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set and on attribute set based on consistency principle and TOPSIS method are respectively established.
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1. Introduction

As one of the most important aggregation operators, the or
dered weighted averaging (OWA) operator proposed by Yager
(1988) has been widely used in many different areas (Calvo, Mayor,
& Mesiar, 2002; Liu, 2006; Merigdé & Casanovas, 2009; Merigo &
Gil Lafuente, 2009; Merig6, 2010; Wei, 2010a, 2010b; Wei & Zhao,
2012; Xu & Da, 2003; Xu, 2005; Yager & Kacprzyk, 1997; Yager,
20044, 2004b, 1988; Zhang & Chu, 2009). Since it was first intro
duced in 1988, many generalized forms have been developed, such
as the ordered weighted operator (Chiclana, Herrera, & Herrera
Viedma, 2001; Xu & Da, 2002, 2003), the continuous ordered
weighted operator (Yager, 2004a; Yager & Xu, 2006; Chen, Liu, &
Wang, 2008), the generalized OWA operator (Yager, 2004b), the
continuous generalized ordered weighted operator (Zhou & Chen,
2011), the induced ordered weighted operator (Yager & Filev,
1999; Yager, 2003; Xu & Da, 2003; Chen, Liu, & Sheng, 2004; Chicl
ana et al., 2007), the induced generalized ordered weighted opera
tor (Merigo & Gil Lafuente, 2009; Su, Xia, Chen, & Wang, 2012), the
induced continuous ordered weighted operator (Wu, Li, Li, & Duan,
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2009; Chen & Zhou, 2011) and the induced generalized continuous
OWA operator (Chen & Zhou, 2011).

All above mentioned aggregation operators only consider situa
tions where all the elements in a set are independent, i.e., they only
consider the addition of the importance of individual elements.
However, in many practical situations, the elements are usually
correlative, for example, Grabisch (1995, 1996) gave the following
classical example: “We are to evaluate a set of students in relation
to three subjects: {mathematics, physics, literature}, we want to
give more importance to science related subjects than to literature,
but on the other hand we want to give some advantage to students
that are good both in literature and in any of the science related
subjects”. When there exist inter dependent or correlative charac
teristics between attributes or between experts, it is unreasonable
to aggregate the alternative values by using additive measures.
Fuzzy measures (Sugeno, 1974), as an effective tool to measure
the interactions between elements, have been widely used in many
different fields, such as game theory and decision making. Corre
sponding to fuzzy measures, fuzzy integrals are important opera
tors to aggregate fuzzy information. One of the most important
fuzzy integrals is the Choquet integral (Choquet, 1953), which
has been deeply studied by many scholars. Yager (2003) intro
duced the Choquet integral operator on fuzzy sets. Tan and Chen
(2010), Tan (2011) and Xu (2010) studied some Choquet integral
operators on intuitionistic fuzzy sets (IFSs) and on interval valued
intuitionistic fuzzy sets (IVIFSs), respectively. Further, Yager
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(2004b) defined the generalized Choquet OWA operator. Zhou and
Chen (2011) introduced the combined continuous generalized
Choquet integral aggregation (CC GCIA) operator. Meanwhile, the
application of the Choquet integral is also studied by many
researchers (Yager, 2003; Labreuche & Grabisch, 2003; Grabisch
& Labreuche, 2008; Tan & Chen, 2010, 2011; Tan, 2011; Xu, 2010).

Although many operators based on fuzzy measures have been
defined, most of them cannot reflect the global interactions be
tween elements in a set. Further, the research on aggregation oper
ators with fuzzy measures mainly focuses on the decision making
problems with known information about the fuzzy measures on
the attribute set and on the expert set. When the weight informa
tion is incompletely known, then we need to find some new ways
to deal with these issues in which the decision data in question are
correlative. To deal with these issues, this study defines two in
duced continuous Choquet integral operators called the ICCWA
and ICCGM operators, which can be seen as an extension of the
ICOWA operator (Chen & Zhou, 2011) and the ICOWG operator
(Wu et al., 2009), respectively. In order to overall reflect interac
tions between elements in a set, the probabilistic generalized semi
value ICCWA (PGS ICCWA) operator and the probabilistic
generalized semivalue ICCGM (PGS ICCGM) operator are pre
sented. As a series of development, the models for the optimal fuz
zy measures on the attribute set and on the expert set are
established, respectively. Consequently, a procedure to uncertain
multi attribute group decision making is developed to provide a
comprehensive and applicable framework.

This paper is organized as follows: In Section 2, some basic con
cepts and definitions are reviewed, which will be used in the fol
lowing. In Section 3, the ICCWA and ICCGM operators are
defined. Meanwhile some desirable properties are studied. In Sec
tion 4, the PGS ICCWA and PGS ICCGM operators are defined,
which do not only globally cover the significance of elements or
their ordered positions, but also overall reflect the correlations be
tween them or their ordered positions. Further, an important case
of the PGS ICCWA and PGS ICCGM operators is studied. In Sec
tion 5, based on the Shapley function, consistency principle, and
TOPSIS method, the models for the optimal fuzzy measures on
the attribute set and on the expert set are established, respectively.
Then, an approach to uncertain multi attribute group decision
making with incomplete weight information and interactive condi
tions is developed. In Section 6, an example is provided to illustrate
the developed procedure. The conclusions are made in the last
section.

2. Basic concepts
2.1. Some aggregation operators

Yager (1988) introduced the ordered weighted averaging
(OWA) operator for aggregating a finite collection of arguments,
whose fundamental aspect is the reordering step. An OWA opera
tor (Yager, 1988) of dimension n is a mapping f: R" - R which
has an associated weight vector w=(w;,Ws,...,w,)" such that
wje[0,1] and >3/ ;w; 1, where

n
flar,ay,. .. a0) Y wib,
71

with b; being the jth largest of a; (i=1,2,...,n), R" and R are the sets
of dimension n real numbers and real numbers, respectively.

In a similar way to the OWA operator, Xu and Yager (2006) de
fined the ordered weighted geometric (OWG) operator, described
as follows:

An OWG operator (Xu & Yager, 2006) of dimension n is a map
ping f: R™ — R which has associated with it an exponential weight
vector w = (Wy,Ws,...,w,)", with w; € [0,1], ZF ;w; 1, such that

n

W,

g(@,a,,...,a,) []b”
i

where b; is the jth largest of the a; (i=1,2,...,n), R™ and R" are the
sets of dimension n positive real numbers and positive real num
bers, respectively.

Later, Yager (2004b) presented the continuous ordered weighted
averaging (COWA) operator, which was defined as follows:

Definition 1 Yager (2004b). A COWA operator of dimension n is a
mapping F: Q" —» R* which has associated with it a basic unit
interval monotonic (BUM) function Q: [0,1] » [0,1], and it is
monotonic with Q(0)=0 and Q(1) =1, such that

1
Follab) [ d%—?(b yb  a)dy. (1)

where Q" is the set of positive interval numbers, namely,
Q" ={[a,b]la,b cR", a < b}.

Further, Xu and Yager (2006) proposed the continuous ordered
weighted geometric (COWG) operator, which was defined as
follows:

Definition 2 Xu and Yager (2006). A COWG operator of dimension
n is a mapping G: Q" — R* associated with it a BUM function Q,
such that

1do()
a) 0 dy yay

Go(la.b))  b(5 : @)

where Q and Q" as given in Definition 1.

Remark 1. If 2 f(} Q(y)dy, then Egs. (1) and (2) can be expressed
by Fo([a,b])=(1 Z)a+ b and Go([a,b]) =a' *b*, respectively.

Based on the COWA operator, Chen and Zhou (2011) developed
the induced continuous OWA (ICOWA) operator ICOWA: Q™ — R,
which is defined to aggregate the set of second arguments of two
tuples (uq,[aq,bq]), (uz,[az,ba]),. .., (Uun,[an,bn]), denoted by

ICOWA({u1, [a1, b1]), (ua, [az, ba]), . ., (Un, [an, by]))

ICOWA((u11, Folar, b1)), (U2, Fo[a2. ba)). ... (tn, Fo [an, b))
n

> WiFq((ag), by))), 3)

i1
where Q™" is the set of dimension n positive interval numbers, o is a
permutation on {1,2,...,n} such that usj) > Ug+1),Usg) is the jth
largest value of ui=1,2,...,n), w=(wy,Ws,...,w,,)T is the associ
ated weight vector, with w; € [0,1], >3} yw; 1, and Fo([as(y, bo])
given as Eq. (1).

According to the COWG operator, Wu et al. (2009) developed the
induced continuous OWG (ICOWG) operator ICOWG: Q™ — R,
which is defined to aggregate the set of second arguments of two
tuples (uq,[ay,b1]), (uz,[az bal),. . ., (Un, [an by]), denoted by

ICOWG(<U], [a1,b1]), <UZ, [az,bz]), Ceey <un, [an, bn]>)
ICOWG((u1, Golar, b)), (uz, Golaz, ba]), ..., (Un, Go[@n, bn]))

HGQ([GGU)7bUU)DW]7
i1

4)

where Q™" is the set of dimension n positive interval numbers, o is a
permutation on {1,2,...,n} such that uggj) > Uggs1)Us) is the jth
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largest value of ui(i=1,2,...,n),w = (Wy, W, ..., wy,)" is the associated
weight vector, with w; € [0,1],57 ;w; 1, and Go([as(;), bog)]) given
as Eq. (2).

2.2. Fuzzy measure and the Choquet integral

In many practical situations, the elements in a set are usually cor
relative. Thus, it is unsuitable to use the additive measure to mea
sure their importance. In 1974, Sugeno (1974) introduced the
concept of fuzzy measures, which is a powerful tool to measure
the interactions phenomena between elements (Grabisch & Rou
bens, 1999; Kojadinovic,2003,2005) and to deal with decision mak
ing problems (Grabisch, 1995, 1996; Labreuche & Grabisch, 2003;
Grabisch & Labreuche, 2008; Xu, 2010; Tan & Chen, 2010, 2011).

Definition 3 Sugeno (1974). A fuzzy measure u on finite set
N={1,2,...,n} is a set function u: P(N) — [0,1] satisfying

(1) w(2)=0, u(N)=1,
(2)A C B implies (A) < u(B),
where P(N) is the power set of N.

In the multi attribute group decision making, w(A) can be
viewed as the importance of the attribute (or expert) set A. Thus,
in addition to the usual weights on the attribute (or expert) set ta
ken separately, weights on any combination of the attributes (or
experts) are also defined.

Corresponding to fuzzy measures, fuzzy integrals are important
aggregation operators for uncertain information, which are studied
by many researchers (Sugeno, 1974; Grabisch, 1997; Miranda,
Grabisch, & Gil, 2002; Dubois & Prade, 1988). One of the most
important fuzzy integrals is the Choquet integral (Choquet,
1953). As a generalization of the OWA operator, the Choquet inte
gral on discrete sets is defined as follows (Grabisch, 1997):

Definition 4 Grabisch (1997). Let f be a positive real valued
function on X = {x1,Xs,...,X,}, and u be a fuzzy measure on X. The
discrete Choquet integral of f w.r.t. i is defined by

n

D fxo)(Ap)  HAG)),

i1

C#(f(X(l)),f(X(z)), cee 7f(x(n)))
where () indicates a permutation on N={1,2,...,n} such that
f(XU)) <f(x(2)) <. gf(X(n)). and A(i) = {X(i),. . .,X(n)}, with A(n+‘1) =g.

Based on the definition of the Choquet integral, many Choquet
integral operators are defined, such as the Choquet integral opera
tor on fuzzy sets (Yager, 2003), the Choquet integral operators on
IFSs and IVIFSs (Tan & Chen, 2010; Tan, 2011; Xu, 2010). Further,
Yager (2004b) defined the following generalized Choquet integral
OWA operator

n

GCOWA(ay,ay, ..., a,) Z((M(AO)) H(A(;‘H)))bz;-))”?,

j1

where y € R\{0}, () indicates a permutation on N = {1,2,...,n}, with
by being the jth least value of a; (i=1,2,...,n), and Ay ={bg),
. ,b(n)} with A(n+1) =0.

3. Two new induced continuous Choquet integral operators
3.1. The ICCWA and ICCGM operators
According to the ICOWA and ICOWG operators (Chen & Zhou,

2011; Wu et al., 2009), we define the ICCWA and ICCGM operators
as follows:

Definition 5. An ICCWA operator of dimension n is a mapping
ICCWA: Q™ — R* defined on the set of second arguments of two
tuples (uy,[ay,b1]), (uz,[az b)), ... ,(us[anby]), denoted by

ICCWA,((u1, [a1,b1]), Uz, [az,ba]), ..., (Un, [@n, bn]))
ICCWA, (111, Folar, bi]), (2, Fo[az.b2).. .. (ttn. Fo[an, bu]))

n

D (#Asg)  1Asgi1))Fa((aeg):beg))), (5)
j1
where Q™" is the set of dimension n positive interval numbers, p is a
fuzzy measure on {[a;bi]}ic12...n» O iS a permutation on
N={1,2,...,n} such that usg;y < ug(+1) Ug( is the jth least value of
u; (i=1,2,...,n), Fo(lasiy,bseh]) given as Eq. (1), and Aggiy = {[ao()
oty = {[as() boiil, - - - [aatnybom]}, With Agnir) = 0.

Definition 6. An ICCGM operator of dimension n is a mapping
ICCGM: Q™ — R" defined on the set of second arguments of two
tuples (uq,[aq,b1]), (uz,[az,ba)), . .., (un,[Gn, by)]), denoted by

ICCGMN(<U1, [al,b]]>7 <Ll2, [az,b2}>,...7<un7 [anybn]>)
lCCGMM((”UGQ[a]vblbv <u27GQ[a27b2}>>“'7<umGQ[an>bn]>)

n

H(GQ([aauwbomD”(M)) MA”M))* (6)

i1
where Q" is the set of dimension n positive interval numbers, p is a
fuzzy measure on {[aybi]}ic12..n, O iS a permutation on
N={1,2,...,n} such that usgy < Ug(j+1), Us) is the jth least value of
u; (i=1,2,...,n), Gollasy,bsyl) given as Eq. (2), and Agqy=
{[ao'(j)v bo‘(j)]v e l[aﬂ'(n)v b(T(ﬂ)]}v with Ao’(n+l) =0.

When the fuzzy measure p is additive, namely,
H(S) X pestt((ai, bi]) for any S C {[a;,bil}iz12,. n, then the ICC
WA and ICCGM operators degenerate to be the ICOWA and ICOWG
operators, respectively.

3.2. Some properties

Proposition 1 (Monotonicity). Let [a;,b;] and [a},bj|(i 1,2,...,n)
be two collections of positive interval numbers, and u be a fuzzy
measure on {[a;, biJ}i-1.. .. and {[a;, b]] }io1o. g With w(S)=p(T), S
and T having the same subscript for S C {[a;,bi]}i-12...n and
Tc{[a,bi]}; 1, . Ifd <aandb;<b;foralli=1,2, .., n, then
ICCWA,((u1, a1, b1]), (uz, [az, ba]), . . ., (Un, [a@n, by]))

> ICCWA, ((u, [a, b)) (1 [a5,B3)) . (a0 B3))) (7)
and
ICCGM,((uq, [a1, b1]), (uz, (a2, b2)), . .., (Un, [An, ba)))

> ICCGM, ((tr. [a}. B, ]). (. 05, B5)). .t [, ). (8)

Proof. For Eq. (7): By @ < a;,b; < b; and Fy([a,b])=(1 Zi)a+ib
where 7 j(} Q(y)dy, we have

Fo([ai, bi)) = Fo([a;, b])

foralli=1,2,...,n
Namely, Fo ([dog), bog)]) > Fo ([ayg. bop] ) forallj=1,2,...,n.
From w(As;) w(Asg1y) =0forallj=1,2,..., n, we get

> (HAsg)  BAsg1)Fa(dog): bog)))
I
>Z((M(Aau>) H(Aa(iJrl)))FQ({a;r(j)vb;U)]))'

j1
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For Eq. (8): a' *b* where

Ao Q
GQ([aivbiD ([aﬂsz

foralli=1,2,...,n.Namely, Gq([as), bs(j)]) = GQ([ . ,bau ]) for all

j=1,2,...,n. From u(As;) WAsg+1)) =0forallj=1,2,...,n, we
have

prod) ; (Ga([aag, bay )" ™ )

n HAgj) Mg 1))
> [1(Go[drbeo ) ~

j1

By da; <a.,b;<b; and Gg([ab])=

(y)dy, we have

O

Proposition 2 (Idempotency). Let [a,b;] (i=1,2,..., n) be a collec
tion of positive interval numbers, and p be a fuzzy measure on {[a
bil}iz12...n If [aybi] =[a,b] for all i=1, 2, ..., n, then

ICCWA#(<U17 [a1,b1}>, <U27 [az,b2]>, ceey <un7 [am bn]))
1 2a+ b 9)

and

ICCGM;L(<U1, [(11 s b]]) <UZ, [(127 b2]> ----- <un7 [am n]>)

where 4 ,]’01 Q(y)dy

a' ‘b, (10)

Proof. For (9): We have

ICCWA,((u1, [a1, b1]), (uz, [az, ba]), . . ., (Un, [a@n, by]))

D (H(Asg)  1As1))Fo ([0, bog)))

j1

D (H(Asy)  H(Asgin)Falla. b))

j1

Fo(la,b)) (H(Asg) H(Asgn)) Folla,b)) (1 A)a+ib.

i
For (10): We get

ICCGM,((uy, [a1, b1]), (ua, [a2,b2)), . . ., (Un, [Gn, ba]))
[T (Go(lacg. o)™ o)) T](Ga(la, b=’
i1 i1

Z(”(AU‘U')) MAg(+1)))
Gao(la, b))/ !

H(Agum))

Go(ja,b)) a'“b'. DO

Proposition 3 (Boundary). Let [a; b;] (i=1, 2, ..., n)be a collection of

positive interval numbers, and w be a fuzzy measure on
{la, bil}i-12,.. .0 then
mjin a; < ICCWA,((u1, (a1, b1]), (uz, [az, ba]), . . ., (Un, [@n, ba]))
< max b; 11)
j
and
mjin a; < ICCGMy((uy, [ay, bi]), (ua, [az, ba)), . . ., (Un, [Gn, ba))

< max b;. (12)
J

Proof. Foralli=1, 2, ..., n,since Fo([a;,bi])=(1 A)a; + ib;, we get

a; < Fo([a;, bi]) < b

Thus, min; a5, < Fq([de,,bs]) < max; b
Namely,

for all j=1,2, ...,n

%)
mjin g, < Fo(lasy,boy)) < mjax bs,

for all j=1,2,..., n. By 3 | (UAsp) [(Asgin)) 1, we get Eq.

(11). Similarly, one can easily get Eq. (12). O

Proposition 4 (Linearity 1). Let a{‘,bf‘] i 1,2,...,mk 1,2,

m) be a collection of positive interval numbers, and p be a fuzzy

measureon{[a" b; ]} .

1771

,with u(S) = i(T), S and T having the same

subscriptforsg{[ak bk]}i . andTg{[af7b,]}i ]2.””7,(71 1.2
..,m, k # L. Then, 2.

ICCWA,,<<u1,ia,([ahbk} > <u2 Z“k[ B+ i >
k1
<un,zm:ock[a’,§7b’,§]+[c,d]>> 1 Ac+aid
k1
+’;‘ckuCCWAH(<u17 [ 4] ), (i, [, 5] )

and

ICCGMN(<u1 Hock[ R cd]> <u2,chk[a27 5]l >
<un,1m_[ock[ ] c, d]>> c! *d"ﬂakICCGMﬂ(<u1,[a’{,b’fp,
(o [a5.8] .o (0] ). (14)

fol Q(y)dy,oq € R, and [c, d] is a positive interval number.

(1)) 19

where A

Proof. For (13): By Eq. (5), we have

ICCWA, <<u1,zm:ak [a’;,bﬂ +[C,d]>,<u2,zm:ak [az’bk} 4l d]>‘...,
k1 k1

<unzx,{ by + cd1>>

(H(Asg)  1(Aqiin))Fo (Zak [ak bt + [ad]))
k1

(

:i<w<Am>> u(Aamn))FQ( c+kiaka£w,d+kiockbl‘,@b>
(wmam) 1(Aggi) >>(<1 7) (c+2akaﬂm> H(mimﬁ@)))
< (Arg) Aa(i+1)))<((1 /t)c+id>+k'2";ak(<1 J~>aﬁu~>+?~biu>))>

’;U)+ib’;u)>>

)

<uﬂ7 [aﬁbﬁ] >)

j1

1 2etd+ > o ((1Asy) wAm) (1 2a

ik 1

> 1)) Fo([a

1 c+/1d+ZockICCWA (( [a?,b?]),(uz,[a’;,b’;p...,

(
(1 Dot ids 3 (ia
s

For (14): By Eq. (6), we get
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lCCGM#(<u1,ﬂak[al, ] c, d]> <u2,ﬁak[a’z‘7b’§] [c,d]>,...,

(frieslea))

H(AgG) MAgG11))
(Hak aog),bg)] [c, d])
k1
m m HAs) MAgis1))
k k
Go <[CH“kaao>vdH“kbau>]>
k1 k1

m 14 m I\ HAg) MAggir))
|
(CH“W%)) (dHO‘kb;m>
k1 k1
) u 1 ,m UAgG) MAgG11))
1 444 As(j) G(j+1) i k P K A
c cl) (Hoc ( i ) Hakbm))

_— ] N\ HAgg) 1AgGi))
1 790 rU) a(j+ 1) i -~
oy ({0
ZW‘W HAggen) ZW‘W ) M)
(o) |

n
H“k II
j1
P 17 X 2 H(Aau)) H(Aﬂuwl))
k
% <(”nu‘>> (bam) )
1 9k = u k k HAg) MAgi1))
=c d T[] ] CQ([”JU) bau‘)])

k1 g

—! "d’:ﬁakICCGMH<<u1,[a ,b‘l‘]>,<u2, {a’;,bﬂ>,...,<un,[aﬁ,bﬂ >> O

k1

-

I
s

-
-

I
-
==

1 I
==

Proposition 5 (Linearity 2). Let [a; b;] (i=1,2,
of positive interval numbers, and p; (1=1,2,..
fuzzy measures on {[a; b[}i-12. .. Then,

.,n) be a collection
.,q) be a collection of

ICCWA ((u1,ar, b1]), (uz, [az, ba)), .. .,

Butu+e
11

ZﬁllCCWA,,l((ul,[al bul). (U2, [az, bal), .., (thn, [an, bu]))  (15)

(Un, [an, b))

and

ICCGM ((uy, [ar, by

Bitu+é
11

q
[ 181CCGM,, ((u1, (a1, by
11

]>7 <u27 [02>b2}>7 EEER) <uﬂ7 [aﬂv bﬂ}))

D?<u27[azvaDP"7<un7[aﬂabﬂ}>)v (16)

where g > 0 with >} |p; 1,and g €R.

Proof. For (15

ICCWA

ZMMH‘:
Z((Zﬁz#z"‘bz) <Zﬁ1ﬂz+6l> a(i+1) ))FQ([GJU)va(i)])
j1

Z(Zﬂz t(Aq(i) #:(Aau+1>))>FQ([aauwbom])

j1

): By Eq. (5), we get

((ulv [al1b1}>7<u27[a27b2]>7"‘7<unv[aﬂ7bﬂ}>)

Zﬁtz (Asg))  H(Asia1)))Fa([agg), b))
11
Zﬁ,ICCWAH,(m],[al,b1]>,<uz,[az,bz]>,...,<un,[an7bn]>)-
11

For (16): By Eq. (6), we obtain

ICCGM ((uy, (a1, by

Biiu+e

D’ <u27 [a27b2}>7 R <un7 [am bHD)

n Zﬁl#ﬁsl (Ag(j)) ZW‘(H! (Asis1))
[1(Gallasg) bog]) !
j1

q
n Z/’l(ﬂl("\ag)) Hi(Asiii))
[1(Galasg) bo )T
i

q

¢ D bl wAggi))
18I 1(Ga((asg), b)) T )
1 j1

TTAICCGM,, (Gt [av. b)) (2 2. Bs). ...

11

(@, bal)). O

Corollary 1. Let [akb" i 1,2,...mk 12,...,

1771

tion of positive interval numbers, and y; (1=1,2,...

m) be a collec
,q) be a collection

of fuzzy measures on { [aﬁ‘, bf] } I with u(S) = w(T), S and T hav
1 n

Sc{laf bk}}, 12, and

171

m,k # r. Then,

ing the same  subscript for
Te{labil} 1o 0 kr 12,00,

ICCWA | <<u1,zm:ock ak, by + e, d}>,
Z/ﬁ#ﬂrﬁz k1 { ]
11

<u2,zm:o<k [a’z‘,bﬂ + [c,d]>,...,<un,2m:ock {aﬁ,b’;] + [c,d]>>
k1
i c+)d+§q:§m:ock[)’,ICCWAM<<u1, [a’{,b’{b,

1k 1
e8] o [ 1]
and

ICCGM <<u1,Hock at, bl }>,
Z/ﬁﬂl*ﬁl [ ] ]

1

<U27ﬁdk {a’zﬂb’;] .[c7d]>, <un7Hock[ k n} [c d]>>
k1
¢ d T[] [ouiccoMy, ((u [at, 0] ). (. [ 5] ...

I 1k 1

(u [.4])),

where the notations as given in Propositions 4 and 5.

Definition 7. Let u be a fuzzy measure on N={1,2,...,n}. An ele
ment i € N is said to be inessential if u(S U i) = u(S) for any S C N\i,
and i € N is said to be independent if u(SuUi)= pu(S)+ (i) for any
S C N\i.

From the definition of the inessential element, we know if an
element i is inessential, then its contribution to any other combina
tion S C N\iis equal 0. Further, if an element i is independent, then
its contribution to any other combination S C N\i is equal to the
importance of its own.

Proposition 6. Let [a;b;] (i=1,2,...,n) be a collection of positive
interval numbers, and pu be a fuzzy measure on {[a;bil}i-12. . If
[ap,bp] € {[a; bi]}i=12, . .n is an independent element, then
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ICCWA,((u1, [a1, b1]), (uz, [az, ba]), . . ., (Un, [a@n, by]))

ICCWAL(. .., (Up 1,[0p 1,bp 1]), (Ups1, [Apsa, bpia]), .. .)

+ u([ap, byp))Fo([ap, by)) (17)
and
ICCGM,,((uy, [ar, b1]), (ua, [az, bal), - . ., (Un, [a@n, by]))

Gal([ap, by))" "V ICCOM (..., (up 1. [ap 1.by 1)),
(Ups1, [@ps1, bpa), - ). (18)

Proof. For (17): We have
ICCWA,((u1, [a1, b1]), (uz, [az, ba]), . . ., (Un, [@n, bn]))

n

D (MAs)  (Asg1))Fa([aog), bog)))
1

> (1Asy)  IAs1)Fo([Aog): b))

J 1i#p
+ u((ap, by))Fa([ap, by))
ICCWAL(-.., (Up 1,[ap 1,bp 1]}, (Up11, [@pi1, Dpaa]), - )
+ u([ap, by])Fa([ap, by)).
Similarly, one can easily get Eq. (18). O

Corollary 2. Let [a;b;] (i=1,2,...,n) be a collection of positive
interval numbers, and u be a fuzzy measure on {[a;bi[}i-12. n If
[ap, bp] € {[a;, bi]}i=12, . n is an inessential element, then

ICCWA,, ((u1, [ar, b1]), (uz, [az, b)), . . ., (tn, [@n, bn]))

ICCWA,(..., (up 1,[ap 1,bp 1]), (Ups1, [@pi1, bpial),
and
ICCGM,((uy, (a1, b)), (U2, [a2, b)), ..., U, [@n, ba]))
ICCGMy (.., (up 1, [ap 1, bp 1)), (Ups1, [Apir, Bpia]), - ).

4. The PGS-ICCWA and PGS-ICCGM operators

Although the ICCWA and ICCGM operators can reflect the inter
actions between elements, they give no more than a fuzzy measure
on a set. Moreover, they only reflect interactions between two
“adjacent” coalitions Ay and Aggi+1) (i=1,2,...,n), which seems
to be unreasonable.

4.1. The probabilistic generalized semivalue

In order to measure the power or the strength of each coalition
in a game rather than the power of each of these players, Marichal
(2000) introduced the probabilistic generalized semivalue on any
finite set N={1,2,...,n} as follows:

Zpt

TCN\S

where 377 oCp, (pi(n) 1forallST € NwithSNT##0,s,tand nde
note the cardmalities of S, T and N, respectively.

For any S C N, Eq. (19) is an expectation value of the overall
marginal contributions between the coalition S and any coalition
T C N\S.

wWTus)

Pp(1:S) W), (19)

Theorem 1. Let p is a fuzzy measure on any finite set N={1,2,...,n},
then ¢, given as Eq. (19) is also a fuzzy measure.

Proof. By Eq. (19), we easily get ¢p(u,8) = 0and @p(u,N) = p(N) = 1.
In the following, we show ¢, (@A) < ¢,(u,B) for all A, B C N,
withA C B.
Case (1) Whena=b 1, with a and b being the cardinalities of A
and B, respectively. Without loss of generality, suppose A Ui =B.
From Eq. (19), we have

=Y pi(m)(WTUA) w(T))
TCN\A
= Y pimTUA) w)+ Y piym(uwTUAUl)  u(TUi)
TCN\Aui TCN\Aui
= e PR (T UA) (D)) +pf (T UAUD) - (T UI))
and
®,(1,B) > pr(m)((TUB) u(T))
TCN\B
> pE (T UAUl) ().
TC N\Aui

Since Y7 ¢ 'Cy o 4 (PU(M) +pfa(m) 1 and 37 5Ch ,pb(n)

o Ch . P (n) 1, we get
pin) +ply(m)  pi'(n)

forany T C N\AU1.
Since W(TUAUI) >

PEM(UTUA)  u(T)) +pl, (T UAUI) (T Ui)
<pimWTUAUD) W) +pia(m)(WTUAUL)  wT))
(pf(n) +pf, (M) (WTUA UL W(T))

P ()T UAUL) W)  pr(m)(WTub)

orany T C N\AUI.

Thus, ¢,(1A) < @p(u,B) for all AB C Nwitha=b 1.

Case (2) For any A, B C N, without loss of generality, suppose
a=b qlg<n a) and AU {iyiz,...,ig}=B. Let
A] =AU {il},Az = A] @] {iz},A . .,Aq =Aq 11U {lq}

From case (1), we get

Qp(1,A) < @, (U,A1) < ... < @p(1L,Ag)  @p(1,B).

From induction, we obtain @,(wA) < @p(u,B) for all A, B C N,
A C B. From Definition 3, we get the conclusion. O

From Theorem 1, we know {@,(1,Awp)  @p(1Au1)},,y 1 @
weight vector on N={1,2,...,n}, where Ay={i,...,n} with
A(n+1) =0.

When we replace the fuzzy measure with the probabilistic gen
eralized semivalue to the ICCWA and ICCGM operators, we get the
probabilistic generalized semivalue ICCWA (PGS ICCWA) operator
and the probabilistic generalized semivalue ICCGM (PGS ICCGM)
operator as follows:

w(TuA)and w(T) < u (Tui), we obtain

w?)

Definition 8. A PGS ICCWA operator of dimension n is a mapping
PGS ICCA:Q™ — R* defined on the set of second arguments of two
tuples (uq,[aq,bq]), (Uz,[az,ba]),. . ., (Un,[an, by]), denoted by

PGS-ICCWA,, ((u1,[ar, b)), (Uz. [a2, ba)). . .. (tn, [an, bu]))
PGS-ICCWA,, ((u1, Fo[ar, bi]), (U2, Folaz, Do), . .., (un, Fq[an, b))

Z((q)p(:uvAo(f)) @p(luvAU(Hl)))FQ([aUU% bo(j)])),
I

(20)

where Q™ is the set of dimension n positive interval numbers, ¢, is
the probabilistic generalized semivalue w.r.t. the fuzzy measure u
on {[a;bil}iz12. .. 0 is @ permutation on N={1,2,. n} such that
Ug(j) < Uo(j1)r u(,(,) is the jth least value of u; (i=1, 2 .n), Fo(lasy,



48 F. Meng, Q. Zhang/Computers & Industrial Engineering 68 (2014) 42-53

bs(j)]) given as Eq. (1), and As(iy = {[as(j) o], - - -+ [@sny boim]}, with
As(n+1)= 0.

Definition 9. A PGS ICCGM operator of dimension n is a mapping
PGS ICCGM: Q™ — R* defined on the set of second arguments of
two tuples (uq,[aq,b1]), (uz,[az,bsl),. .., (un[an, byl), denoted by

PGS-ICCGM,, (w1, [ar, b1]), (ua, [az, ba)), ..., (s, [@n, by]))
PGS-ICCGM,, ((u1, Gglar, bi]), (12, Golaz,ba)). ..., (un, Golan, b))

n
A A,
ZGQ([aUO)vbJU)])%(H §) Ppkt (]+1>)7
j1
(21)

where Q™ is the set of dimension n positive interval numbers, ¢, is
the probabilistic generalized semivalue w.r.t. the fuzzy measure u
on {[a; bi]}i-12...n 0 is @ permutation on N={1,2,...,n} such that
Uq(j) < Ug(j+1) Ua() IS the jth least value of u; (i=1,2,...,n), Go([as(),
ba'(j)]) given as Eq. (2), and A(r(i) = {[aq(j),ba—g)],. AN [a(,(n),ba(n)]}, with
As(n+1)= 0.

From Theorem 1, we know ¢y, is a fuzzy measure, which means
that the PGS ICCWA and PGS ICCGM operators satisfy the proper
ties studied in Section 3.2. When each [a;,b;] (i=1,2,...,n) degen
erates to be a real number, namely, a; = b;, we get the following
two aggregation operators.

The probabilistic generalized semivalue induced Choquet
weighted averaging (PGS ICWA) operator

PGS—ICWA(pp((uha]), (Uz,az),. .., (Un,ay))
n

D (@A) Py Asi1)))ac()-

j1

The probabilistic generalized semivalue induced Choquet geometric
mean (PGS ICGM) operator

n
PGS'ICGM«;P(OJ] , a1>7 <U2, (12>, o <un7 aﬂ)) Za;/_)fj;#ﬁau?) (/)p(uvAUU+]]).

j1

4.2. An important case

In this section, we give an important case of the PGS ICCWA and
PGS ICCGM operators, where the probabilistic generalized semi
value is the so called generalized Shapley index, denoted by (Mari
chal, 2000):

(n s ot

n s+1)! VSEN.

(1, S) (M(SUT)

) (22)

TCN\S (

From Eq. (22), we know it is an expectation value of the overall mar
ginal contributions between the coalition S and every coalition
T C N\S.

Based on the generalized Shapley index, we introduce the fol
lowing two aggregation operators.

The generalized Shapley index ICCWA (GSI ICCWA) operator

GSI-ICCWA s ((t11, [ar, b)), (112, (a2, b)), ..., (tn, [, b))

n

Z(((/)Sh (U Ag()) (PSh(MvAJ(iH)))FQ([aa(i)’ bﬂ(i)]))' (23)
i
The generalized Shapley index ICCGM (GSI ICCGM) operator
GSI-ICCGM i ((u1, (a1, ba]), (2, [az, D2]), . .., (un, [Gn, bn]))
3 Gl bog]) ™40 A (24)

i

Remark 2. From Theorem 1, we know the generalized Shapley
index is a fuzzy measure, which means that the GSI ICCWA and
GSI ICCGM operators satisfy the properties discussed in
Section 3.2.

5. An approach to uncertain multi-attribute group decision
making

With economic development, the decision making problems
are becoming more complicated, uncertain and fuzzy than ever
(Chiclana, Herrera, & Herrera Viedma, 1998; Herrera & Martinez,
2001). In many situations, because of time pressure, lack of knowl
edge, and people’s limited expertise related with problem domain,
it is apparent that an increasing amount of information provided
for decision making will be given in interval arguments. Based on
the induced continuous Choquet integral operators, we develop
an approach to uncertain multi attributes group decision making.

Let A={a;,ay,...,a,} be the set of alternatives, C = {cy,cs,...,Cn}
be the set of attributes, and E = {ej,e,,...,e4} be the set of the ex

ijr 7
of the alternative a; with respect to (w.r.t.) the attribute ¢; given
by the expert e,. In other words, the evaluation of the alternative
a; w.r.t. the attribute ¢; given by the expert e is a positive interval

number df [ag,bg«](i 1,2,...,m);j=1,2,...,n; k=1,2,...,q. By

perts. Assume that Elf-]‘. [a’-‘ b’.‘] is the positive interval argument

D* (&5) , we denote the interval decision matrix given by
mxn

the expert e, (k=1,2,...,q).

Based on the induced continuous Choquet integral operators,
the main decision procedure to get the most desirable alternative
(s) can be expressed in the following steps:

Ak
<dij)m><n

Step 1: Normalize the interval decision matrix D
into Q¥ (?5) (k 1,2,...,q), where
mxn

for benefit attribute ¢;

{ag /ngf,dg* /Z:d; }

{1/d§*/21/d;} 1/d; /Zl/dgf} for cost attribute ;
il i1l

(i=1,2,...m; j=1,2,....n).

k _
=

Step 2: Assume that uf is the fuzzy measure on the expert set E,
use the GSI ICCWA or GSI ICCGM operator to calculate the com
prehensive matrix H = (hj)mxn.

Step 3: Assume that p€ is the fuzzy measure on experts set C,
use the generalized Shapley index induced Choquet weighted
averaging (GSI ICWA) operator

GSI-ICWA s (U1, 1), (U, Gz), - - . , (Un, @)

n
D (@M (WA O™ (1 Asgi)og)
i1
or the generalized Shapley index induced Choquet geometric mean
(GSI ICGM) operator

GSI-ICGM s (U1, 1), (Uz, @), - - -, (tin, @)

f[ q” WAsp) " (i Aggi)
a(i)
i
to get comprehensive attribute values z(i=1, 2, ..., m).
Step 4: Rank these comprehensive attribute values z(i=1, 2,.. .,
m) in descending order, and select the biggest one (s). Then, we
get the best choice (s).
Step 5: End.
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The above decision steps are based on the assumption that the
fuzzy measures on the attribute set and on the expert set are al
ready known. As mentioned above, because of various kinds of rea
sons, it is difficult to obtain their weight vectors exactly. In most
situations, we only have incomplete weight information.

Based on consistency principle (Chiclana et al., 2007) and TOP
SIS method (Negi, 1989), we introduce the following models for the
optimal fuzzy measures on the attribute set and on the expert set,
respectively.

First, we introduce a possibility degree formula on interval
numbers given by Xu and Da (2003). Let & [a1,bs] and
B [a2,by] be any two positive interval numbers, then the degree
of possibility of & > f is defined by (Xu & Da, 2003)

bz a,

P(o = p) max{l max {m70}70}7 (25)

and the degree of possibility of § > & is equal to

P(fza) 1 Plazp). (26)

Definition 10. Let G=(g;).«n be a matrix. If g;+gi;=1 and
gij<c[0,1] for all i, j=1, 2, ..., n, then matrix G is called a fuzzy
preference relation or complementary matrix.

As we know, the experts’ knowledge, skills and experiences are
different. It is unreasonable to give the equal weight of an expert
w.r.t. different attributes. Further, if there exit interactive character
istics between experts, it is not suitable to give the weight vector of
experts using additive measures. In the following, we introduce the
model for the optimal fuzzy measure on the expert set, where every
expert’s importance is determined w.r.t. each attribute.

By dft we denote the jth column of the interval decision matrix
D* (8{;) given by the expert e, (k=1,2,...,q). From Egs. (25)
and (26), "We obtain the complementary matrix P§< (pﬁﬁ)
w.r.t. the jth column d’ of the interval decision matrix
D* <d§> . Using the method of constructing a consistent reci
procal fuz"ﬁxyn preference relation (Chiclana et al.,, 2007), we get

the additive consistent complementary matrix INJJ,; (pﬁf,) on
mxm

A={aj,ay,...,ay} from m 1 preference values, where

Pﬁ’i ifh<l<h+1
2 Dt + Planea + -+ 00 H5if hh41

1 pj if hyl

(27)

forallh,1=1,2,...,m _
As Chiclana et al. (2007) noted, the matrix P}, maybe entirely do

not in the interval [0, 1], but in an interval { a1 +aj’-‘], where
aj’.< \pj’.‘| with p, min {pﬁ’l h, 1 1,2,...,m}. In this situation,

k
i given by Chiclana

we adopt the transformation function f(x) 5%
i
et al. (2007).
_ When we get the additive consistent complementary matrix
PJ,( (p bl w.r.t. the attribute ¢; (j=1,2,...,n) and the expert
mxm

er (k=1,2,.7.,q). Use the following con51stent mdex

a e R

we get the consistent degree of the interval fuzzy preference rela
tion given by the expert e, (k=1,2,...,q) w.r.t. the attribute ¢;
(G=1,2,...,n).

According to the consistency principle, if the consistent index of
an expert is small w.r.t. the attribute ¢; (j = 1,2,...,n), it can provide
useful information. Therefore, the expert w.r.t. the attribute c;
should be assigned a bigger weight; otherwise, such an expert

w.r.t. the attribute ¢; will be judged unimportant. In other words,
such an expert w.r.t. the attribute ¢; should be evaluated as a smal
ler weight. Further, the optimal fuzzy measure makes each alterna
tive’s optimal comprehensive value the bigger the better.

If the weight information of the experts is partly known, then
we establish the following model for the optimal fuzzy measure
on the expert set E w.r.t. the attribute ¢; j=1,2,...,n):

. . .
min ZCI’,C(/)L (,qu,E)

ﬂf(E) 1 (28)
sit. { WF(S) < Wi(T) VS,TCEst. SCT ,
1 (ex) € UJ,(,,uj (ex) 20,k 1,2,....q

where qoL( £ E) is the Shapley value (Shapley, 1953) of the expert
e, w.r.t. the attribute c¢;, defined by

g > TSI (s ).

SCE\e

with s being the number of experts in S, 1if is the fuzzy measure on
the expert set E w.r.t. the attribute ¢;, and U, is the range of the ex
pert e, w.I.t. the attribute c;.

Solve the model (28), we get the optimal fuzzy measure on the
expert set E w.r.t. each attribute ¢; (j = 1,2,...,n). Then, we can use
the introduced aggregation operators to get the comprehensive
matrix H = (hjj)mxn.

Remark 3. In order to overall reflect the inter dependent charac
teristics between experts, in the model (28) we use their Shapley
values as their weights.

From the comprehensive matrix  H=(hj)mxn let
h* {h{,hy,...,h;} and h  {h;,h,,....h,},  where
hi  maxicicm {hy} and h;  mincicp {hy} for all =1,2,...,n

Let

+
d;j #
di; +dj

whered; |h; hf|andd; |hy h|.

Similar to the analysis about the model for the optimal fuzzy
measure on the expert set, the optimal fuzzy measure makes big
ger comprehensive value for each alternative preferable. If the
information about the weights of attributes is partly known, then
we build the following model for the optimal fuzzy measure on
the attribute set C w.r.t. the alternative a; (i=1,2,...,m) based on
TOPSIS method.

min Y dy;(u,C)
i1

<@ 1
st. {,uC(S)g,uC(T)VS,TCCs.t.SCT 7
KOG € U pC(e) > 0, 1.2.....n

where ¢} uS,C) is the Shapley value of the attribute ¢jgiven as in the
model (28), u€ is the fuzzy measure on the attribute set C, and Ujis
the range of the attribute c;.

Since all alternatives are non inferior, we build the following
model for the optimal fuzzy measure on the attribute set C by
using TOPSIS method.

min ) °» "djp;(1,C)

i1 1
e 1 (29)
S)< uS(T)VS, TCCst.SCT

st {uc(
C(c,)eup ‘) =0, j 1,2,....n
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Solve the model (29), we get the optimal fuzzy measure on the
attribute set C. Then, we can use the GSI ICWA or GSI ICGM oper
ator to get the collective attribute values.

6. An illustrative example

Let us suppose a bid inviting process through which the em
ployer or investor is trying to find out the optimal bidding scheme
(Zhou & Chen, 2011). In order to keep pace with the development
of modern iron and steel industry as well as to improve the envi
ronmental equality of the city, Steel and Iron Works wants to con
struct a pelletizing plant in his primary producing area of iron ore
where the production capacity reaches 1.20 million tons per year.
According to the characteristics of the project construction, the
construction is divided into four bid packages including construc
tion project, installation project, etc., between which the construc
tion project is the principal part of the civil works. Considering the
regulations of the project, the investor will invite bidding for the
construction project and select from four bidders according to
the following five attributes:

(1) ¢, is the project quotation;

(2) ¢y is the construction period;

(3) c3 is the quality of construction project;
(4) cy4 is the construction technology;

(5) cs is the business reputation.

Suppose that the uncertain weight information of the attributes
is given by U=([0.2,0.3],[0.1,0.25],[0.2,0.3],[0.15,0.25][0.1,0.2]).
There are four construction organizations ({a;,a,,as,a4}) are se
lected as possible alternatives. Four experts ({eq,e5,e3,e4}) evaluate
the four alternatives by using the interval arguments with scores of
centesimal system according to the above five attributes. The
uncertain weight information of the experts w.r.t. each attribute
is given by

W;  ((0.2,0.3],[0.15,0.2],[0.25,0.3],[0.1,0.15],[0.25,0.35]),

[
W, ([0.15,0.35],[0.15,0.25],[0.2,0.3],[0.2,0.35],[0.15,0.3]),
W;  ((0.15,0.25],]0.2,0.25],[0.15,0.3],(0.15,0.3],(0.2,0.3]),
W, ([0.25,0.3],]0.2,0.4],(0.2,0.3],(0.2,0.35],(0.2,0.35)).

The decision matrix D (&fj)
mxn

(k=1,2,3,4) as listed in Tables 1 4.

In this problem, all attributes are measured with the same
dimension units by scores ranging from 0 to 100, thus the decision
matrices D* (k = 1,2,3,4) have no need to be normalized. Based on
above analysis, we give the following steps to obtain the optimal
bidding scheme.

Step 1: Use Egs. (25) and (26) to calculate the complementary
matrixP]'-< p’,‘{lg given by the expert e, (k = 1,2,3,4) w.r.t. each
attribute ¢; (j = 1,2,3,4,5), take k=j =1 for example,

05 O 1 1
1 05 1 1
0 0 05 057

0 0 043 05

given by the expert e

P

(k=1,2,3,4;
j=1,2,3,4,5), utilize Eq. (27) to construct the additive consistent

Step 2: According to matrix P (p%)
mxm

complementary matrix I~’}’-‘ (p’,ﬂ)mxm, take k=j =1 for example,

05 0.0614 05 05614
B1 0938 05 0.9386 1
! 05 0.0614 05 05614
0.4386 0 0438 05

Step 3: According to the model (28), we get the following linear pro
gramming for the optimal fuzzy measure on the expert set E w.r.t.
the attribute c;.

min  0.175(15(er)
+0.164 (15 (e2)  pi(er,e3,e4)) 0.185(pf(es) pli(er,ez,e4))
0.154(u5(ea)  pi(er.ez.e5)) +0.169(ug(er,e2)  pii(es,e4))
0.005(45(er,e3)  pi(ez,ea)) +0.011(pi5(er,4)  pi(ez,€3))
+1.075

Wi(ez,e3,e4))

UE(E)  1UE(S) < WE(T)VS, TC{eq,ez,e3,€4}5.t.SCT
s.t. LE (e1) € [0.2,0.3], 4 (e3) € [0.15,0.35] 1 (e3)
€[0.15,0.25], it (e4) € [0.25,0.3]

Solve the above model, we have

fi(e2) 015, p5(er)  pi(eren) 02,u5(es,ea)  i(er,es,ea)
E E
Hi(ez,es,es)  py(E) 1,
E E E E E E
Mi(es) piles) pi(er,es) py(er,es) py(ea,es)  Hy(er,eq)
ui(er, ez, e3)  p(er,exeq) 025,
Similarly, we obtain
E E E E E E
wer)  Hiles)  p(es)  Haleres)  Uy(er,es)  Up(es, es)
Us(er,es,eq) 0.2,
Table 1
The interval decision matrix D' given by the expert e;.
a [} c3 Csq Cs
a [85,88] [86,90] [72,78] [86,90] [72,76]
a, [88,92] [70,75] [90,92] [65,75] [85,90]
a3 [75,80] [77.82] [81,85] [87,90] [75,82]
ay [76,78] [86,88] [90,93] [88,90] [85,88]
Table 2
The interval decision matrix D? given by the expert e,.
Cq Cy C3 Cq Cs
a [75,79] [81,83] [78,85] [67,71] [85,88]
a [76,81] [82,85] [75,79] [71,75] [81,84]
as [65,70] [75.82] [68,72] [89,90] [92,95]
as [68,75] [82,86] [76,80] [75,77] [84,88]
Table 3
The interval decision matrix D* given by the expert es.
(o [ C3 Ca Cs
a [80,90] [85,90] [81,85] [70,75] [70,74]
a [95,97] [72,76] [71,75] [85,91] [85,89]
as [92,96] [80,85] [85,90] [80,86] [91,95]
ay [90,93] [62,68] [75,80] [76,80] [68,72]
Table 4
The interval decision matrix D* given by the expert e,.
C1 &) C3 Ca Cs
a (74,77 [95,98] [71,75] [66,71] [90,95]
a [89,91] [75,78] [94,97] [67,71] [68,72]
as [89,93] [95,98] [90,95] [81,87] [75,81]
a4 [75.81] (86,92] [71,76] [92,98] [68,75]
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Table 5
The Shapley values of the experts w.r.t. each attribute.
Cq C2 C3 Cq Cs
o) (46.E) 0.054 0175 0.138 0.388 0.525
o (k6. E) 0.038 0.596 0.108 0.054 0375
o) (K6 E) 0.454 0.05 0.096 0.054 005
(k6. E) 0.454 0175 0.654 0.504 0.05
p5(e) (e es)  0.25 (e en)  py(exes)  (er, ez, e3)
Hs(ei.e2.es)  ps(ez.e3.ea)  p5(E) 1
[5(es) 015, p5(e)  ps(ez es) 0.2, p5(es) 0.3, pi5(er)
H(eres)  pi(eres) ps(enexes) 025 u5(eres)
15(e2,ea)  pii(es ea)  pii(ersezea) pii(er,e3,eq)
(e, e3,ea)  p5(E) 15
pa(er) 015, p5(e0)  pglea)  pg(er,ex)  pi(er,es)  Wy(ea,es)
(e ez ea) 0.2, pi5(e3)  pg(ex,es)  pg(es,eq)
(e e3,ea) 0.3, pih(er,e3)  pih(er ez, e3)
pa(er.es es)  pg(E)  1;
pE(e)  ps(es)  pg(ea) ps(ea,es)  fis(ea,es)  fiE(es,ea)
(e eses) 0.2, pe(er) ps(eres) ps(eres)
ps(er.es es) 035, pig(er.e;)  ps(er ez e3)
ps(er exes)  ps(E) 1.

Step 4: From the fuzzy measures on the expert set E, we get the
Shapley values of the experts w.r.t. each attribute as listed in
Table 5.

Let uy qoi(uf,E) (k 1,2,3,4). When there exist more than
one expert’s Shapley value is equal, we rearrange them according
to the index in ascending order. Further, we takeQ(y)=y, then
J.=1/2. Use the GSI ICCWA operator to aggregate the interval deci
sion matrices D* (k=1,2,3,4), for all i, j, e.g., i=1,j=1,

hi GSIICCWA s (0} (15.E). [}y b1y ). (03 (1. E). [, b3, ).
(0 (15, E), [, b ) (@3 (1, B), [at, b1, )
(@™ (HEE) o™ (h,E\ €5))Fo ([ad b))
+ (oM (. E\es) @ (kE fer,e2}))Fo([ath 1] )
+ (o™ {erea)) @™ (uf. {e2}))Fo[ah. b))
(@M (o)) o (1, @))Fo( (a3, b7, ]) 8044,

Similar to the calculation of h;, we get the following comprehen
sive matrix:

80.44
92.56
91.45
84.49

86.03
78.92
81.49
84.61

76.03 76.26
90.47 70.8
86.37 86

79.43 89.75

76.23
85.14
84.78
83.27

Step 5: From the comprehensive matrix H = (h;j)4.s, we get the fol
lowing relative distance matrix:

0 0 1 071 1

1 1 0 1 0
0.09 064 028 02 0.04
067 02 076 0 021

D

According to the model (29), we get the following linear program
ming for the optimal fuzzy measure on the attribute set C.

min  0.001(u(cr) p<(C\er) +0.02(u () p(C\c2))
+0072(u(c3)  HO(C\ €3)) +0.037(u(ca)  p(C\ ca)
0.128(4(cs)  HE(C\ c5)) + 0.006(i(c1., )

HE(C\ {cr,€2})) +0.024(u (c1, ¢35)
+0.012(u(c1,¢a)  p(C\ {c1,€4}))
HE(C\ {erc5)) + 0.031(KE (3, C3)
0019 (€2,ca)) HE(C {CauCa})
HE(C\ {c2,¢5}) +0.036(1 (3, ¢4))
0.019(1(c5,¢5))  HE(C\ {e3.c5))
UE(C\ {cq,C5}) + 1.762

HE(C\ {c1,¢3}))
0.043 (1 (c1,¢5))
HE(C\ {c2,c3}))
0.036(1C(c2, ¢5))
HE(C\{c3,¢a})
0.03(4 (¢4, ¢5))

HE(S) < uS(T)VS, T C{cy,C2,C3,Ca,C5}8.t. SCT
sp ) H(@)€[02,03] ()€ [0.1,025]

1€(c3) €[0.2,0.3],  p(cq) € [0.15,0.25]

1(cs) €[0.1,0.2], pC(C) 1

Solve the above model, we obtain

K(e2)  0.1,p4ca)  Uo(ca,ca)  015,ucr)  p(cs)  pS(cs)
[e(er ) po(ees)  po(erca)  pO(cr,09)
[e(c2,c5)  (p(cs,ca))  HE(cs,05)  pE(ca,Cs)
HC\{ca,cs})  UE(C\{ea,c5))  UE(C\ e c5))
HE(C\{er,cal)  p(C\{er,c3})  p(C\ {cr,ca})
HEC\er)  02,u5(C\{es,c5))  p(C\es) 04,

K es)  pO(C\{es,ca})  p(C\{ea,ca})  U(C\ {2 c3))

HC\e)  HC\e) pES(Ches) pi(O) 1.

Step 6: From the fuzzy measure on the attribute set C, we get the
Shapley values of the attributes

P1(4E,C) 046, @, (iC,C)
0.05, @,(u,C)

Let u; = @i(u5,C) (j = 1,2,3,4,5), utilize the GSI ICWA operator to cal
culate the collective attribute value z; foralli=1, 2, 3,4, eg., i=1

zi GSI ICWA s ({01 (K, C), hin), (@ (1S, ), hia),
(@3(KE,0), hi3), (@a(UE, C) i), (@5(1€,C), his))
(@™ (U0 @™ (U, C\en))hin + (¢ (S, C\en)
@™ (U, C\ {c1,cs}))his  + (¢ (1, C\ {c1,¢5})
@ (1, {c2, ca})) iz + (@ (U {c2,ca}) @™ (UE

+ (@MU {c2}) @MU, @))hia
0.5x80.44 4+ 0.4 x 86.03 +0.029 x 76.03 +0.034

0.037, @;(uS,C)
0.049, ¢y(uS,C) 0.41.

) {Cz}))hm

x 76.26 +0.037 x 76.23 78.69.
Similarly, we obtain
Z, 8828, Z; 8808, Z, 84.04
Thus,
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Table 6
Ranking orders for the continuous Shapley operators (30) and (31).

The continuous Shapley weighted operator Ranking order

The CSA operator
The CSGM operator

a3 > 04> 02> a4
as>as>0a; > aq

Zy>2735>24>27.

Step 7: From Step 6, we know the second construction organization
a, is the best choice, which is different to the ranking result got by
Chen and Zhou (2011).

Remark 4. In this example, we only use the GSI ICCWA and GSI

ICWA operators to making decision. Similarly, we can adopt the
GSI ICCGM and GSI ICGM operators to obtain the best choice (s).

Based on the Shapley function, Zhang, Xu, and Yu (2011) de

fined the so called Shapely value based intuitionistic fuzzy aggre

gation (SIFA) operator on IFSs. We here restrict the domain of IFSs
in the setting of positive interval numbers and get the following
continuous Shapley averaging (CSA) operator

CSA(oty, 0p, ..., O0ly) Zqoai(,u,A)FQ(oci), (30)
i1

where ¢, (i, A) is the Shapley value with respect to the fuzzy mea
sure ponA {0}y for oy [a;, bi](i  1,2,...,n),and Fq () as gi
ven in Eq. (1).

Remark 5. From Eq. (30), we know that the SIFA operator is based
on the Shapley function and degenerates to the weighted averaging
(WA) operator if there is no interaction between elements. While
the GSI ICCWA operator is based on the generalized Shapley
function and Choquet integral and reduces to the induced
weighted averaging (I WA) operator or the induced ordered
weighted averaging (I OWA) operator if there is no correlation
between elements. Their main difference is that the SIFA operator
considers the elements’ importance and interactions, while the
GSI ICCWA operator gives these two aspects by considering their
ordered positions.

Similar to the induced continuous Choquet geometric mean
(ICCGM) operator, we define the following continuous Shapley
geometric mean (CSGM) operator

n

[ JGaen)™ (1)

i1

CSGM(O{] , 02,00, OCn)

where the notations as given in Eq. (30), and Gq (;) as shown in Eq.
(2).

The difference between the CSGM operator and the GSI ICCGM
operator is similar to that between the SIFA operator and the GSI
ICCWA operator.

Let Q(y)=y, for the comparative convenience, the ranking re
sults with respect to the continuous Shapley operators (30) and
(31) are obtained in Table 6.

Although the CSA and CSGM operators can globally reflect the
interactions between elements in a set, these two operators neither
consider the significance of the elements’ ordered positions nor re
flect the correlations between them.

The numerical results show that different optimal alternatives
may be yielded by using different aggregation operators, and thus,
the decision maker can properly select the desirable alternative
according to his interest and the actual needs.

In this study, we only select one practical example in project
bidding to show the concrete practicality and validity of the pro
posed method. Besides its application in this field, we can also
use the introduced Choquet integral operators and the models for

the optimal fuzzy measures in other fields, such as industrial engi
neering, expert systems, neural networks, digital image processing,
and uncertain systems and controls.

7. Conclusions

We have researched some probabilistic generalized semivalue
inducing continuous Choquet integral operators, which globally
consider the interactions between elements in a set. If there is no
correlation between elements in a set, the introduced operators
degenerate to be the corresponding induced continuous operators
based on additive measures. Meantime, some desirable properties,
such as monotonicity, idempotency, boundary, and linearity, are
studied to provide assurance in applications. Due to the complexity
and uncertainty of real world decision making problems and the
inherent subjective nature of human thinking, the information
about weight vector is usually partly known. To address this situ
ation, the models for the optimal weight vectors on the attribute
set and on the expert set based on the Shapley function, consis
tency principle, and TOPSIS method are built, respectively. Conse
quently, it has developed a procedure to uncertain multi attribute
group decision making with incomplete weight information and
interactive conditions, which is new and different to any existing
method.

Fuzzy measures and fuzzy integrals, as powerful tools to reflect
interactions and to aggregate fuzzy information, give us a new
viewpoint to study decision making problems. Although the fuzzy
measure is a powerful tool to reflect the interactions between ele
ments in a set, it is defined on the power set. Thus, it is not easy to
obtain the fuzzy measure of each combination in a set when it is
large. It will be interesting to research the interactions between
elements in a set by using some special fuzzy measures, which will
largely simplify the complexity of solving a fuzzy measure. Further,
we here only consider the Choquet integral operators, and it will be
interesting to research aggregation operators based on other fuzzy
integrals.

It is worth pointing out that this paper only research the appli
cation of the defined aggregation operators and the building mod
els for the weight vectors in uncertain multi attribute group
decision making. In a similar way, we can also use them in some
other fields, such as education, medical care, military, engineering,
social sciences, and economics.
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