=1 j=1
n m

Zcebc AC(h) =>"

=1 j=1

C:, Ab,

where 7 is the total number of the elements. It should be
pointed out that in Eq. (30), the element characteristic
matrices should be expanded by FEM rules before
forming the global matrices. Applying the natural in-
terval extension of function to Eq. (30), one can obtain
the interval matrices as follows:

K(b') = K(b°) + AK(b')
M(b’) = M(b) + AM(b) (32)
C(b") = C(b°) + AC(b")

where

n m

= Z ZKE/(M -

n m

The damping coefficients are taken as the Rayleigh
damping, i.e., C = oK + M, where o and f are the co-
efficients, which can be taken as the structural para-
meters.

4. Dynamic response analysis of structures with interval
parameters

4.1. Perturbation analysis of the dynamic response of
deterministic system

The vibration equation of n-degrees-of-freedom sys-
tems can be given as follows:

M(b)x + C(b)x + K(b)x = P(t) (34)
If the design variables have some perturbations eAb,

i.e., b =b°+ ¢Ab € b/, then the characteristic matrices
can be written as [12],

M(b) = M(b°) + M,
C(b) = C(b°) + ¢C,
K(b) = K(b°) + ¢K;, (35)
and the responses are
X = Xp + &X +82X2+-~'
X=%)+ek +&%+- - (36)
X =Ko+ eX; + %%y + -
Then Eq. (34) becomes
(M(b°) + eM;) (X0 + eX; + - - -) + (C(b°) + &Cy)
X (Xo + X + -+ -) + (K(b) + ¢K;) (X0 + ex; + -+ -)
=Pz (37)

Expanding and equating the coefficients with the same
power in Eq. (37), one can obtain

& M(b)X + C(b%)%, + K(b)xo = P(1) (38)

&'t M(b)%; + C(b°)%; + K(b°)x,
= —(Mli() —+ C]X() + K]X(}) (39)

From Eq. (38), one can obtain the dynamic response of
the original system. However, it is difficult to acquire the
perturbation solutions from Eq. (39). If the changes of
the structural parameters are small, one can expand M,
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C,, Ky, x1, x; and X; around the mean value of the pa-
rameters, that is,

Z Xo,j Ab X1 Z Xo,j Ab X1 ii(u- Ab,
=1

ZMO, (b —b) Ci= Zco,,-(b,
=1
K, = Z Ko, (b,
=1
(40)
in which
B
Y b, Y o, Y o
OM(b°) oC(b°) oK (b°)
M, =) = Ko,
ATy Cos ob; % b,
Substituting Eq. (40) into Eq. (39), one can obtain
> (M(b*)Xo,; + C(b°)%o, + K(b°)xo ;) Ab;
Jj=1
== (Moo + Co %o + Ko X0)Ab; (41)
=1
From Eq. (41), one can get
M(b“)Xo; + C(b)Xo,; + K(b)X
—(Mp%o + Co %0 + Ko ;X0) (42)

It is easy to get the solutions of those equations by the
normal numerical integral methods as Wilson-0 or
Newmark etc. Substituting the solutions into Eq. (36),
the response perturbation part is obtained, and then the
response solution of the perturbed system is

X =X+ &Xi (43)
4.2. Interval dynamic response of structures with interval
parameters

Using the interval extension of function to Eq. (34),
one has

M(b )% + C(b)x + K(b')x = P(¢) (44)
where

M(b') = {M(b)b<b <b}

C(b') = {C(b)b<b<b} (45)
K(b') = {K(b)b<b<b}

It is the basic problem for given interval characteristic
matrices, M(b’), C(b"), K(b") and P(¢), to find all pos-

sible x satisfying Eq. (34), that is, to obtain x € x/ =
[x, X] where

x = min{x|Mx + Cx + Kx = P(¢),M € M(b"),
CcC(b),K cK(b)}

% = max{x|Mx + Cx + Kx = P(t),M € M(b'),
Cc C(),KecKD)}
Using Eq. (32), Eq. (44) becomes
(M(b°) + AM(b"))% + (C(b°) + AC(b"))x
+ (K(b%) + AK(b'))x= P(¢) (46)

For any b =b° + &b € b, there is a group of M, 3C,
and 8K, which satisfy

AM<IM<KAM AC<KSCKAC AK<SK<AK
(47)
and the vibration equation is
(M(b°) +dM)X + (C(b°) + 3C)x + (K(b") + SK)x =P(¢)
(48)

By neglecting the higher order terms, from Eq. (43), one
can obtain

X = Xg + 0Xx

m 49
=

in which x and x,; are obtained by solving Eq. (38) and
Eq. (42). Eq. (46) are equivalent to Eq. (48) with the
constraints Eq. (47). Therefore, using the interval ex-
tension of function to Eq. (49), one gets

x! = xo + AX/
AXIZZXOX/b - b9) ZXO,Abe,
Jj=1

Z X0, Ab;|[~1,1] = Ax[-1,1]

(50)

where Ax =77 [xo,;Ab|, and the upper and lower
bounds of the dynamlc response will be

X = Xo + Ax (51)
X = Xg — AX

From Eq. (51), one can obtain the interval responses
which are symmetrical about the mean value X, and the
intervals of dynamic responses will be sharper if the
interval operations are used at the least times to calcu-
late xo; in Eq. (42).
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5. Interval optimization model

If the structural parameters are assumed to be in-
terval variables, the objective function and the con-
straint conditions of the optimization problems are
interval. Therefore, an interval optimization problem
can be described as follows:

min £(X) = fOX XL, X

it p(XH)<0 (i=1,2,...,m) (52)
leX)=0 (=12,

where X' = (X!, x!,...,x)7 is the interval parameter

vector of the structure, f(X') is the interval objective
function, and p,(X’) and ¢;(X’) are the interval con-
straint conditions.

It should be noted that it is difficult to solve the in-
terval optimization problem described in Eq. (52) di-
rectly [9]. In order to simplify the interval optimization
problems, we transform it into approximate determin-
istic one. To this end, using the Taylor expansion to
expand f(X') about the mid-vector of the interval vector
X’ and neglecting the higher order terms, and consid-
ering Eq. (16), one has

C af Xc C
JX) = (X) +E o X =)
of (X°)
(X +E f
. (X) y
X ax, l €A

o

<Z ' ax, !
= [/ (X9),/(X)]

(o (X) o (X)
v -2 T e a(AX}
"L of(X¢ .
rx) = 3| P o
i=1 i
n a‘ C
+; fa(f)AX” (53)

Similarly, the constraint conditions can be obtained

o
P(X) = p(XE) + § p —X0)
_ c § : 6p1 X()
= p,(X ) —+ —an AXkeA

Xc +Z‘6pz

7
) "~ | Op;(X°) ‘
= p;i(X°) + e
pi(X9) (; oy AN e
= [pi(X), pi(X)]
" | opi(X) " | 9pi(X) }
- AXy|, AX;
; ﬁxk ; ka
c . 0 i X¢ c
=[x = 3| B x| )
n apI(Xc) o
+,; a—xkAxk (i=1,2,....m)
(54)
4 - aq X 4
g (x) = gx) + 30 X oy
k=1 k
“~ 0g;(X°)
— Xc + J AX
f]/( ) kz:]: oy k€A
2. |2g,(X)
= (](XC) + J AXk e
/ = an
0g;(X°)
=q;(X) + - %| | ea
! k=1 o
= [¢,(X°), ¢;(X)]
+ % (X) Z 691 :|
k=1 =1
c dq; c
0(x) =Y %)Ax 4/(X)
k=1 k
~ | 9¢;(X*) .
N =1,2,...
+ ; ‘ 6Xk AXk (J Eat] ) l)
(55)
where X' = (X!, X!,... . xI)", X = (X{,X5,...,X)",
and ey = [—1,1].

Then the interval optimization problem can be
transformed into the approximate deterministic optimi-
zation one as follows:

x4y |9 AX,-]

min
p(X) + 320 °”‘X)‘AX <0 (i=12....m)
ot JuX)=0 (=120
Sy | AX, =0 G=1,2,....0)
-AX;, <0 (k=1,2,...,n)
(56)

6. Application in the truss structure

In this section, we will apply the interval optimization
method presented by Section 5 to the truss structure
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P(N)

20000

o At Us)

Fig. 1. The step excitation.

with 30 degrees of freedom as shown in Fig. 2. Suppose
the step excitation as shown in Fig. 1 is applied to node 9
along the y-negative direction. The goal of the interval
optimization is to determine the mid-points and uncer-
tainties of the design variables {E,4,p}, so that the
displacement amplitude at the y-direction of node 9
takes minimum and has a relative narrow interval. We
can rewrite all the design variables as a three-dimen-
sional vector

X ={X, X, X} = {E,4,p}" (57)

where E is the Young’s module, 4 the crossing section
area, p the mass density.
The deterministic optimization problem is given by

min  ¥(X) = x(X)
{gi(X) =x; —X<0
s.t

gi+3(X)

(i =1,2,3) (58)

where x- and x” are the ranges of the design variable x;,
respectively.

The interval optimization problem for the truss
structure is

min P(X') = x(X")

(59)
st g(XN<0 (=1,2,...,6)

Table 2

Y

v
w
<
Y
ey
[

Fig. 2. A truss structure.

The approximate deterministic optimization problem is

3

min X = [x¢(X°) + Z ax%g(‘) AX,}

XA <O (i=1,2,3) (60)
s.t. X¢—xV +AX<O (i=1,2,3)

~AX, <0 (k=1,2,3)

Example 1. Consider a truss structure hinged at both
ends shown in Fig. 2. The displacement amplitude at the
y-direction of the node 9 is 5.347E—4 m, which can be
calculated with the mean value of the parameters (for
example, E = 2.1E11 N/m?, 4 = 16E-4 m?, and p =
7800.0 kg/m?). In order to reduce the displacement
amplitude, interval optimization method can be used. In
this example we suppose the uncertainties of the design
variables are specified in advance, that is, AE = 2.0E10
N/m?, Ad = 4.0E-5 m?, and Ap = 780.0 kg/m?>.

There are three optimization parameters: E¢, A, p°.

The interval optimization is to optimize the dis-
placement amplitude at the y-direction of the node 9.
The ranges of the optimization parameters £, A° and p©
are 1.5E11-2.5E11 N/m?, 4E—4-25E—4 m?, and 6000.0—
8000.0 kg/m>. Using Lagrange optimal algorithm, the
approximate deterministic optimization can be solved.
The results of the interval optimization are shown in
Table 2. For comparison, the results of the deterministic
optimization are also listed in Table 2.

Comparison of results of deterministic optimization and interval optimization with three optimization parameters

Xf Initial values Deterministic optimization Interval optimization
values Mid-point values

E° 1.5E11 2.5E11 2.5E11

A¢ 4. 7E-4 2.496E-3 2.499E-3

p° 7000.0 7900.0 7204.35

AX; (specified) Uncertainties

AE 2.0E10 0.0 2.0E10

AA 4.0E-5 0.0 4.0E-5

Ap 780.0 0.0 780.0

min ¥ (X) 2.879161E-4 [1.3679E—4, 4.3827E—4]
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Table 3

Comparison of results of deterministic optimization and interval optimization with six optimization parameters

Xf Initial values Deterministic optimization Interval optimization
values Mid-point values

E* 1.5E11 2.5E11 2.35141E11

A° 4.8E-4 2.496E-3 2.5E-3

0° 7800.0 7900.0 7978.77

AX; Uncertainties

AE 2.2E10 0.0 1.70099E10

A4 2.4E-4 0.0 4.00016E-5

Ap 780.0 0.0 636.24

min ¥(X) 2.879161E-4 [2.1125E—4, 3.9998E—4]

From Table 2, it can be seen that the displacement at
the y-direction of the node 9 with the deterministic op-
timization is 2.879161E—4 m, while the corresponding
result with the interval optimization is an interval value
[1.3679E—4 m, 4.3827E—4 m].

Example 2. Consider the same truss structure shown in
Fig. 2. In this example, we suppose the uncertainties of
the design variables are also the optimization parame-
ters. Thus, there are six optimization parameters: E¢, 4,
p°, AE, A4, Ap.

The interval optimization is also to optimize the
displacement amplitude at the y-direction of the node 9.
The ranges of the optimization parameters E¢, A°, p°,
AE, A4, and Ap are 1.5E11-2.5E11 N/m?, 4E—4-25E—4
m?, 6000.0-8000.0 kg/m3, 1.5E10-2.5E10 N/m?, 4E-5-
25E-5 m?, and 600.0-800.0 kg/m?.

Using the Lagrange optimal algorithm, the approxi-
mate deterministic optimization can be solved. The re-
sults of the interval optimization are shown in Table 3.
For comparison, the results of the deterministic opti-
mization are also listed in Table 3.

From Table 3, it can be seen that the displace-
ment amplitude of the deterministic optimization is
2.879161E—4 m, while the result of the interval opti-
mization is an interval value [2.112528E—4 m,
3.999878E—4 my].

From the Tables 2 and 3 it can be seen that, be-
cause we take more variables as optimization parame-
ters, the interval value of the objective function obtained
by Example 2 is sharper than that obtained by the
Example 1.

7. Application in the frame structure

In this section, we will apply the interval optimization
method presented by Section 5 to the frame structure
with 30 degrees of freedom as shown in Fig. 3. Suppose
the sine excitation with frequency (w = 90 s~') at node
10 is along the x-positive direction, and the amplitude of

Y
9 ® 10 P
® O
7 0) 8
@
5 ® 6
® ®
®© ©
1 2 X

Fig. 3. A frame structure.

the load is 3000 N. The goal of the interval optimization
is to determine the mid-points and uncertainties of the
design variables {B,H}, so that the displacement am-
plitude at the x-direction of node 10 takes minimum and
has a relative narrow interval. We can rewrite all the
design variables as a two-dimensional vector

X={X X} ={BH} (61)

where B is the width of the cross section of the beam
element, H the height.
The deterministic optimization problem is given by

min ?(X) = x(X)

t {gi(X) =xf - X <
s.t.

gi2(X) = X, —x7

i

0 (i=12) (62)
<0 (i=1,2)

where x- and x” are the ranges of the design variable x;,
respectively.
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The interval optimization problem for the frame
structure is

min P(X) = x(X))

; x . (63)
st g(XN<0 (i=1,...,4)

The approximate deterministic optimization problem is

S E |

ox(X)
a.xj' /

min X =

XX+ A <0 (i=1,2) (64)
st. ¢ XF—xV4+AX, <0 (i=1,2)

—AX;: <0 (k=1,2)

Example 3. Consider the frame structure shown in Fig.
3. The displacement amplitude at the x-direction of the
node 10 is 2.21E-3 m, which can be calculated with
the estimated value of the parameters (for example,
B =5.0E-2 m, H = 6.0E-2 m). In order to reduce the
displacement amplitude, interval optimization method
can be used. In this example we suppose the uncertain-
ties of the design variables are specified in advance, that
is, AB = 0.4E-2 m, AH = 0.5E-2 m.

There are two optimization parameters: B¢, H¢.

The interval optimization is to optimize the dis-
placement amplitude at the x-direction of the node 10.
The ranges of the optimization parameters B and H¢ are

Table 4

1.0E-2 m to 6.0E-2 m and 1.0E-2 m to 8.0E-2 m.
Using Lagrange optimal algorithm, the approximate
deterministic optimization can be solved. The results of
the interval optimization are shown in Table 4. For
comparison, the results of the deterministic optimization
are also listed in Table 4.

From Table 4, it can be seen that the results of the
deterministic optimization in 0.8754E—3 m, while the
result of the interval optimization is an interval value
[0.629E-3 m,1.278E—3 m].

Example 4. Consider the same frame structure shown in
Fig. 3. In this example, we suppose the uncertainties of
the design variables are also the optimization parame-
ters. There are four optimization parameters: B¢, H¢, AB,
AH.

The interval optimization is also to optimize the
displacement amplitude at the x-direction of the node
10. The ranges of the optimization parameters B¢, H¢,
AB, and AH are 1.0E-2 m to 6.0E-2 m, 1.0E-2 m to
8.0E-2 m, 0.3E-2 m to 0.6E-2 m, and 0.4E-2 to
0.8E-2 m.

Using the Lagrange optimal algorithm, the approxi-
mate deterministic optimization can be solved. The re-
sults of the interval optimization are shown in Table 5.
For comparison, the results of the deterministic opti-
mization are also listed in Table 5.

From Table 5, it can be seen that the displace-
ment amplitude of the deterministic optimization is

Comparison of results of deterministic optimization and interval optimization of the frame structure with two optimization parameters

Xf Initial values Deterministic optimization Interval optimization
values Mid-point values
B¢ 5.5E-2 5.86E-2 5.8E-2
H¢ 7.0E-2 7.86E-2 7.83E-2
AX;(specified) Uncertainties
AB 0.4E-2 0.0 0.4E-2
AH 0.5E-2 0.0 0.5E-2
min ¥ (X) 0.8754E-3 [0.629E-3,1.278E-3]
Table 5
Comparison of results of deterministic optimization and interval optimization of the frame structure with four optimization para-
meters
Xf Initial values Deterministic optimization Interval optimization
values Mid-point values
B 5.5E-2 5.86E-2 5.7E-2
H¢ 7.0E-2 7.86E-2 7.6E-2
AX; Uncertainties
AB 0.3E-2 0.0 0.2999E-2
AH 0.4E-2 0.0 0.3999E-2
min ¥ (X) 0.8754E-3 [0.6742E-3,1.057E-3]
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Fig. 4. The interval response at the optimal parameters.

0.8754E-3 m, while the result of the interval optimiza-
tion is an interval value [0.6742E—3m,1.057E—3m].

From the Tables 4 and 5 it can be seen that, because
we take more variables as optimization parameters, the
interval value of the objective function obtained by
Example 4 is sharper than that obtained by the Example
3. The interval response at the optimal parameters
(B =5.7E-2 m, H° = 7.6E-2 m, AB = 0.2999E-2 m,
and AH = 0.3999E-2 m) is given in Fig. 4.

8. Conclusions

In this paper, a new interval optimization method is
proposed for vibration responses of structures with in-
terval parameters. The interval optimization problem is
transformed into the approximate deterministic optimi-
zation one, so we can use the standard algorithm for
nonlinear optimization to solve the interval optimization
problem. It can be seen that, using the interval optimi-
zation method, more information for the optimal
structures can be obtained, such as how the optimization
results change if the uncertainties of structural parame-
ters are imposed on the structures. The conclusions are
supported by the numerical examples. Because the pre-
sent approach is based on the first-order Taylor expan-
sion, the application of the approach is limited to the

cases where the interval uncertainties of the interval
parameters are small. If the interval uncertainties of the
interval parameters are fairly large, in order to obtain
higher computing accuracy, the second-order Taylor
expansion should be considered.

Acknowledgement

This work was supported by National Natural Sci-
ence Foundation of China.

References

[1] Adeli H, Cheng NT. Augmented Lagrangian genetic algo-
rithm for structural optimization. J Aerospace Engng 1994;
7:104-18.

[2] Alefeld G, Herzberger J. Introductions to interval compu-
tations. NewYork: Academic Press; 1983.

[3] Chen TY. Optimum design of structures with both natural
frequency and frequency response constraints. Int J Numer
Meth Engng 1992;33:1927-40.

[4] Arora JS, Elwakeil OA, Chahande Al, Hsieh CC. Global
optimization methods for engineering applications. A Rev
Struct Optim 1994;9:137-59.

[5] De Silva CW. An algorithm for the optimal design of
passive vibration controllers for flexible systems. J Sound
Vib 1981;75:495-502.

[6] Chen SH, Lian HD, Yang XW. Interval displacement
analysis for structures with interval parameters. Int J
Numer Meth Engng 2002;53(2):393-407.

[7] Chen SH, Yang XW. Interval finite element method for
beam structures. Finite Element Anal Design 2000;34(1):
75-88.

[8] Coster JE, Stander N. Structural optimization using aug-
mented Lagrangian methods with secant Hessian updating.
Struct Optim 1996;12:113-9.

[9] Hansen E. Global optimization using interval analysis.
New York: Marcel Dekker; 1992.

[10] Moore RE. Methods and applications of interval analysis.
Philadelphia: STAM; 1979.

[11] Chen SH, Lian HD. Dynamic response analysis for struc-
tures with interval parameters. Struct Engng Mech 2002;
13(3):299-312.

[12] Chen SH. Matrix Perturbation Theory in Structural
Dynamic Designs. Beijing: Science Press; 1999.



	Interval optimization of dynamic response for structures with interval parameters
	Introduction
	Mathematical background
	Interval characteristic matrices for structures with interval parameters
	Dynamic response analysis of structures with interval parameters
	Perturbation analysis of the dynamic response of deterministic system
	Interval dynamic response of structures with interval parameters

	Interval optimization model
	Application in the truss structure
	Application in the frame structure
	Conclusions
	Acknowledgements
	References


