
Appropriate application of the Standardized Precipitation Index in arid 
locations and dry seasons 

1. INTRODUCTION 

The Standardized Precipitation Index (SPI) is widely accepted and used throughout the 
world in both research and operational modes because it is normalized to a location and is 
normalized in time. This standardization allows the SPI to determine the rarity of a current 
drought event, as well as the probability of the precipitation necessary to end the current 
drought . It also allows the SPI to be computed at any location and at any number of time 
scales, depending upon the impacts of interest to the user. On the basis of an analysis of 
stations across Colorado, McKee et al. (1993) determined that the SPI is in mild drought 24% 
of the time, in moderate drought 9.2% of the time, in severe drought 4.4% of the time, and in 
extreme drought 2.3% of the time. These percentages are expected from a normal 
distribution of the SPI. 

The first step in the SPI calculation is to determine the probability density function (PDF), 
which describes the long-term observed precipitation. Next, the cumulative probability of 
the observed precipitation is computed. The inverse normal (Gaussian) function is then 
applied to the cumulative probability, resulting in the SPI. This procedure is an 
equiprobability transformation. The essential feature of the equiprobability transformation 
is that the probability of being less than a given value of the obtained cumulative probability 
should be the same as the probability of being less than the corresponding value of the normal 
distribution. 

Statistically, precipitation is not normally distributed. Since it is zero-bounded, and since 
non-precipitation days outnumber precipitation days in many cases, precipitation distributions 
are positively skewed. Furthermore, a short-time scale will increase the precipitation 
variability, leading to a highly skewed distribution. When the probabilities of receiving 
given amounts of precipitation were estimated by fitting the gamma distribution, Barger et 
al. (1959(a)) noted ‘These estimated probabilities are subject to error, of course. This error is 
greater for 1-week amounts than 2-week or 3-week totals and is greater in drier areas and 
seasons. Because the gamma distribution fits individual storm rainfall better than the 
frequencies of rainfall totals in short periods of time, a high frequency of no-rain cases leads 
to poor fits of the observed frequencies.’ Consequently, the parameters used in the gamma 
distribution to fit 1-, 2-, and 3-week precipitation totals were estimated by excluding zero or 
trace precipitations. 

Guttman (1999) pointed out that different SPI values will be obtained if different probability 
distributions are used to describe the observed precipitation. He concluded that the Pearson 
Type III distribution (PE3) is the best universal model for the SPI calculation after 
comparing several models. In addition, lognormal, extreme value, and exponential models 
have been widely applied in the simulations of precipitation distribution. 



In this study, the 2-parameter gamma PDF was chosen to fit the frequency distribution of 
precipitation for the SPI calculation because this distribution is currently used by the National 
Drought Mitigation Center (NDMC, drought.unl.edu), Western Regional Climate Center 
(WRCC, wrcc.dri.edu), and the National Agricultural Decision Support System (NADSS, 
nadss.unl.edu) and because the SPI computing software package based on the 2-parameter 
gamma model has been distributed to about 60 countries. In addition, the C++ code, 
developed by the Department of Computer Science and Engineering at the University of 
Nebraska-Lincoln to compute weekly SPI values, which will be used for further analyses in 
this study, is based on the same gamma model. 

Theoretically, the SPI can be computed from as short as a 1-week time scale. Edwards and 
McKee (1997) indicated that, conceptually, although the SPI has a standard normal 
distribution with an expected value of zero and a variance of one, this is not always the case 
for the SPI at short time scales because of the skewed precipitation distribution. For dry 
climates or those with a distinct dry season where zero values are common, there will be too 
many zero precipitation values in particular seasons. As a result, the calculated SPI values at 
short time scales may not be normally distributed because of the highly skewed precipitation 
distribution and because of the limitation of the gamma-fitted distribution referred to by 
Bargeret al. (1959(a)). The biased SPI values were also mentioned by Lloyd-Hughes and 
Saunders (2002) and Sonmez et al. (2005). Under these circumstances, knowing how to apply 
and interpret the SPI appropriately is critical. 

Thus, the objective of this study is to reveal the effects of arid climates and dry seasons on 
short-time-scale SPI values. To investigate whether the computed SPI values at short time 
scales from different precipitation regimes across the contiguous United States represent 
drought and flood events in a similar way, the normality test will be conducted on SPI 
values at various locations. Then, the reasons that lead to the biased SPI values will be 
explored. Finally, suggestions will be made with regard to the appropriate use and 
interpretation of the SPI on the basis of the climate regimes. We expect this study, along 
with a previous one, which shows the effect of the length of record on the SPI calculation, to 
provide guidance to the user in applying the SPI more appropriately, accurately, and 
effectively. 

2.  DATA SOURCES AND NORMALITY TEST 

2.1 Data sources 

The daily precipitation data used in the SPI calculation for this study were obtained from two 
sources. The first one was the High Plains Regional Climate Center (HPRCC, 
www.hprcc.unl.edu) of the United States. The HPRCC maintains quality-controlled daily 
precipitation records for 7 states including Colorado, North Dakota, Iowa, Kansas, Nebraska, 
South Dakota, and Wyoming. The lengths of records of the stations selected from the 
HPRCC database ranged from 1876–2004 to 1900–2004 and the selected stations did not 
have missing data. The second data source was the Applied Climate Information System 
(ACIS, www.rcc-acis.org), an internet-based system designed to provide direct access for 
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user-specified queries to climate data archives. This system is operated by NOAA’s Regional 
Climate Centers (RCCs) and the National Climatic Data Center (NCDC). In addition to the 
146 stations obtained from the seven states within the HPRCC regional database, 72 more 
stations were selected from 33 other states using the ACIS database. Their station histories 
ranged from 1876–2004 to 1955–2004. Fewer stations were selected from the ACIS database 
than the HPRCC database because of the higher percentages of missing data and shorter 
lengths of the record period. We limited the missing data percentages of the selected stations 
to less than 3%. Furthermore, we replaced all the missing data with zero because no rain for a 
single day has a high probability. Figure 1 illustrates the distribution of the selected stations 
across the country for this study. Because of the limited data availability in some states, the 
selected stations are not evenly distributed. For example, Arizona, California, and Nevada are 
regions of interest because of their dry climate and unevenly distributed seasonal 
precipitation. However, the data limitations were such that only a few available stations were 
selected in California, and no stations were selected in Arizona and Nevada. 

2.2. Normality test of frequency distribution of SPI values 

SPI values at 1- to 24-week time scales were computed weekly for each year during the 
available periods using the daily precipitation data from the 218 selected stations. The 
distribution of these SPI values at each time scale for each week during the period of record 
was tested to see whether the SPI values were distributed normally through the 
equiprobability transformation. The normality test was conducted by graphically inspecting 
the histogram or probability plot of the data (Thode, 2002). In addition, three criteria to 
assess the normality using the PROC UNIVARIATE program within SAS (SAS Institute, 
Inc., Cary, NC, USA) were used. A distribution is considered non-normal when its variables 
related to the distribution meet three criteria simultaneously: (1) Shapiro–Wilk statistic, W, 
less than 0.96; (2) p-values less than 0.10; and (3) the absolute value of the median greater 
than 0.05. Otherwise, the distribution is normal. The W statistic is the ratio of the best 
estimator of the variance (based on the square of a linear combination of the order 
statistics) to the usual corrected sum of squares estimator of the variance. The p-value is the 
probability that is associated with the W statistic. The absolute value of the median less than 
0.05 guarantees that the middle value when SPI values are sorted in order of increasing (or 
decreasing) magnitude is not greater than ±0.05. These criteria were checked for several more 
stations, which were found to behave in the same manner. The results of the test were 
analyzed for six representative stations (with long station histories) representing different 
climates regimes. Nationwide statistics on the test were also given. In addition, the causes of 
the non-normality were explored from both mathematical and statistical points of view. 

3.  RESULTS AND DISCUSSION 

3.1. Frequency distribution plots 

Figure 2 shows the frequency distribution of seven dry/wet categories resulting from the 1-, 
4-, 8-, and 12-week SPI values in the 1st, 9th, 17th, 25th, 33rd, 41st, and 49th week of the 
year for Columbus, New Mexico during 1910–2004. One needs to know that the time scale 



associated with an SPI value is the date for the end of the analysis period. For instance, the 
12-week SPI in the 25th week of the year means ending the 12-week calculation on week 25. 
The x-axis is the seven categories suggested by McKee et al. (1993) including extremely dry 
(SPI<=−2.0); severely dry (−1.5>SPI>−1.99); moderately dry (−1.0>SPI>−1.49); near 
normal (−0.99<SPI<0.99); moderately wet (1.0<SPI<1.49); very wet (1.5<SPI<1.99); and 
extremely wet (SPI>=2.0). The y-axis shows the frequencies of the dry/wet events that occur 
within the seven categories. As suggested, some of the distributions, especially for shorter 
time scales, are lower bounded and do not have values less than−1.0, referred to the non-
normal distribution in this study. Figure 3 illustrates a time series, also for Columbus, NM, of 
the 4-week SPI at the 25th week of each year (corresponds with late June) for the period 
1910–2004. Obviously, the 4-week SPI values never are less than−0.5 during 1910–2004. 

3.2. Non-normality plots 

We selected six stations with long periods of record from various climate regimes to illustrate 
when non-normal SPI distributions occur by season, and at what time scales and in which 
locations this occurs. The six stations (Figure 1) and their periods of record are: Alliance 1 
WNW, Nebraska (1894–2004), Bozeman Montana St Univ., Montana (1893–2004), Clayton 
1 SSW, Georgia (1894–2004), Columbus, New Mexico (1910–2004), Elkins, West Virginia 
(1926–2004), and Sacramento WSO City, California (1878–2004). 

Figure 4 presents the SPI non-normality distributions for the six stations based on the three 
predetermined test criteria. As indicated, the SPI with time scales up to 4 weeks (about 1 
month) is distributed non-normally in the winter season for Alliance 1 WNW. For stations 
Bozeman Montana St Univ. and Clayton 1 SSW, most of the 1-week SPIs are not normally 
distributed. By the end of the year, the SPI with non-normal distribution increases at longer 
time scales for Bozeman at Montana St University. It appears that the SPI is distributed 
normally at almost all time scales throughout the year for Elkins. In contrast, Columbus and 
Sacramento WSO City have obvious seasonal spikes in their SPI non-normality distributions. 
In Columbus, SPI values with time scales up to 12 weeks are distributed non-normally at 
most times of the year except during the 28th through 36th weeks of the year (early July to 
early September). In Sacramento, the time scales of SPI values with non-normal distributions 
begin to increase from the 20th week (in late May) and reach their highest point at the 38th 
week of the year (in September), and then gradually drop back by the end of the year. 

What causes the differences in the SPI distribution among the six stations? Figure 5 displays 
the corresponding average 4-week precipitation total distribution over a year for the six 
stations. The precipitation distributions suggest that the SPI non-normality distribution is 
closely related to the precipitation distribution. Most of the precipitation for Alliance falls in 
the middle of a year, with only little amounts occurring during the winter season. The 
precipitation distribution pattern of Bozeman is similar to that of Alliance. However, one 
should note that the ratio of the maximum precipitation total to the minimum precipitation 
total for Bozeman (R=4.21) is less than that for Alliance (R=8.69), resulting in fewer zero 
precipitation values for Bozeman. The precipitation distributions for Clayton (R=1.55) and 
Elkins (R=1.84) are even throughout the year. The SPI distributions for these two stations, 



thus, are normal at almost all time scales during the year. On the other hand, precipitation 
distributions for Columbus (R=11.11) and Sacramento (R=956.83) exhibit strong seasonality. 
According to the distributions, it is easy to see why the SPI values distribute normally during 
the 28th–36th weeks of the year for Columbus and why SPI non-normal distributions for 
Sacramento occur during the 20th–48th weeks. 

3.3. Nationwide statistics on non-normality rates 

Table I lists the average non-normality rates (percentages) for the SPI values at 1- to 24-week 
time scales for each state. The states are clustered by their climate regions. The non-normality 
rates of the states within the same climate region are not homogeneous because of 
topographic contrasts among the stations, leading to a variety of precipitation seasonalities. 
Generally, the non-normality rates within the Southwest, Northwest and High Plains regions 
range from a 1-week up to an 8-week SPI or longer. Most of the states in the remaining 
regions have high non-normality rates for 1- and 2-week SPI values only. The 4-week SPI 
non-normality rates of each state are also labeled in Figure 1. 

In order to reveal the relationship between the non-normality rates and seasons, Figure 6 
depicts the changes of the normal versus non-normal percentages of the 4-week SPI over the 
year for some states that have a relatively high non-normality percentage and have different 
precipitation seasonalities. These states include four states from the Northern Plains (North 
Dakota, South Dakota, Nebraska and Kansas), New Mexico from the Southwest and three 
from the West Coast (California, Oregon and Washington). Obviously, the non-normality rate 
changes with the seasons, which, in turn, is related to the precipitation distributions. About 
30% of the 4-week SPI values are found to be non-normal in January, November, and 
December for the Northern Plains states. For New Mexico, the non-normally distributed 4-
week SPI values are spread over the whole year except from late July to early September. In 
the West Coast states, over 40% of the non-normal 4-week SPI values appear between June 
and October. 

3.4. Reasons for the non-normal SPI distributions 

The formulas used to calculate the SPI values were investigated to explore the reasons for the 
non-normal SPI distribution. The SPI values used in this study were calculated on the basis of 
the following theory. 

As discussed before, the gamma distribution is used to fit precipitation time series. It is 
defined by (Thom, 1966): 

Where β is a scale parameter, α is a shape parameter, and ᴦ (�) is the ordinary gamma 
function of α. The estimations of β and α can be found in Thom (1966), and Edwards and 
McKee (1997). 

The distribution function, from which probabilities can be obtained, is:  

Since a precipitation distribution may contain zeros, the mixed distribution function of zeros 
and continuous precipitation amounts needs to be employed, given by (Thom, 1951) 



Where q is the probability of a zero, and is estimated by  ��  , in which m is the number of 
zeros in a precipitation time series n. 

Finally, the SPI is estimated by the rational approximation approach (Hastings, 1955; 
Abramowitz and Stegun, 1965): 

Equation (4) computes the negative SPI values, while Equation (5) computes the positive 
values. In order to have balanced negative and positive values, t must be the same under the 
two situations: 0<H(x)≤0.5and 0.5<H(x)≤1.0. The parameter t is determined by Equation (6) 
when 0<H(x)≤0.5 and by Equation (7) when 0.5<H(x)≤1.0. Thus, H(x) is critical in 
determining whether negative and positive SPI values are symmetric, which leads to a normal 
distribution. 

Figure 7(a) and (b) illustrate the changes of the 3- and 6-month (about 12- and 24-week) SPI 
values with H(x), G(x) and t in August for Sacramento, CA, respectively. The previous tests 
showed that 3-month SPI values in August are non-normally distributed (the intersection of 
x=32 and y=12 in Figure 4), and 6-month SPI values are normally distributed (the 
intersection of x=32 and y=24 in Figure 4). At the 3-month time scale, the lowest SPI value is 
−0.40, while the highest value is 2.58. At the 6-month time scale, the lowest value reaches 
−2.27 and the highest reaches 2.84. It is found that, at the 3-month scale, the H(x) curve 
separates from the G(x) curve significantly for low-precipitation amounts, and the two 
converge slowly as the precipitation amount increases, indicating q, the probability of a zero, 
is large (see Equation (3)). In other words, there is a high probability of zero values within 
the August 3-month precipitation total. In fact, there are 43 zeros in the 125 precipitation time 
series used to compute the 3-month SPI values for August. The unusually high H(x) when 
0<H(x)≤0.5 leads to the t values that are not symmetric when 0.5<H(x)≤1.0. As a result, SPI 
values are non-normally distributed. On the contrary, because all the 6-month precipitation 
totals are greater than zero, the H(x) curve is completely overlaid with the G(x) curve. 
Therefore, t is symmetric, resulting in the SPI being normally distributed. 

To further demonstrate the effects of low-precipitation seasons on the SPI calculation, Figure 
8 depicts the gamma PDF derived from the 3- and 6-month precipitation observations in 
August for Sacramento, CA. The 3-month curve (often referred to as a hyper-exponential 
distribution) shows a typical characteristic of precipitation distribution in low-precipitation 
seasons or dry climates, suggesting that the probability of having a low precipitation total is 
very high. In contrast, the 6-month curve is a unimodal distribution with a slightly positive 
skew. These two different shapes of PDFs will define two different cumulative probability 
distribution functions (CDFs), which will be used to estimate the SPI through the equi-
probability transformation. Figure 9 illustrates the equi-probability transformations from the 
fitted 3- and 6-month gamma CDFs to the standard normal distribution, resulting in the 3- 
and 6-month SPI values, respectively. As can be seen, because the 3-month precipitation 
observations contain too many zero and trace precipitation amounts, the cumulative 
probability of a very small amount of precipitation is very high. As a result, a small 
precipitation amount will correspond to a high SPI value. Referring back to Equation (3), the 
high probability of zero frequencies will produce a high q, and the high q will be the lower 



untransformed bound. Consequently, the SPI values will always be greater than a certain 
value. For instance, a 0.5 mm precipitation total for the 3-month time scale will result in an 
SPI value of about 1.8, while for the 6-month time scale, the same amount of precipitation 
will result in an SPI value of−1.5. 

Therefore, from a mathematical point of view, the SPI values are lower bounded because of a 
high probability of zero precipitation events. In addition, we need to question the confidence 
of the computed SPI values by the 2-parameter gamma model. As mentioned before, the 
model selected to simulate the precipitation distribution could affect the confidence in the SPI 
results, because the gamma model used in this study only has two free parameters, which 
would not give the best goodness-of-fit for the given data. Wilks (1990) proposed a method 
to more precisely estimate gamma distribution parameters using data containing zeros. It is 
not clear whether this solution could improve the accuracy of the SPI estimation. Also, other 
alternatives models (e.g. PE3) are worthy to be studied. Thus, further study will focus on the 
methods for the estimation of the precipitation distribution parameters for arid climates or for 
those with a distinct dry season. 

The other factor that affects the confidence of the computed SPI values is the limited sample 
size that can be used in the gamma-distribution fitting of precipitation data because of the 
high chances for zero precipitation values at the shorter time scales. Guttman (1994) 
concluded that more records are needed for a stable estimation in the tail of the SPI 
distribution, which is related to extreme events (especially drought events in this study). In 
the given example for Sacramento, there are 43 zeros out of the 125 precipitation time series 
used to compute the 3-month SPI values for August. The sample size that can be used in the 
estimation of the precipitation distribution is reduced by 1/3. In this case, the accuracy of the 
estimation of the tails is, therefore, suspect. 

Although the short-time-scale SPI values accurately portray the mixture of a lot of dry days 
and a few wet days in dry areas and times, the lower bounded SPI values (or non-normally 
distributed SPI values) fail to indicate a drought occurrence. In fact, the SPI represents a 
cumulative probability of precipitation associated with a specific location or time scale. It 
does not have to indicate a drought or flood. The appropriate use and interpretation of the SPI 
values under these circumstances should be done with caution. The discussion of short term 
drought in dry climates, or low precipitation, is meaningless since no rain is a normal part of 
the local climate. In such climate regimes, drought occurrence should be related to the time 
scale. For regions with dry climates or low-precipitation seasons, periods without 
precipitation are very common. Short periods without rain would not make a drought. The 
critical feature is how long the drought lasts, rather than how dry it is (Clark, 1993). 

It is also worth noting that the SPI is a statistical product of the available data set at a given 
location since the SPI calculation is based on the input data set. The computed SPI values 
will be slightly different, as the data set changes either temporally or spatially. This character 
makes it difficult to rationalize, for instance, when the drought officially started and when it 
ended according to the varying SPI values. Therefore, the SPI is a research tool rather than an 
attempt to link the input data to the physical functioning of the Earth system. 



4. SUMMARY 

In this study, the effects of low-precipitation seasons and dry climates on the SPI calculation 
were demonstrated on the SPI values from 1 to 24 weeks for each week of the year for 218 
selected weather stations from 40 states in the contiguous United States. From a mathematical 
point of view, the SPI values are lower bounded when a high frequency of zero values (no 
precipitation cases( occurs, leading to a non-normally distributed SPI. Under these 
circumstances, the SPI fails to adequately indicate a drought occurrence. Nationwide 
statistics suggest that the non-normality rates are closely related to local precipitation 
regimes. In the eastern United States, SPI values at short time scales can be used in 
drought/flood monitoring and research for any season, while in the western United States (in 
those areas having distinct seasonal precipitation distributions), the appropriate explanation 
of this index becomes complicated. This would be the case in other arid regions as well. 

Although the SPI approach is reasonable, the 2-parameter gamma distribution we used to 
simulate the precipitation data would reduce the reliability of the computed SPI values 
because of its limitation in short time-scale simulations. In addition, because of the limited 
sample size used to simulate precipitation distributions in dry climates, the estimations of the 
model parameters from the small data samples are prone to large errors, especially in the tails 
of the distributions, which is what we are most interested in. Therefore, we remind the SPI 
user to be cautious when applying and interpreting SPI values in and between various regions 
having variable climate regimes. In dry climates, the analyst should focus on the duration of 
the drought rather than on just its severity. Furthermore, the SPI is only a statistical product 
of the input data, limiting its role in revealing the complexity of the drought events. 


