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(2004b) defined the generalized Choquet OWA operator. Zhou and
Chen (2011) introduced the combined continuous generalized
Choquet integral aggregation (CC GCIA) operator. Meanwhile, the
application of the Choquet integral is also studied by many
researchers (Yager, 2003; Labreuche & Grabisch, 2003; Grabisch
& Labreuche, 2008; Tan & Chen, 2010, 2011; Tan, 2011; Xu, 2010).

Although many operators based on fuzzy measures have been
defined, most of them cannot reflect the global interactions be
tween elements in a set. Further, the research on aggregation oper
ators with fuzzy measures mainly focuses on the decision making
problems with known information about the fuzzy measures on
the attribute set and on the expert set. When the weight informa
tion is incompletely known, then we need to find some new ways
to deal with these issues in which the decision data in question are
correlative. To deal with these issues, this study defines two in
duced continuous Choquet integral operators called the ICCWA
and ICCGM operators, which can be seen as an extension of the
ICOWA operator (Chen & Zhou, 2011) and the ICOWG operator
(Wu et al., 2009), respectively. In order to overall reflect interac
tions between elements in a set, the probabilistic generalized semi
value ICCWA (PGS ICCWA) operator and the probabilistic
generalized semivalue ICCGM (PGS ICCGM) operator are pre
sented. As a series of development, the models for the optimal fuz
zy measures on the attribute set and on the expert set are
established, respectively. Consequently, a procedure to uncertain
multi attribute group decision making is developed to provide a
comprehensive and applicable framework.

This paper is organized as follows: In Section 2, some basic con
cepts and definitions are reviewed, which will be used in the fol
lowing. In Section 3, the ICCWA and ICCGM operators are
defined. Meanwhile some desirable properties are studied. In Sec
tion 4, the PGS ICCWA and PGS ICCGM operators are defined,
which do not only globally cover the significance of elements or
their ordered positions, but also overall reflect the correlations be
tween them or their ordered positions. Further, an important case
of the PGS ICCWA and PGS ICCGM operators is studied. In Sec
tion 5, based on the Shapley function, consistency principle, and
TOPSIS method, the models for the optimal fuzzy measures on
the attribute set and on the expert set are established, respectively.
Then, an approach to uncertain multi attribute group decision
making with incomplete weight information and interactive condi
tions is developed. In Section 6, an example is provided to illustrate
the developed procedure. The conclusions are made in the last
section.
2. Basic concepts

2.1. Some aggregation operators

Yager (1988) introduced the ordered weighted averaging
(OWA) operator for aggregating a finite collection of arguments,
whose fundamental aspect is the reordering step. An OWA opera
tor (Yager, 1988) of dimension n is a mapping f: Rn ? R which
has an associated weight vector w = (w1,w2, . . . ,wn)T such that
wj 2 [0,1] and

Pn
j 1wj 1, where

f ða1; a2; . . . ; anÞ
Xn

j 1

wjbj;

with bj being the jth largest of ai (i = 1,2, . . . ,n), Rn and R are the sets
of dimension n real numbers and real numbers, respectively.

In a similar way to the OWA operator, Xu and Yager (2006) de
fined the ordered weighted geometric (OWG) operator, described
as follows:
An OWG operator (Xu & Yager, 2006) of dimension n is a map
ping f: Rn+ ? R+ which has associated with it an exponential weight
vector w = (w1,w2, . . . ,wn)T, with wj 2 ½0;1�;

Pn
j 1wj 1, such that

gða1; a2; . . . ; anÞ
Yn

j 1

b
wj

j ;

where bj is the jth largest of the ai (i = 1,2, . . . ,n), Rn+ and R+ are the
sets of dimension n positive real numbers and positive real num
bers, respectively.

Later, Yager (2004b) presented the continuous ordered weighted
averaging (COWA) operator, which was defined as follows:

Definition 1 Yager (2004b). A COWA operator of dimension n is a
mapping F: X+ ? R+ which has associated with it a basic unit
interval monotonic (BUM) function Q: [0,1] ? [0,1], and it is
monotonic with Q(0) = 0 and Q(1) = 1, such that

FQ ð½a; b�Þ
Z 1

0

dQðyÞ
dy

ðb yðb aÞÞdy; ð1Þ

where X+ is the set of positive interval numbers, namely,
X+ = {[a,b]ja,b 2 R+, a 6 b}.

Further, Xu and Yager (2006) proposed the continuous ordered
weighted geometric (COWG) operator, which was defined as
follows:

Definition 2 Xu and Yager (2006). A COWG operator of dimension
n is a mapping G: X+ ? R+ associated with it a BUM function Q,
such that

GQ ð½a; b�Þ b
a
b

� �R 1

0
dQðyÞ

dy y dy

; ð2Þ

where Q and X+ as given in Definition 1.
Remark 1. If k
R 1

0 QðyÞdy, then Eqs. (1) and (2) can be expressed
by FQ([a,b]) = (1 k)a + kb and GQ([a,b]) = a1 kbk, respectively.

Based on the COWA operator, Chen and Zhou (2011) developed
the induced continuous OWA (ICOWA) operator ICOWA: Xn+ ? R+,
which is defined to aggregate the set of second arguments of two
tuples hu1, [a1,b1]i, hu2, [a2,b2]i, . . . , hun, [an,bn]i, denoted by

ICOWAðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ
ICOWAðhu1; FQ ½a1; b1�i; hu2; FQ ½a2; b2�i; . . . ; hun; FQ ½an; bn�iÞXn

j 1

ðwjFQ ð½aðjÞ; bðjÞ�ÞÞ; ð3Þ

where Xn+ is the set of dimension n positive interval numbers, r is a
permutation on {1,2, . . . ,n} such that ur(j) P ur(j+1),ur(j) is the jth
largest value of ui(i = 1,2, . . . ,n), w = (w1,w2, . . . ,wn)T is the associ
ated weight vector, with wj 2 ½0;1�;

Pn
j 1wj 1, and FQ([ar(j),br(j)])

given as Eq. (1).
According to the COWG operator, Wu et al. (2009) developed the

induced continuous OWG (ICOWG) operator ICOWG: Xn+ ? R+,
which is defined to aggregate the set of second arguments of two
tuples hu1, [a1,b1]i, hu2, [a2,b2]i, . . . , hun, [an,bn]i, denoted by

ICOWGðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ
ICOWGðhu1;GQ ½a1; b1�i; hu2;GQ ½a2; b2�i; . . . ; hun;GQ ½an; bn�iÞYn

j 1

GQ ð½arðjÞ; brðjÞ�Þwj ;

ð4Þ

where Xn+ is the set of dimension n positive interval numbers, r is a
permutation on {1,2, . . . ,n} such that ur(j) P ur(j+1),ur(j) is the jth
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largest value of ui(i = 1,2, . . . ,n),w = (w1,w2, . . . ,wn)T is the associated
weight vector, with wj 2 ½0;1�;

Pn
j 1wj 1, and GQ([ar(j),br(j)]) given

as Eq. (2).

2.2. Fuzzy measure and the Choquet integral

In many practical situations, the elements in a set are usually cor
relative. Thus, it is unsuitable to use the additive measure to mea
sure their importance. In 1974, Sugeno (1974) introduced the
concept of fuzzy measures, which is a powerful tool to measure
the interactions phenomena between elements (Grabisch & Rou
bens, 1999; Kojadinovic, 2003, 2005) and to deal with decision mak
ing problems (Grabisch, 1995, 1996; Labreuche & Grabisch, 2003;
Grabisch & Labreuche, 2008; Xu, 2010; Tan & Chen, 2010, 2011).

Definition 3 Sugeno (1974). A fuzzy measure l on finite set
N = {1,2, . . . ,n} is a set function l: P(N) ? [0,1] satisfying
(1) l(ø) = 0, l(N) = 1,
(2) A # B implies l(A) 6 l(B),

where P(N) is the power set of N.

In the multi attribute group decision making, l(A) can be
viewed as the importance of the attribute (or expert) set A. Thus,
in addition to the usual weights on the attribute (or expert) set ta
ken separately, weights on any combination of the attributes (or
experts) are also defined.

Corresponding to fuzzy measures, fuzzy integrals are important
aggregation operators for uncertain information, which are studied
by many researchers (Sugeno, 1974; Grabisch, 1997; Miranda,
Grabisch, & Gil, 2002; Dubois & Prade, 1988). One of the most
important fuzzy integrals is the Choquet integral (Choquet,
1953). As a generalization of the OWA operator, the Choquet inte
gral on discrete sets is defined as follows (Grabisch, 1997):

Definition 4 Grabisch (1997). Let f be a positive real valued
function on X = {x1,x2, . . . ,xn}, and l be a fuzzy measure on X. The
discrete Choquet integral of f w.r.t. l is defined by

Clðf ðxð1ÞÞ; f ðxð2ÞÞ; . . . ; f ðxðnÞÞÞ
Xn

i 1

f ðxðiÞÞðlðAðiÞÞ lðAðiþ1ÞÞÞ;

where ( ) indicates a permutation on N = {1,2, . . . ,n} such that
f(x(1)) 6 f(x(2)) 6 . . . 6 f(x(n)), and A(i) = {x(i), . . . ,x(n)}, with A(n+1) = ø.

Based on the definition of the Choquet integral, many Choquet
integral operators are defined, such as the Choquet integral opera
tor on fuzzy sets (Yager, 2003), the Choquet integral operators on
IFSs and IVIFSs (Tan & Chen, 2010; Tan, 2011; Xu, 2010). Further,
Yager (2004b) defined the following generalized Choquet integral
OWA operator

GCOWAða1; a2; . . . ; anÞ
Xn

j 1

ðlðAðjÞÞ lðAðjþ1ÞÞÞbc
ðjÞ

� �1=c
;

where c 2 Rn{0}, ( ) indicates a permutation on N = {1,2, . . . ,n}, with
b(j) being the jth least value of ai (i = 1,2, . . . ,n), and A(i) = {b(i),
. . . ,b(n)} with A(n+1) = ø.

3. Two new induced continuous Choquet integral operators

3.1. The ICCWA and ICCGM operators

According to the ICOWA and ICOWG operators (Chen & Zhou,
2011; Wu et al., 2009), we define the ICCWA and ICCGM operators
as follows:
Definition 5. An ICCWA operator of dimension n is a mapping
ICCWA: Xn+ ? R+ defined on the set of second arguments of two
tuples hu1, [a1,b1]i, hu2, [a2,b2]i, . . . ,hun, [an,bn]i, denoted by

ICCWAlðhu1; ½a1;b1�i;hu2; ½a2;b2�i; . . . ;hun; ½an;bn�iÞ
ICCWAlðhu1;FQ ½a1;b1�i;hu2;FQ ½a2;b2�i; . . . ;hun;FQ ½an;bn�iÞXn

j 1

ððlðArðjÞÞ lðArðjþ1ÞÞÞFQ ð½arðjÞ;brðjÞ�ÞÞ; ð5Þ

where Xn+ is the set of dimension n positive interval numbers, l is a
fuzzy measure on {[ai,bi]}i=1,2,. . .,n, r is a permutation on
N = {1,2, . . . ,n} such that ur(j) 6 ur(j+1), ur(j) is the jth least value of
ui (i = 1,2, . . . ,n), FQ([ar(j),br(j)]) given as Eq. (1), and Ar(i) = {[ar(j),
r(i) = {[ar(j),br(j)], . . . ,[ar(n),br(n)]}, with Ar(n+1) = ø.
Definition 6. An ICCGM operator of dimension n is a mapping
ICCGM: Xn+ ? R+ defined on the set of second arguments of two

tuples hu1, [a1,b1]i, hu2, [a2,b2]i, . . . , hun, [an,bn]i, denoted by

ICCGMlðhu1; ½a1;b1�i;hu2; ½a2;b2�i; . . . ;hun; ½an;bn�iÞ
ICCGMlðhu1;GQ ½a1;b1�i;hu2;GQ ½a2;b2�i; . . . ;hun;GQ ½an;bn�iÞYn

j 1

GQ ð½arðjÞ;brðjÞ�ÞlðArðjÞÞ lðArðjþ1ÞÞ
� �

; ð6Þ

where Xn+ is the set of dimension n positive interval numbers, l is a
fuzzy measure on {[ai,bi]}i=1,2,. . .,n, r is a permutation on
N = {1,2, . . . ,n} such that ur(j) 6 ur(j+1),ur(j) is the jth least value of
ui (i = 1,2, . . . ,n), GQ([ar(j),br(j)]) given as Eq. (2), and Ar(i) =
{[ar(j),br(j)], . . . , [ar(n),br(n)]}, with Ar(n+1) = ø.

When the fuzzy measure l is additive, namely,
lðSÞ

P
½ai ;bi �2Slð½ai; bi�Þ for any S # {[ai,bi]}i=1,2,. . .,n, then the ICC

WA and ICCGM operators degenerate to be the ICOWA and ICOWG
operators, respectively.

3.2. Some properties

Proposition 1 (Monotonicity). Let [ai,bi] and a0i; b
0
i

� �
ði 1;2; . . . ;nÞ

be two collections of positive interval numbers, and l be a fuzzy
measure on {[ai, bi]}i=1,2,. . .,n and a0i; b

0
i

� �� �
i 1;2;...;n, with l(S) = l (T), S

and T having the same subscript for S # {[ai,bi]}i=1,2,. . .,n and
T # a0i; b

0
i

� �� �
i 1;2;...;n. If a0i 6 ai and b0i 6 bi for all i = 1, 2, . . ., n, then

ICCWAlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ
� ICCWAl u1; a01; b

0
1

� �� 	
; u2; a02; b

0
2

� �� 	
; . . . ; un; a0n; b

0
n

� �� 	
 �
ð7Þ

and

ICCGMlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ
� ICCGMl u1; a01; b

0
1

� �� 	
; u2; a02; b

0
2

� �� 	
; . . . ; un; a0n; b

0
n

� �� 	
 �
: ð8Þ
Proof. For Eq. (7): By a0i 6 ai; b
0
i 6 bi and FQ([a,b]) = (1 k)a + kb

where k
R 1

0 QðyÞdy, we have

FQ ð½ai; bi�ÞP FQ a0i; b
0
i

� �
 �
for all i = 1, 2, . . . , n.

Namely, FQ ð½arðjÞ; brðjÞ�ÞP FQ a0rðjÞ; b
0
rðjÞ

h i� �
for all j = 1, 2, . . ., n.

From l(Ar(j)) l(Ar(j+1)) P 0 for all j = 1, 2, . . ., n, we get

Xn

j 1

ððlðArðjÞÞ lðArðjþ1ÞÞÞFQ ð½arðjÞ; brðjÞ�ÞÞ

P
Xn

j 1

ðlðArðjÞÞ lðArðjþ1ÞÞÞFQ a0rðjÞ; b
0
rðjÞ

h i� �� �
:
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For Eq. (8): By a0i 6 ai; b
0
i 6 bi and GQ([a,b]) = a1 kbk where

k
R 1

0 QðyÞdy, we have

GQ ð½ai; bi�ÞP GQ a0i; b
0
i

� �
 �
for all i = 1, 2, . . . , n. Namely, GQ ð½arðjÞ; brðjÞ�ÞP GQ a0rðjÞ; b

0
rðjÞ

h i� �
for all

j = 1, 2, . . . , n. From l(Ar(j)) l(Ar(j+1)) P 0 for all j = 1, 2, . . . , n, we
have

prodn
j 1 GQ ð½arðjÞ; brðjÞ�ÞlðArðjÞÞ lðArðjþ1ÞÞ
� �

P
Yn

j 1

GQ a0rðjÞ; b
0
rðjÞ

h i� �lðArðjÞÞ lðArðjþ1ÞÞ
� 


:

h

Proposition 2 (Idempotency). Let [ai,bi] (i = 1,2, . . . ,n) be a collec
tion of positive interval numbers, and l be a fuzzy measure on {[ai,
bi]}i=1,2,. . .,n. If [ai,bi] = [a,b] for all i = 1, 2, . . ., n, then

ICCWAlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ
ð1 kÞaþ kb ð9Þ

and

ICCGMlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ a1 kbk
; ð10Þ

where k
R 1

0 QðyÞdy.
Proof. For (9): We have

ICCWAlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞXn

j 1

ððlðArðjÞÞ lðArðjþ1ÞÞÞFQ ð½arðjÞ; brðjÞ�ÞÞ

Xn

j 1

ððlðArðjÞÞ lðArðjþ1ÞÞÞFQ ð½a; b�ÞÞ

FQ ð½a; b�Þ
Xn

j 1

ðlðArðjÞÞ lðArðjþ1ÞÞÞ FQ ð½a; b�Þ ð1 kÞaþ kb:

For (10): We get

ICCGMlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞYn

j 1

GQ ð½arðjÞ; brðjÞ�ÞlðArðjÞÞ lðArðjþ1ÞÞ
� � Yn

j 1

ðGQ ð½a; b�ÞlðArðjÞÞ lðArðjþ1ÞÞÞ

GQ ð½a; b�Þ

Xn

j 1

ðlðArðjÞÞ lðArðjþ1ÞÞÞ

GQ ð½a; b�Þ a1 kbk
: �
Proposition 3 (Boundary). Let [ai,bi] (i = 1, 2, . . ., n) be a collection of
positive interval numbers, and l be a fuzzy measure on
{[ai,bi]}i=1,2,. . .,n, then

min
j

aj 6 ICCWAlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ

6max
j

bj ð11Þ

and

min
j

aj 6 ICCGMlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ

6max
j

bj: ð12Þ
Proof. For all i = 1, 2, . . ., n, since FQ([ai,bi]) = (1 k)ai + kbi, we get
ai 6 FQ ð½ai; bi�Þ 6 bi:

Thus, minj arðjÞ 6 FQ ð½arðjÞ ; brðjÞ �Þ 6maxj brðjÞ for all j = 1,2, . . . ,n.
Namely,

min
j

arðjÞ 6 FQ ð½arðjÞ ; brðjÞ �Þ 6max
j

brðjÞ

for all j = 1, 2, . . . , n. By
Pn

j 1ðlðArðjÞÞ lðArðjþ1ÞÞÞ 1, we get Eq.
(11). Similarly, one can easily get Eq. (12). h
Proposition 4 (Linearity 1). Let ak
i ; b

k
i

h i
ði 1;2; . . . ; n; k 1;2;

. . . ;mÞ be a collection of positive interval numbers, and l be a fuzzy

measure on ak
i ; b

k
i

h in o
i 1;2;...;n

, with l(S) = l(T), S and T having the same

subscript for S # ak
i ; b

k
i

h in o
i 1;2;...;n

and T # al
i; b

l
i

h in o
i 1;2;...;n

; k; l 1;2;

. . . ;m; k – l. Then,

ICCWAl u1;
Xm

k 1

ak ak
1;b

k
1

h i
þ½c;d�

* +
; u2;

Xm

k 1

ak ak
2;b

k
2

h i
þ½c;d�

* +
; . . . ;

 

un;
Xm

k 1

ak ak
n;b

k
n

h i
þ½c;d�

* +!
ð1 kÞcþkd

þ
Xm

k 1

akICCWAl u1; ak
1;b

k
1

h iD E
; u2; ak

2;b
k
2

h iD E
; . . . ; un; ak

n;b
k
n

h iD E� �
ð13Þ

and

ICCGMl u1;
Ym
k 1

ak ak
1; b

k
1

h i
� ½c;d�

* +
; u2;

Ym
k 1

ak ak
2; b

k
2

h i
� ½c;d�

* +
; . . . ;

 

un;
Ym
k 1

ak ak
n; b

k
n

h i
� ½c;d�

* +!
c1 kdk

Ym
k 1

akICCGMl u1; ak
1; b

k
1

h iD E
;

�
u2; ak

2; b
k
2

h iD E
; . . . ; un; ak

n; b
k
n

h iD E�
; ð14Þ

where k
R 1

0 QðyÞdy;ak 2 Rþ and [c, d] is a positive interval number.
Proof. For (13): By Eq. (5), we have

ICCWAl u1;
Xm

k 1

ak ak
1;b

k
1

h i
þ½c;d�

* +
; u2;

Xm

k 1

ak ak
2;b

k
2

h i
þ½c;d�

* +
; . . . ;

 

un;
Xm

k 1

ak ak
n;b

k
n

h i
þ½c;d�

* +!

¼
Xn

j 1

ðlðArðjÞÞ lðArðjþ1ÞÞÞFQ

Xm

k 1

ak ak
rðjÞ;b

k
rðjÞ

h i
þ½c;d�

 ! !

¼
Xn

j 1

ðlðArðjÞÞ lðArðjþ1ÞÞÞFQ cþ
Xm

k 1

akak
rðjÞ;dþ

Xm

k 1

akbk
rðjÞ

" # ! !

¼
Xn

j 1

ðlðArðjÞÞ lðArðjþ1ÞÞÞ ð1 kÞ cþ
Xm

k 1

akak
rðjÞ

 !
þk dþ

Xm

k 1

akbk
rðjÞ

 ! ! !

¼
Xn

j 1

ðlðArðjÞÞ lðArðjþ1ÞÞÞ ð1 kÞcþkdð Þþ
Xm

k 1

ak ð1 kÞak
rðjÞ þkbk

rðjÞ

� � ! !

¼ 1 kÞcþkdþ
Xn

j 1

Xm

k 1

ak ðlðArðjÞÞ lðArðjþ1ÞÞÞ ð1 kÞak
rðjÞ þkbk

rðjÞ

� �� � 

¼ 1 kÞcþkdþ
Xn

j 1

Xm

k 1

ak ðlðArðjÞÞ lðArðjþ1ÞÞÞFQ ak
rðjÞ;b

k
rðjÞ

h i� �� � 

¼ 1 kÞcþkdþ
Xm

k 1

akICCWAl hu1; ak
1;b

k
1

h i
i;hu2; ak

2;b
k
2

h i
i; . . . ;hun; ak

n;b
k
n

h i
i

� �
:

 

For (14): By Eq. (6), we get
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ICCGMl u1;
Ym
k 1

ak ak
1;b

k
1

h i
½c;d�

* +
; u2;

Ym
k 1

ak ak
2;b

k
2

h i
½c;d�

* +
; . . . ;

 

un;
Ym
k 1

ak ak
n;b

k
n

h i
½c;d�

* +!

¼
Yn

j 1

GQ

Ym
k 1

ak½arðjÞ;brðjÞ� ½c;d�
 !lðArðjÞÞ lðArðjþ1ÞÞ

0@ 1A
¼
Yn

j 1

GQ ½c
Ym
k 1

akak
rðjÞ;d

Ym
k 1

akbk
rðjÞ�

 !lðArðjÞÞ lðArðjþ1ÞÞ
0@ 1A

¼
Yn

j 1

c
Ym
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k

Yn
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Proposition 5 (Linearity 2). Let [ai,bi] (i = 1,2, . . . ,n) be a collection
of positive interval numbers, and ll (l = 1,2, . . . ,q) be a collection of
fuzzy measures on {[ai,bi]}i=1,2,. . .,n. Then,

ICCWAXq

l 1

blllþel

ðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ

Xq

l 1

blICCWAll
ðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ ð15Þ

and

ICCGMXq

l 1

blllþel

ðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ

Yq

l 1

blICCGMll
ðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ; ð16Þ

where bl P 0 with
Pq

l 1bl 1, and el 2 R.
Proof. For (15): By Eq. (5), we get

ICCWAXq

l 1

blllþel

ðhu1; ½a1;b1�i;hu2; ½a2;b2�i; . . . ;hun; ½an;bn�iÞ

Xn

j 1

Xq

l 1

blllþel

 !
ðArðjÞÞ

Xq

l 1

blllþel

 !
ðArðjþ1ÞÞ

 !
FQ ð½arðjÞ;brðjÞ�Þ

Xn

j 1

Xq

l 1

bl llðArðjÞÞ llðArðjþ1ÞÞ

 � !

FQ ð½arðjÞ;brðjÞ�Þ

Xq

l 1

bl

Xn

j 1

llðArðjÞÞ llðArðjþ1ÞÞ

 �

FQ ð½arðjÞ;brðjÞ�Þ

Xq

l 1

blICCWAll
ðhu1; ½a1;b1�i;hu2; ½a2;b2�i; . . . ;hun; ½an;bn�iÞ:

For (16): By Eq. (6), we obtain
ICCGMXq

l 1

blllþel

ðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ

Yn

j 1

ðGQ ð½arðjÞ; brðjÞ�ÞÞ
ð
Xq

l 1

blllþelÞðArðjÞÞ ð
Xq

l 1

blllþelÞðArðjþ1ÞÞ

Yn

j 1

ðGQ ð½arðjÞ; brðjÞ�ÞÞ

Xq

l 1

blðllðArðjÞÞ llðArðjþ1ÞÞÞ

Yq

l 1

bl

Yn

j 1

ðGQ ð½arðjÞ; brðjÞ�Þ

Xq

l 1

blðllðArðjÞÞ llðArðjþ1ÞÞÞ

Þ

Yq

l 1

blICCGMll
ðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ: �
Corollary 1. Let ak
i ; b

k
i

h i
ði 1;2; . . . ;n; k 1;2; . . . ;mÞ be a collec

tion of positive interval numbers, and ll (l = 1,2, . . . , q) be a collection

of fuzzy measures on ak
i ; b

k
i

h in o
i 1;2;...;n

, with l(S) = l(T), S and T hav

ing the same subscript for S # f½ak
i ; b

k
i �gi 1;2;...;n and

T # ar
i ; b

r
i

� �� �
i 1;2;...;n; k; r 1;2; . . . ;m; k – r. Then,
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blllþel
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k 1

ak ak
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þ ½c;d�
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þ ½c;d�

* +
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k 1

ak ak
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Xm
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1

h iD E
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h iD E
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h iD E�
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Ym
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1

h i
� ½c;d�
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Ym
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h i
� ½c;d�
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ak ak
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h i
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where the notations as given in Propositions 4 and 5.
Definition 7. Let l be a fuzzy measure on N = {1,2, . . . ,n}. An ele
ment i 2 N is said to be inessential if l(S [ i) = l(S) for any S # Nni,
and i 2 N is said to be independent if l(S [ i) = l(S) + l(i) for any
S # Nni.

From the definition of the inessential element, we know if an
element i is inessential, then its contribution to any other combina
tion S # Nni is equal 0. Further, if an element i is independent, then
its contribution to any other combination S # Nni is equal to the
importance of its own.

Proposition 6. Let [ai,bi] (i = 1,2, . . . ,n) be a collection of positive
interval numbers, and l be a fuzzy measure on {[ai,bi]}i=1,2,. . .,n. If
[ap,bp] 2 {[ai,bi]}i=1,2,. . .,n is an independent element, then
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ICCWAlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ
ICCWAlð. . . ; hup 1; ½ap 1; bp 1�i; hupþ1; ½apþ1; bpþ1�i; . . .Þ
þ lð½ap; bp�ÞFQ ð½ap; bp�Þ ð17Þ

and

ICCGMlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ
GQ ð½ap; bp�Þlð½ap ;bp �ÞICCGMlð. . . ; hup 1; ½ap 1; bp 1�i;
hupþ1; ½apþ1; bpþ1�i; . . .Þ: ð18Þ
Proof. For (17): We have

ICCWAlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞXn

j 1

ððlðArðjÞÞ lðArðjþ1ÞÞÞFQ ð½arðjÞ; brðjÞ�ÞÞ

Xn

j 1;j–p

ððlðArðjÞÞ lðArðjþ1ÞÞÞFQ ð½arðjÞ; brðjÞ�ÞÞ

þ lð½ap; bp�ÞFQ ð½ap; bp�Þ
ICCWAlð. . . ; hup 1; ½ap 1; bp 1�i; hupþ1; ½apþ1; bpþ1�i; . . .Þ
þ lð½ap; bp�ÞFQ ð½ap; bp�Þ:

Similarly, one can easily get Eq. (18). h
Corollary 2. Let [ai,bi] (i = 1,2, . . . ,n) be a collection of positive
interval numbers, and l be a fuzzy measure on {[ai,bi]}i=1,2,. . .,n. If
[ap,bp] 2 {[ai,bi]}i=1,2,. . .,n is an inessential element, then

ICCWAlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ
ICCWAlð. . . ; hup 1; ½ap 1; bp 1�i; hupþ1; ½apþ1; bpþ1�i; . . .Þ

and

ICCGMlðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ
ICCGMlð. . . ; hup 1; ½ap 1; bp 1�i; hupþ1; ½apþ1; bpþ1�i; . . .Þ:
4. The PGS-ICCWA and PGS-ICCGM operators

Although the ICCWA and ICCGM operators can reflect the inter
actions between elements, they give no more than a fuzzy measure
on a set. Moreover, they only reflect interactions between two
‘‘adjacent’’ coalitions Ar(i) and Ar(i+1) (i = 1,2, . . . ,n), which seems
to be unreasonable.

4.1. The probabilistic generalized semivalue

In order to measure the power or the strength of each coalition
in a game rather than the power of each of these players, Marichal
(2000) introduced the probabilistic generalized semivalue on any
finite set N = {1,2, . . . ,n} as follows:

upðl; SÞ
X

T # NnS
ps

tðnÞðlðT [ SÞ lðTÞÞ; ð19Þ

where
Pn s

t 0Ct
n sp

s
tðnÞ 1 for all S,T # N with S \ T – 0, s, t and n de

note the cardinalities of S, T and N, respectively.
For any S # N, Eq. (19) is an expectation value of the overall

marginal contributions between the coalition S and any coalition
T # NnS.

Theorem 1. Let l is a fuzzy measure on any finite set N = {1,2, . . . ,n},
then up given as Eq. (19) is also a fuzzy measure.
Proof. By Eq. (19), we easily get up(l,ø) = 0 and up(l,N) = l(N) = 1.
In the following, we show up (l,A) 6 up(l,B) for all A, B # N,
withA # B.

Case (1) Whena = b 1, with a and b being the cardinalities of A
and B, respectively. Without loss of generality, suppose A [ i = B.

From Eq. (19), we have

upðl;AÞ¼
X

T #NnA
pa

t ðnÞðlðT [AÞ lðTÞÞ

¼
X

T #NnA[i

pa
t ðnÞðlðT [AÞ lðTÞÞþ

X
T #NnA[i

pa
tþ1ðnÞðlðT [A[ iÞ lðT [ iÞÞ

¼
X

T #NnA[i
pa

t ðnÞðlðT [AÞ lðTÞÞþpa
tþ1ðnÞðlðT [A[ iÞ lðT [ iÞÞ


 �
and

upðl;BÞ
X

T # NnB
pb

t ðnÞðlðT [ BÞ lðTÞÞ

X
T # NnA[i

paþ1
t ðnÞðlðT [ A [ iÞ lðTÞÞ:

Since
Pn a 1

t 0 Ct
n a 1 pa

t ðnÞ þ pa
tþ1ðnÞ


 �
1 and

Pn b
t 0 Ct

n bpb
t ðnÞPn a 1

t 0 Ct
n a 1paþ1

t ðnÞ 1, we get

pa
t ðnÞ þ pa

tþ1ðnÞ paþ1
t ðnÞ

for any T # NnA [ i.
Since l(T [ A [ i) P l(T [ A) and l(T) 6 l (T [ i), we obtain

pa
t ðnÞðlðT [ AÞ lðTÞÞ þ pa

tþ1ðnÞðlðT [ A [ iÞ lðT [ iÞÞ
6 pa

t ðnÞðlðT [ A [ iÞ lðTÞÞ þ pa
tþ1ðnÞðlðT [ A [ iÞ lðTÞÞ

pa
t ðnÞ þ pa

tþ1ðnÞ

 �

ðlðT [ A [ iÞ lðTÞÞ
paþ1

t ðnÞðlðT [ A [ iÞ lðTÞÞ pb
t ðnÞðlðT [ bÞ lðTÞÞ

or any T # NnA [ i.
Thus, up(l,A) 6 up(l,B) for all A,B # N with a = b 1.
Case (2) For any A, B # N, without loss of generality, suppose

a = b q(q 6 n a) and A [ {ii, i2, . . . , iq} = B. Let
A1 = A [ {i1},A2 = A1 [ {i2}, . . . ,Aq = Aq 1 [ {iq}.

From case (1), we get

upðl;AÞ 6 upðl;A1Þ 6 . . . 6 upðl;AqÞ upðl;BÞ:

From induction, we obtain up(l,A) 6 up(l,B) for all A, B # N,
A # B. From Definition 3, we get the conclusion. h

From Theorem 1, we know fupðl;AðiÞÞ upðl;Aðiþ1ÞÞgi2N
is a

weight vector on N = {1,2, . . . ,n}, where A(i) = {i, . . . ,n} with
A(n+1) = ø.

When we replace the fuzzy measure with the probabilistic gen
eralized semivalue to the ICCWA and ICCGM operators, we get the
probabilistic generalized semivalue ICCWA (PGS ICCWA) operator
and the probabilistic generalized semivalue ICCGM (PGS ICCGM)
operator as follows:

Definition 8. A PGS ICCWA operator of dimension n is a mapping
PGS ICCA:Xn+ ? R+ defined on the set of second arguments of two
tuples hu1, [a1,b1]i, hu2, [a2,b2]i, . . . , hun, [an,bn]i, denoted by

PGS-ICCWAup
ðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ

PGS-ICCWAup
ðhu1; FQ ½a1; b1�i; hu2; FQ ½a2; b2�i; . . . ; hun; FQ ½an; bn�iÞXn

j 1

ðupðl;ArðjÞÞ upðl;Arðjþ1ÞÞÞFQ ð½arðjÞ; brðjÞ�Þ
� �

;

ð20Þ

where Xn+ is the set of dimension n positive interval numbers, up is
the probabilistic generalized semivalue w.r.t. the fuzzy measure l
on {[ai,bi]}i=1,2,. . .,n, r is a permutation on N = {1,2, . . . ,n} such that
ur(j) 6 ur(j+1), ur(j) is the jth least value of ui (i = 1,2, . . . ,n), FQ([ar(j),
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br(j)]) given as Eq. (1), and Ar(i) = {[ar(j),br(j)], . . . , [ar(n),br(n)]}, with
Ar(n+1) = ø.
Definition 9. A PGS ICCGM operator of dimension n is a mapping
PGS ICCGM: Xn+ ? R+ defined on the set of second arguments of
two tuples hu1, [a1,b1]i,hu2, [a2,b2]i, . . . ,hun, [an,bn]i, denoted by

PGS-ICCGMup
ðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞ

PGS-ICCGMup
ðhu1;GQ ½a1; b1�i; hu2;GQ ½a2; b2�i; . . . ; hun;GQ ½an; bn�iÞXn

j 1

GQ ð½arðjÞ; brðjÞ�Þupðl;ArðjÞÞ upðl;Arðjþ1ÞÞ;

ð21Þ

where Xn+ is the set of dimension n positive interval numbers, up is
the probabilistic generalized semivalue w.r.t. the fuzzy measure l
on {[ai,bi]}i=1,2,. . .,n, r is a permutation on N = {1,2, . . . ,n} such that
ur(j) 6 ur(j+1),ur(j) is the jth least value of ui (i = 1,2, . . . ,n), GQ([ar(j),
br(j)]) given as Eq. (2), and Ar(i) = {[ar(j),br(j)], . . . , [ar(n),br(n)]}, with
Ar(n+1) = ø.

From Theorem 1, we know up is a fuzzy measure, which means
that the PGS ICCWA and PGS ICCGM operators satisfy the proper
ties studied in Section 3.2. When each [ai,bi] (i = 1,2, . . . ,n) degen
erates to be a real number, namely, ai = bi, we get the following
two aggregation operators.

The probabilistic generalized semivalue induced Choquet
weighted averaging (PGS ICWA) operator

PGS-ICWAup
ðhu1; a1i; hu2; a2i; . . . ; hun; aniÞXn

j 1

ððupðl;ArðjÞÞ upðl;Arðjþ1ÞÞÞarðjÞÞ:

The probabilistic generalized semivalue induced Choquet geometric
mean (PGS ICGM) operator

PGS-ICGMup
ðhu1; a1i; hu2; a2i; . . . ; hun; aniÞ

Xn

j 1

a
upðl;ArðjÞÞ upðl;Arðjþ1ÞÞ
rðjÞ :
4.2. An important case

In this section, we give an important case of the PGS ICCWA and
PGS ICCGM operators, where the probabilistic generalized semi
value is the so called generalized Shapley index, denoted by (Mari
chal, 2000):

uShðl; SÞ
X

T # NnS

ðn s tÞ!t!
ðn sþ 1Þ! ðlðS [ TÞ lðTÞÞ 8S # N: ð22Þ

From Eq. (22), we know it is an expectation value of the overall mar
ginal contributions between the coalition S and every coalition
T # NnS.

Based on the generalized Shapley index, we introduce the fol
lowing two aggregation operators.

The generalized Shapley index ICCWA (GSI ICCWA) operator

GSI-ICCWAuSh ðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞXn

j 1

ðuShðl;ArðjÞÞ uShðl;Arðjþ1ÞÞÞFQ ð½arðjÞ; brðjÞ�Þ

 �

: ð23Þ

The generalized Shapley index ICCGM (GSI ICCGM) operator

GSI-ICCGMuSh ðhu1; ½a1; b1�i; hu2; ½a2; b2�i; . . . ; hun; ½an; bn�iÞXn

j 1

GQ ð½arðjÞ; brðjÞ�Þu
Shðl;ArðjÞÞ uShðl;Arðjþ1ÞÞ: ð24Þ
Remark 2. From Theorem 1, we know the generalized Shapley
index is a fuzzy measure, which means that the GSI ICCWA and
GSI ICCGM operators satisfy the properties discussed in
Section 3.2.
5. An approach to uncertain multi-attribute group decision
making

With economic development, the decision making problems
are becoming more complicated, uncertain and fuzzy than ever
(Chiclana, Herrera, & Herrera Viedma, 1998; Herrera & Martínez,
2001). In many situations, because of time pressure, lack of knowl
edge, and people’s limited expertise related with problem domain,
it is apparent that an increasing amount of information provided
for decision making will be given in interval arguments. Based on
the induced continuous Choquet integral operators, we develop
an approach to uncertain multi attributes group decision making.

Let A = {a1,a2, . . . ,am} be the set of alternatives, C = {c1,c2, . . . ,cn}
be the set of attributes, and E = {e1,e2, . . . ,eq} be the set of the ex

perts. Assume that �dk
ij ak

ij; b
k
ij

h i
is the positive interval argument

of the alternative ai with respect to (w.r.t.) the attribute cj given
by the expert ek. In other words, the evaluation of the alternative
ai w.r.t. the attribute cj given by the expert ek is a positive interval

number �dk
ij ak

ij; b
k
ij

h i
ði 1;2; . . . ;mÞ; j = 1,2, . . . ,n; k = 1,2, . . . ,q. By

Dk �dk
ij

� �
m�n

, we denote the interval decision matrix given by

the expert ek (k = 1,2, . . . ,q).
Based on the induced continuous Choquet integral operators,

the main decision procedure to get the most desirable alternative
(s) can be expressed in the following steps:

Step 1: Normalize the interval decision matrix Dk �dk
ij

� �
m�n

into Qk �rk
ij

� �
m�n
ðk 1;2; . . . ; qÞ, where
rk
ij ¼

dk
ij =
Xm

i 1

dkþ
ij ;d

kþ
ij =
Xm

i 1

dk
ij

" #
for benefit attribute cj

1=dkþ
ij =
Xm

i 1

1=dk
ij ;1=dk

ij =
Xm

i 1

1=dkþ
ij

" #
for cost attribute cj

8>>>>><>>>>>:
ði¼1;2; . . . ;m; j¼1;2; . . . ;nÞ:

Step 2: Assume that lE is the fuzzy measure on the expert set E,
use the GSI ICCWA or GSI ICCGM operator to calculate the com
prehensive matrix H = (hij)m�n.
Step 3: Assume that lC is the fuzzy measure on experts set C,
use the generalized Shapley index induced Choquet weighted
averaging (GSI ICWA) operator

GSI-ICWAuSh ðhu1; a1i; hu2; a2i; . . . ; hun; aniÞXn

j 1

ðuShðl;ArðjÞÞ uShðl;Arðjþ1ÞÞÞarðjÞ

 �

or the generalized Shapley index induced Choquet geometric mean
(GSI ICGM) operator
GSI-ICGMuSh ðhu1; a1i; hu2; a2i; . . . ; hun; aniÞYn

j 1

a
uShðl;ArðjÞÞ uShðl;Arðjþ1ÞÞ
rðjÞ
to get comprehensive attribute values zi(i = 1, 2, . . ., m).
Step 4: Rank these comprehensive attribute values zi(i = 1, 2, . . . ,
m) in descending order, and select the biggest one (s). Then, we
get the best choice (s).
Step 5: End.
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The above decision steps are based on the assumption that the
fuzzy measures on the attribute set and on the expert set are al
ready known. As mentioned above, because of various kinds of rea
sons, it is difficult to obtain their weight vectors exactly. In most
situations, we only have incomplete weight information.

Based on consistency principle (Chiclana et al., 2007) and TOP
SIS method (Negi, 1989), we introduce the following models for the
optimal fuzzy measures on the attribute set and on the expert set,
respectively.

First, we introduce a possibility degree formula on interval
numbers given by Xu and Da (2003). Let �a ½a1; b1� and
�b ½a2; b2� be any two positive interval numbers, then the degree
of possibility of �a P �b is defined by (Xu & Da, 2003)

Pða P bÞ max 1 max
b2 a1

b1 þ b2 a1 a2
; 0

� �
; 0

� �
; ð25Þ

and the degree of possibility of �b P �a is equal to

Pðb P aÞ 1 Pða P bÞ: ð26Þ
Definition 10. Let G = (gij)n�n be a matrix. If gij + gji = 1 and
gij 2 [0,1] for all i, j = 1, 2, . . ., n, then matrix G is called a fuzzy
preference relation or complementary matrix.

As we know, the experts’ knowledge, skills and experiences are
different. It is unreasonable to give the equal weight of an expert
w.r.t. different attributes. Further, if there exit interactive character
istics between experts, it is not suitable to give the weight vector of
experts using additive measures. In the following, we introduce the
model for the optimal fuzzy measure on the expert set, where every
expert’s importance is determined w.r.t. each attribute.

By dj
k, we denote the jth column of the interval decision matrix

Dk �dk
ij

� �
m�n

given by the expert ek (k = 1,2, . . . ,q). From Eqs. (25)
and (26), we obtain the complementary matrix Pj

k pkj
hl

� �
m�m

w.r.t. the jth column dj
k of the interval decision matrix

Dk �dk
ij

� �
m�n

. Using the method of constructing a consistent reci
procal fuzzy preference relation (Chiclana et al., 2007), we get
the additive consistent complementary matrix ePj

k pkj
hl

� �
m�m

on
A = {a1,a2, . . . ,am} from m 1 preference values, where

~pkj
hl

pkj
hl if h 6 l 6 hþ 1

pkj
hhþ1 þ pkj

hþ1hþ2 þ � � � þ pkj
l 1l

j ðiþ1Þ
2 if lihþ 1

1 ~pkj
lh if hil

8>><>>:
ð27Þ

for all h, l = 1, 2, . . ., m.
As Chiclana et al. (2007) noted, the matrix ePj

k maybe entirely do

not in the interval [0, 1], but in an interval ak
j ;1þ ak

j

h i
, where

ak
j jpk

j j with pj
k min pkj

hl : h; l 1;2; . . . ;m
n o

. In this situation,

we adopt the transformation function f ðxÞ
xþak

j

1þ2ak
j

given by Chiclana

et al. (2007).
When we get the additive consistent complementary matrixePj

k pkj
hl

� �
m�m

w.r.t. the attribute cj (j = 1,2, . . . ,n) and the expert
ek (k = 1,2, . . . ,q). Use the following consistent index

CIj
k

Xm

l h

Xm

h 1
pkj

hl
~pkj

hl

� �2
r

;

we get the consistent degree of the interval fuzzy preference rela
tion given by the expert ek (k = 1,2, . . . ,q) w.r.t. the attribute cj

(j = 1,2, . . . ,n).
According to the consistency principle, if the consistent index of

an expert is small w.r.t. the attribute cj (j = 1,2, . . . ,n), it can provide
useful information. Therefore, the expert w.r.t. the attribute cj

should be assigned a bigger weight; otherwise, such an expert
w.r.t. the attribute cj will be judged unimportant. In other words,
such an expert w.r.t. the attribute cj should be evaluated as a smal
ler weight. Further, the optimal fuzzy measure makes each alterna
tive’s optimal comprehensive value the bigger the better.

If the weight information of the experts is partly known, then
we establish the following model for the optimal fuzzy measure
on the expert set E w.r.t. the attribute cj (j = 1,2, . . . ,n):

min
Xq

k 1

CIj
ku

j
k lE

j ; E
� �

s:t:

lE
j ðEÞ 1

lE
j ðSÞ 6 lE

j ðTÞ 8S; T # E s:t: S # T

lE
j ðekÞ 2 Uj

k;l
E
j ðekÞP 0; k 1;2; . . . ; q

8><>: ;

ð28Þ

where uj
k lE

j ; E
� �

is the Shapley value (Shapley, 1953) of the expert

ek w.r.t. the attribute cj, defined by

uj
kðl

E
j ; EÞ

X
S # Enek

ðq s 1Þ!s!

q!
lE

j ðS; ekÞ lE
j ðSÞ

� �
;

with s being the number of experts in S;lE
j is the fuzzy measure on

the expert set E w.r.t. the attribute cj, and Uj
k is the range of the ex

pert ek w.r.t. the attribute cj.
Solve the model (28), we get the optimal fuzzy measure on the

expert set E w.r.t. each attribute cj (j = 1,2, . . . ,n). Then, we can use
the introduced aggregation operators to get the comprehensive
matrix H = (hij)m�n.

Remark 3. In order to overall reflect the inter dependent charac
teristics between experts, in the model (28) we use their Shapley
values as their weights.

From the comprehensive matrix H = (hij)m�n, let
hþ hþ1 ; h

þ
2 ; . . . ;hþn

� �
and h h1 ;h2 ; . . . ;hn

� �
, where

hþj max16i6m fhijg and hj min16i6m fhijg for all j = 1,2, . . . ,n.
Let

dij
dþij

dþij þ dij

;

where dþij jhij hþj j and dij jhij hj j.
Similar to the analysis about the model for the optimal fuzzy

measure on the expert set, the optimal fuzzy measure makes big
ger comprehensive value for each alternative preferable. If the
information about the weights of attributes is partly known, then
we build the following model for the optimal fuzzy measure on
the attribute set C w.r.t. the alternative ai (i = 1,2, . . . ,m) based on
TOPSIS method.

min
Xn

j 1

dijujðlC ;CÞ

s:t:
lCðCÞ 1
lCðSÞ 6 lCðTÞ 8S; T # C s:t: S # T
lCðcjÞ 2 Uj;lCðcjÞP 0; j 1;2; . . . ;n

8<: ;

where uj(lC,C) is the Shapley value of the attribute cj given as in the
model (28), lC is the fuzzy measure on the attribute set C, and Uj is
the range of the attribute cj.

Since all alternatives are non inferior, we build the following
model for the optimal fuzzy measure on the attribute set C by
using TOPSIS method.

min
Xm

i 1

Xn

j 1

dijujðlC ;CÞ

s:t:
lCðCÞ 1
lCðSÞ 6 lCðTÞ 8S; T # C s:t: S # T

lCðcjÞ 2 Uj;lCðcjÞP 0; j 1;2; . . . ; n

8><>: :

ð29Þ



Table 1
The interval decision matrix D1 given by the expert e1.

c1 c2 c3 c4 c5

a1 [85,88] [86,90] [72,78] [86,90] [72,76]
a2 [88,92] [70,75] [90,92] [65,75] [85,90]
a3 [75,80] [77,82] [81,85] [87,90] [75,82]
a4 [76,78] [86,88] [90,93] [88,90] [85,88]

Table 2
The interval decision matrix D2 given by the expert e2.

c1 c2 c3 c4 c5

a1 [75,79] [81,83] [78,85] [67,71] [85,88]
a2 [76,81] [82,85] [75,79] [71,75] [81,84]
a3 [65,70] [75,82] [68,72] [89,90] [92,95]
a4 [68,75] [82,86] [76,80] [75,77] [84,88]

Table 3
The interval decision matrix D3 given by the expert e3.

c1 c2 c3 c4 c5

a1 [80,90] [85,90] [81,85] [70,75] [70,74]
a2 [95,97] [72,76] [71,75] [85,91] [85,89]
a3 [92,96] [80,85] [85,90] [80,86] [91,95]
a4 [90,93] [62,68] [75,80] [76,80] [68,72]

Table 4
The interval decision matrix D4 given by the expert e4.

c1 c2 c3 c4 c5

a1 [74,77] [95,98] [71,75] [66,71] [90,95]
a2 [89,91] [75,78] [94,97] [67,71] [68,72]
a3 [89,93] [95,98] [90,95] [81,87] [75,81]
a4 [75,81] [86,92] [71,76] [92,98] [68,75]
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Solve the model (29), we get the optimal fuzzy measure on the
attribute set C. Then, we can use the GSI ICWA or GSI ICGM oper
ator to get the collective attribute values.

6. An illustrative example

Let us suppose a bid inviting process through which the em
ployer or investor is trying to find out the optimal bidding scheme
(Zhou & Chen, 2011). In order to keep pace with the development
of modern iron and steel industry as well as to improve the envi
ronmental equality of the city, Steel and Iron Works wants to con
struct a pelletizing plant in his primary producing area of iron ore
where the production capacity reaches 1.20 million tons per year.
According to the characteristics of the project construction, the
construction is divided into four bid packages including construc
tion project, installation project, etc., between which the construc
tion project is the principal part of the civil works. Considering the
regulations of the project, the investor will invite bidding for the
construction project and select from four bidders according to
the following five attributes:

(1) c1 is the project quotation;
(2) c2 is the construction period;
(3) c3 is the quality of construction project;
(4) c4 is the construction technology;
(5) c5 is the business reputation.

Suppose that the uncertain weight information of the attributes
is given by U = ([0.2,0.3], [0.1,0.25], [0.2,0.3], [0.15,0.25][0.1,0.2]).
There are four construction organizations ({a1,a2,a3,a4}) are se
lected as possible alternatives. Four experts ({e1,e2,e3,e4}) evaluate
the four alternatives by using the interval arguments with scores of
centesimal system according to the above five attributes. The
uncertain weight information of the experts w.r.t. each attribute
is given by

W1 ð½0:2; 0:3�; ½0:15;0:2�; ½0:25; 0:3�; ½0:1;0:15�; ½0:25; 0:35�Þ;
W2 ð½0:15;0:35�; ½0:15; 0:25�; ½0:2;0:3�; ½0:2; 0:35�; ½0:15;0:3�Þ;
W3 ð½0:15;0:25�; ½0:2; 0:25�; ½0:15;0:3�; ½0:15; 0:3�; ½0:2;0:3�Þ;
W4 ð½0:25;0:3�; ½0:2;0:4�; ½0:2;0:3�; ½0:2; 0:35�; ½0:2;0:35�Þ:

The decision matrix Dk �dk
ij

� �
m�n

given by the expert ek

(k = 1,2,3,4) as listed in Tables 1 4.
In this problem, all attributes are measured with the same

dimension units by scores ranging from 0 to 100, thus the decision
matrices Dk (k = 1,2,3,4) have no need to be normalized. Based on
above analysis, we give the following steps to obtain the optimal
bidding scheme.

Step 1: Use Eqs. (25) and (26) to calculate the complementary
matrixPk

j pkj
hl

� �
m�m

given by the expert ek (k = 1,2,3,4) w.r.t. each
attribute cj (j = 1,2,3,4,5), take k = j = 1 for example,

P1
1

0:5 0 1 1
1 0:5 1 1
0 0 0:5 0:57
0 0 0:43 0:5

0BBB@
1CCCA:

Step 2: According to matrix Pk
j pkj

hl

� �
m�m

(k = 1,2,3,4;

j = 1,2,3,4,5), utilize Eq. (27) to construct the additive consistent

complementary matrix ePk
j pkj

hl

� �
m�m

, take k = j = 1 for example,

eP1
1

0:5 0:0614 0:5 0:5614
0:9386 0:5 0:9386 1

0:5 0:0614 0:5 0:5614
0:4386 0 0:4386 0:5

0BBB@
1CCCA:
Step 3: According to the model (28), we get the following linear pro
gramming for the optimal fuzzy measure on the expert set E w.r.t.
the attribute c1.

min 0:175 lE
1ðe1Þ lE

1ðe2; e3; e4Þ

 �

þ 0:164 lE
1ðe2Þ lE

1ðe1; e3; e4Þ

 �

0:185 lE
1ðe3Þ lE

1ðe1; e2; e4Þ

 �

0:154 lE
1ðe4Þ lE

1ðe1; e2; e3Þ

 �

þ 0:169 lE
1ðe1; e2Þ lE

1ðe3; e4Þ

 �

0:005 lE
1ðe1; e3Þ lE

1ðe2; e4Þ

 �

þ 0:011 lE
1ðe1; e4Þ lE

1ðe2; e3Þ

 �

þ 1:075

s:t:
lE

1ðEÞ 1lE
1ðSÞ 6 lE

1ðTÞ8S; T # fe1; e2; e3; e4gs:t:S # T

lE
1ðe1Þ 2 ½0:2; 0:3�;lE

1ðe2Þ 2 ½0:15; 0:35�lE
1ðe3Þ

2 ½0:15;0:25�;lE
1ðe4Þ 2 ½0:25;0:3�

8><>: :

Solve the above model, we have

lE
1ðe2Þ 0:15;lE

1ðe1Þ lE
1ðe1; e2Þ 0:2;lE

1ðe3; e4Þ lE
1ðe1; e3; e4Þ

lE
1ðe2; e3; e4Þ lE

1ðEÞ 1;

lE
1ðe3Þ lE

1ðe4Þ lE
1ðe1; e3Þ lE

1ðe1; e4Þ lE
1ðe2; e3Þ lE

1ðe2; e4Þ
lE

1ðe1; e2; e3Þ lE
1ðe1; e2; e4Þ 0:25:

Similarly, we obtain

lE
2ðe1Þ lE

2ðe3Þ lE
2ðe4Þ lE

2ðe1; e3Þ lE
2ðe1; e4Þ lE

2ðe3; e4Þ
lE

2ðe1; e3; e4Þ 0:2;



Table 5
The Shapley values of the experts w.r.t. each attribute.

c1 c2 c3 c4 c5

uj
1 lE

j ; E
� �

0.054 0.175 0.138 0.388 0.525

uj
2 lE

j ; E
� �

0.038 0.596 0.108 0.054 0.375

uj
3 lE

j ; E
� �

0.454 0.05 0.096 0.054 0.05

uj
4 lE

j ; E
� �

0.454 0.175 0.654 0.504 0.05
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lE
2ðe2Þ lE

2ðe2; e3Þ 0:25;lE
2ðe1; e2Þ lE

2ðe2; e4Þ lE
2ðe1; e2; e3Þ

lE
2ðe1; e2; e4Þ lE

2ðe2; e3; e4Þ lE
2ðEÞ 1;

lE
3ðe3Þ 0:15;lE

3ðe2Þ lE
3ðe2; e3Þ 0:2;lE

3ðe4Þ 0:3;lE
3ðe1Þ

lE
3ðe1; e2Þ lE

3ðe1; e3Þ lE
3ðe1; e2; e3Þ 0:25;lE

3ðe1; e4Þ
lE

3ðe2; e4Þ lE
3ðe3; e4Þ lE

3ðe1; e2; e4Þ lE
3ðe1; e3; e4Þ

lE
3ðe2; e3; e4Þ lE

3ðEÞ 1;

lE
4ðe1Þ 0:15;lE

4ðe2Þ lE
4ðe4Þ lE

4ðe1; e2Þ lE
4ðe1; e4Þ lE

4ðe2; e4Þ
lE

4ðe1; e2; e4Þ 0:2;lE
4ðe3Þ lE

4ðe2; e3Þ lE
4ðe3; e4Þ

lE
4ðe2; e3; e4Þ 0:3;lE

4ðe1; e3Þ lE
4ðe1; e2; e3Þ

lE
4ðe1; e3; e4Þ lE

4ðEÞ 1;

lE
5ðe2Þ lE

5ðe3Þ lE
5ðe4Þ lE

5ðe2; e3Þ lE
5ðe2; e4Þ lE

5ðe3; e4Þ
lE

5ðe2; e3; e4Þ 0:2; lE
5ðe1Þ lE

5ðe1; e3Þ lE
5ðe1; e4Þ

lE
5ðe1; e3; e4Þ 0:35;lE

5ðe1; e2Þ lE
5ðe1; e2; e3Þ

lE
5ðe1; e2; e4Þ lE

5ðEÞ 1:

Step 4: From the fuzzy measures on the expert set E, we get the
Shapley values of the experts w.r.t. each attribute as listed in
Table 5.

Let uk uj
k lE

j ; E
� �

ðk 1;2;3;4Þ. When there exist more than
one expert’s Shapley value is equal, we rearrange them according
to the index in ascending order. Further, we takeQ(y) = y, then
k = 1/2. Use the GSI ICCWA operator to aggregate the interval deci
sion matrices Dk (k = 1,2,3,4), for all i, j, e.g., i = 1, j = 1,

h11 GSI-ICCWAuSh hu1
1 lE

1; E

 �

; a1
11; b

1
11

h i
i; hu1

2 lE
1; E


 �
; a2

11; b
2
11

h i
i;

�
u1

3 lE
1; E


 �
; a3

11; b
3
11

h i
i;

D
hu1

4 lE
1; E


 �
; a4

11; b
4
11

h i
i
�

uSh lE
1; E


 �
uSh lE

1; E n e3

 �
 �

FQ a3
11; b

3
11

h i� �
þ uSh lE

1; E n e3

 �

uSh lE
1; fe1; e2g


 �
 �
FQ a4

11; b
4
11

h i� �
þ uSh lE

1; fe1; e2g

 �

uSh lE
1; fe2g


 �
 �
FQ a1

11; b
1
11

h i� �
þ uSh lE

1; fe2g

 �

uSh lE
1;£


 �
 �
FQ a2

11; b
2
11

h i� �
80:44:

Similar to the calculation of h11, we get the following comprehen
sive matrix:

H

80:44 86:03 76:03 76:26 76:23
92:56 78:92 90:47 70:8 85:14
91:45 81:49 86:37 86 84:78
84:49 84:61 79:43 89:75 83:27

0BBB@
1CCCA:

Step 5: From the comprehensive matrix H = (hij)4�5, we get the fol
lowing relative distance matrix:
D

0 0 1 0:71 1
1 1 0 1 0

0:09 0:64 0:28 0:2 0:04
0:67 0:2 0:76 0 0:21

0BBB@
1CCCA:

According to the model (29), we get the following linear program
ming for the optimal fuzzy measure on the attribute set C.

min 0:001ðlCðc1Þ lCðC n c1ÞÞ þ 0:02ðlCðc2Þ lCðC n c2ÞÞ
þ 0:072ðlCðc3Þ lCðC n c3ÞÞ þ 0:037ðlCðc4Þ lCðC n c4ÞÞ

0:128ðlCðc5Þ lCðC n c5ÞÞ þ 0:006ðlCðc1; c2Þ
lCðC n fc1; c2gÞÞ þ 0:024ðlCðc1; c3Þ lCðC n fc1; c3gÞÞ
þ 0:012ðlCðc1; c4Þ lCðC n fc1; c4gÞÞ 0:043ðlCðc1; c5ÞÞ

lCðC n fc1; c5gÞ þ 0:031ðlCðc2; c3Þ lCðC n fc2; c3gÞÞ
þ 0:019ðlCðc2; c4ÞÞ lCðC n fc2; c4gÞ 0:036ðlCðc2; c5ÞÞ

lCðC n fc2; c5gÞ þ 0:036ðlCðc3; c4ÞÞ lCðC n fc3; c4gÞ
0:019ðlCðc3; c5ÞÞ lCðC n fc3; c5gÞ 0:03ðlCðc4; c5ÞÞ
lCðC n fc4; c5gÞ þ 1:762

s:t:

lCðSÞ 6 lCðTÞ8S; T # fc1; c2; c3; c4; c5gs:t: S # T

lCðc1Þ 2 ½0:2; 0:3�; lCðc2Þ 2 ½0:1; 0:25�
lCðc3Þ 2 ½0:2; 0:3�; lCðc4Þ 2 ½0:15;0:25�
lCðc5Þ 2 ½0:1; 0:2�; lCðCÞ 1

8>>><>>>: :

Solve the above model, we obtain

lCðc2Þ 0:1;lCðc4Þ lCðc2; c4Þ 0:15;lCðc1Þ lCðc3Þ lCðc5Þ
lCðc1; c2Þ lCðc1; c3Þ lCðc1; c4Þ lCðc2; c3Þ
lCðc2; c5Þ ðlCðc3; c4ÞÞ lCðc3; c5Þ lCðc4; c5Þ
lCðC n fc4; c5gÞ lCðC n fc2; c5gÞ lCðC n fc1; c5gÞ
lCðC n fc1; c4gÞ lCðC n fc1; c3gÞ lCðC n fc1; c2gÞ
lCðC n c1Þ 0:2;lCðC n fc3; c5gÞ lCðC n c5Þ 0:4;

lCðc1; c5Þ lCðC n fc3; c4gÞ lCðC n fc2; c4gÞ lCðC n fc2; c3gÞ
lCðC n c2Þ lCðC n c3Þ lCðC n c4Þ lCðCÞ 1:

Step 6: From the fuzzy measure on the attribute set C, we get the
Shapley values of the attributes

u1ðlC ;CÞ 0:46; u2ðlC ;CÞ 0:037; u3ðlC ;CÞ
0:05; u4ðlC ;CÞ 0:049; u5ðlC ; CÞ 0:41:

Let uj = uj(lC,C) (j = 1,2,3,4,5), utilize the GSI ICWA operator to cal
culate the collective attribute value zi for all i = 1, 2, 3, 4, e.g., i = 1

z1 GSI ICWAuSh ðhu1ðlC ;CÞ;h11i; hu2ðlC ; CÞ;h12i;
hu3ðlC ;CÞ;h13i; hu4ðlC ; CÞ;h14i; hu5ðlC ;CÞ;h15iÞ
uShðlC ;CÞ uShðlC ;C n c1Þ

 �

h11 þ u ShðlC ;C n c1Þ



uShðlC ; C n fc1; c5gÞ
�
h15 þ uShðlC ; C n fc1; c5gÞ



uShðlC ; fc2; c4gÞ

�
h13 þ uShðlC ; fc2; c4gÞ uShðlC ; fc2gÞ


 �
h14

þ uShðlC ; fc2gÞ uShðlC ;£Þ

 �

h12

0:5� 80:44þ 0:4� 86:03þ 0:029� 76:03þ 0:034
� 76:26þ 0:037� 76:23 78:69:

Similarly, we obtain

Z2 88:28; Z3 88:08; Z4 84:04:

Thus,



Table 6
Ranking orders for the continuous Shapley operators (30) and (31).

The continuous Shapley weighted operator Ranking order

The CSA operator a3 > a4 > a2 > a1

The CSGM operator a3 > a4 > a2 > a1
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Z2 > Z3 > Z4 > Z1:

Step 7: From Step 6, we know the second construction organization
a2 is the best choice, which is different to the ranking result got by
Chen and Zhou (2011).

Remark 4. In this example, we only use the GSI ICCWA and GSI
ICWA operators to making decision. Similarly, we can adopt the
GSI ICCGM and GSI ICGM operators to obtain the best choice (s).

Based on the Shapley function, Zhang, Xu, and Yu (2011) de
fined the so called Shapely value based intuitionistic fuzzy aggre
gation (SIFA) operator on IFSs. We here restrict the domain of IFSs
in the setting of positive interval numbers and get the following
continuous Shapley averaging (CSA) operator

CSAða1;a2; . . . ;anÞ
Xn

i 1

uai
ðl;AÞFQ ðaiÞ; ð30Þ

where uai
ðl;AÞ is the Shapley value with respect to the fuzzy mea

sure l on A f�aigi2N for �ai ½ai; bi�ði 1;2; . . . ; nÞ, and FQ ð�aiÞ as gi
ven in Eq. (1).

Remark 5. From Eq. (30), we know that the SIFA operator is based
on the Shapley function and degenerates to the weighted averaging
(WA) operator if there is no interaction between elements. While
the GSI ICCWA operator is based on the generalized Shapley
function and Choquet integral and reduces to the induced
weighted averaging (I WA) operator or the induced ordered
weighted averaging (I OWA) operator if there is no correlation
between elements. Their main difference is that the SIFA operator
considers the elements’ importance and interactions, while the
GSI ICCWA operator gives these two aspects by considering their
ordered positions.

Similar to the induced continuous Choquet geometric mean
(ICCGM) operator, we define the following continuous Shapley
geometric mean (CSGM) operator

CSGMða1;a2; . . . ;anÞ
Yn

i 1

GQ ðaiÞuai
ðl;AÞ ð31Þ

where the notations as given in Eq. (30), and GQ ð�aiÞ as shown in Eq.
(2).

The difference between the CSGM operator and the GSI ICCGM
operator is similar to that between the SIFA operator and the GSI
ICCWA operator.

Let Q(y) = y, for the comparative convenience, the ranking re
sults with respect to the continuous Shapley operators (30) and
(31) are obtained in Table 6.

Although the CSA and CSGM operators can globally reflect the
interactions between elements in a set, these two operators neither
consider the significance of the elements’ ordered positions nor re
flect the correlations between them.

The numerical results show that different optimal alternatives
may be yielded by using different aggregation operators, and thus,
the decision maker can properly select the desirable alternative
according to his interest and the actual needs.

In this study, we only select one practical example in project
bidding to show the concrete practicality and validity of the pro
posed method. Besides its application in this field, we can also
use the introduced Choquet integral operators and the models for
the optimal fuzzy measures in other fields, such as industrial engi
neering, expert systems, neural networks, digital image processing,
and uncertain systems and controls.
7. Conclusions

We have researched some probabilistic generalized semivalue
inducing continuous Choquet integral operators, which globally
consider the interactions between elements in a set. If there is no
correlation between elements in a set, the introduced operators
degenerate to be the corresponding induced continuous operators
based on additive measures. Meantime, some desirable properties,
such as monotonicity, idempotency, boundary, and linearity, are
studied to provide assurance in applications. Due to the complexity
and uncertainty of real world decision making problems and the
inherent subjective nature of human thinking, the information
about weight vector is usually partly known. To address this situ
ation, the models for the optimal weight vectors on the attribute
set and on the expert set based on the Shapley function, consis
tency principle, and TOPSIS method are built, respectively. Conse
quently, it has developed a procedure to uncertain multi attribute
group decision making with incomplete weight information and
interactive conditions, which is new and different to any existing
method.

Fuzzy measures and fuzzy integrals, as powerful tools to reflect
interactions and to aggregate fuzzy information, give us a new
viewpoint to study decision making problems. Although the fuzzy
measure is a powerful tool to reflect the interactions between ele
ments in a set, it is defined on the power set. Thus, it is not easy to
obtain the fuzzy measure of each combination in a set when it is
large. It will be interesting to research the interactions between
elements in a set by using some special fuzzy measures, which will
largely simplify the complexity of solving a fuzzy measure. Further,
we here only consider the Choquet integral operators, and it will be
interesting to research aggregation operators based on other fuzzy
integrals.

It is worth pointing out that this paper only research the appli
cation of the defined aggregation operators and the building mod
els for the weight vectors in uncertain multi attribute group
decision making. In a similar way, we can also use them in some
other fields, such as education, medical care, military, engineering,
social sciences, and economics.
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