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1. Introduction

The increasing development of opencast mines due to the enhanced
demand for minerals has led to the use of large amounts of explosives
for blasting. Explosives are an efficient source of energy required for
breakage and excavation of rocks. When an explosive detonates in a
blast hole, instantaneously a huge amount of energy in forms of
pressure and temperature is liberated. Only a small proportion of this
total energy is utilized for actual breakage and displacement of rock
mass and the rest of the energy is spent in undesirable side effects like
ground vibrations, air blasts, noises, back breaks, etc. [1].

As the ground vibration is the most important environmental
effect of blasting operation some regulations related to structural
damages caused by ground vibration have been developed. The
regulations are primarily based on the peak particle velocity (PPV)
resulted from blasting operations. To come out with proper
amounts of Maximum Charge per Delay which produces limited
ground vibration, several empirical equations are available that can
be found in the literature [2–5]. These empirical equations are
normally used for estimating PPV of ground vibration by blasting.

In most research, distance and maximum charge per delay are
considered as the main parameters in estimating of PPV. However,
it should be noted here that the characteristic of ground vibration is
different according to the location and sequence of each blasting
and also depends on the propagation path of elastic wave. Rock
mass and blasting themselves have their own uncertainties. The
simulation of these effects is very difficult and researchers neglect
these parameters. PPV is the function of distance and maximum
charge per delay. According to Rai et al. [6], when the maximum
charge per delay is calculated using these predictors, it does not
09/$ - see front matter Published by Elsevier Ltd.
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gives the very accurate value of charge and this is because these
equations are actually formulated to calculate the PPV; for this, Rai
et al. have proposed to directly calculate the maximum charge per
delay. It seems that there is a great need for case studies in order to
evaluate the efficiency and credibility of empirical equations for
maximum charge per delay in different investigation cases.

In recent years ANFIS has emerged as a powerful tool for
analyzing of engineering problems. In the present investigation,
an attempt has been made to predict the maximum charge per
delay (kg) with the help of both conventional empirical criteria and
ANFIS method using admissible PPV and distance from blast face to
vibration monitoring point. A comparison of the results for two
methods has been demonstrated for Sungun copper mine in Iran.
2. Site description

Sungun copper mine is located in the north-west of Iran, in
Azarbayjan-e-Sharqi province. The total ore reserve of the deposit
is more than 384 million tonnes. However, probable and possible
reserve is 1000 million tonnes, with an average grade of 0.67%. The
existing estimation about effected land of Sungun copper mine is
38.2 km2, of which half will be completely ruined in next 30 years.
There are some important industrial structures very close to mine
pit limits including industrial site of mine, concentrating plant, belt
conveyors, crushing site, etc. [7].

Drilling and blasting technique is the most economical method
available for loosening and fragmenting the in situ rock mass in the
Sungun mine. But blast induced ground vibration as a consequence
of environmental effects of blasting process in the form of
repetitive dynamic loading, has unfavorable effects on nearby
structures. Blast induced ground vibration was studied in Sungun
open pit Copper Mine in order to control vibration intensity.

The geotechnical studies show that the major fault systems of the
area have NW-SE, N-S and NE-SW strikes. Also the mine area according
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to geotechnical and statistical studies of intact rocks and discontinuities
has been divided into six separate blocks. In the mine area the overall
rock mass is extremely broken and fractured due to the action of these
faults (at least eighty major faults) and volcanic activities. The RMR and
GIS rock mass rating methods that have been used in classifying rock
masses and obtaining its parameters, indicate that rock mass quality
changes from ‘‘Poor’’ to ‘‘Fair’’ in the mine blocks. The compressive
strength tests (point-load, triaxial and uniaxial) of the intact rock show
that the strength of intact rock increases directly with siliceous and
indirectly with Argillic alterations [7].
Table 2
Results of ground vibration measurements in Sungun copper mine.

No. Distance (m) Charge per delay (kg) Measured PPV (mm/s)

1 917 3313 2.52

2 188 133 2.61

3 334 3313 18.35

4 509.8 644 2.57

5 46 1209 123.5

6 58.5 2418 137

7 613 1152 2.72

8 67.5 943 97.25

9 519 1004 1.07

10 77 101 21.4

11 726 503 1.25

12 425 913 1.27

13 305 503 4.8

14 845 912 1.75

15 132 503 25.4

16 760 913 1.85

17 195 700.5 19

18 331 700.5 10.15
3. Blast operations

In blasting operations at the Sungun site, ANFO and Emolan
(blasting agent) are used as explosives for dry and wet blast holes,
respectively, gelatin dynamite (priming), and Emolan Cartridge
(booster). The initiation system is detonating cord, and the delay
used between the rows are 13, 20, 50 ms and a combination of these.
At this site, the drilling equipments and different types of blasting
zones, and the regular blasting parameters that are implemented
during blast vibration monitoring according to the contractor’s
specifications, are listed in Table 1. Explosive weight of each blast
hole was measured carefully. The amount of gelatin dynamite and
Emolan cartridge used as priming and booster, respectively, has been
added to the amount of ANFO depending on their equivalent weight
strength. The result of ground vibration measurements of the thirty-
seven events performed at the test site, including particle velocity,
maximum charge per delay and distance are shown in Table 2 [8].
19 40 700.5 122.5

20 70 700.5 111

21 244 645 17.05

22 532 1209 5.73

23 300 843 8.5

24 554 335 3.74

25 436 843 4.72

26 43 335 91.55

27 122 843 49

28 469 334 2.4

29 680 843 2.12

30 262 334 6

31 341 243 2.77

32 1179 2418 1.8

33 601 1152 3.78

34 154 243 17.5

35 1068 2418 1.52

36 504 1152 3.65

37 653 2418 4.22

Table 3
Listed of proposed predictor’s equations for calculation of maximum charge per

delay.

Equations Name of Predictor Equation

PPV ¼ K Rffiffiffi
Q2
p

� ��B Duvall and Fogelson, USBM [5]

PPV ¼ K Rffiffiffi
Q3
p

� ��B Ambraseys–Hendron [4]

Q ¼ KðVR2Þ
B Rai et al. [6]
4. Charge per delay estimation by empirical equations

Empirical equations are versions of the following general form
that typically are used by investigators [9,10]:

PPV ¼ KRaQb ð1Þ

where PPV¼V is the peak particle velocity, Q is maximum charge
per delay (kg), R is distance of the measuring transducer form the
blasting face (m), and K, a and b are site-specific constants, which
can be determined by multiple regression analysis.

The Ambraseys and Hendron [4] and Duvall and Fogelson [5]
equations are versions of the following general form of all types
demonstrated in Table 3. Also Rai et al. [6] have proposed Q as a
predictor for calculation of the maximum charge per delay directly.
The equation is the function of PPV and distances and therefore can
predict the charge precisely:

Q ¼ KðVR2Þ
B

ð2Þ

Selected empirical equations (according to Table 3) have been
employed in order to analyse the data. Table 4 represents the
results of applying the equations to the ground vibration data. As
seen in Table 4, the Ambraseys and Hendron equation better fits the
data and has a greater coefficient of correlation. It should be noted
here that the resulted correlation coefficient is just for the
equations in the form of offered one. At the end of this paper the
efficiency of the each governed relation in estimation of maximum
Table 1
Surface blast design parameters during the experimental at Sungun mine.

Parameter Related information

Hole diameter (mm) 90, 127

Hole length (m) 13–15

Bench high (m) 12.5

Burden and spacing (m) 2�2, 2�3, 2.5�3.5, 4�5
charge per delay based on PPV and distance from blasting face is
discussed for the data measured from Sungun copper mine.
5. ANFIS method and algorithm

The adaptive neuro-fuzzy inference system (ANFIS), developed
by Jang [11], is a universal approximator and is capable of approx-
imating any real continuous function on a compact set to any degree
Parameter Related information

Stemming (m) One third of hole length

Specific charge ðgr=m3Þ 300–800

Blast hole inclination Vertical

Charging configuration Bottom priming, continuous charge



Table 4
Site constant and correlation coefficient from different predictors for Sungun mine.

Name of predictor equation Equation R

Duvall and Fogelson, USBM [5]
PPV ¼ 302:07 Rffiffiffi

Q2
p

� ��1:56 0.948

Ambraseys–Hendron [4]
PPV ¼ 1810:06 Rffiffiffi

Q3
p

� ��1:58 0.958

Rai et al. [6] Q ¼ 0:0598ðVR2Þ
0:71 0.710
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Fig. 1. Sugeno fuzzy model for two rules.

TT

TT N

N

A1

A2

B1

B2

x

y

layer 1 layer 2 layer 3 layer 4 layer 5

w1

w2

_
w1

w2
_

_
w1 f1

w2 f2
_

x y

x y

f
Σ

Fig. 2. ANFIS architecture for the Sugeno model.

TT

TT

A1

A2

B1

B2

x

y

layer 1 layer 2 layer 3 layer 4 layer 5

w1

w2

wifi

wi

f
/

w1f1

w2f2
Σ

Σ
Σ

Σ

Fig. 3. ANFIS architecture for the two-input two-rule Sugeno fuzzy model.
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of accuracy [12]. ANFIS is a soft computing technique, which
incorporates the concept of fuzzy logic into the neural networks,
and has been widely used in many applications of engineering
science as well as the earth sciences [13–15]. ANFIS can simulate and
analyze the mapping relation between the input and output data
through a hybrid learning to determine the optimal distribution of
membership function. It is mainly based on the fuzzy ‘‘if-then’’ rules
from the Takagi and Sugeno fuzzy model [12] as shown in Fig. 1. The
equivalent ANFIS architecture is shown in Fig. 2. Another ANFIS
architecture for two inputs is shown in Fig. 3. It comprises five layers
in this inference system and each layer involves several nodes, which
are described by the node function.
The output signals from nodes in the previous layers will be
accepted as the input signals in the present layer. After manipula-
tion by the node function in the present layer, the output will be
served as input signals for the next layer. Here, square nodes,
named adaptive nodes, are adopted to demonstrate that the
parameter sets in these nodes are adjustable. Whereas, circle
nodes, named fixed nodes, are adopted to demonstrate that the
parameter sets are fixed in the system. To explain the procedure of
the ANFIS simply, two inputs x and y and one output f are
considered in the fuzzy inference system. Every input variable is
described by fuzzy sets: A1 and A2 for the X variable, B1 and B2 for
the Y variable, respectively. Hence, the rule base will contain two
fuzzy ‘‘if-then’’ rules as follows:

Rule 1 : if x is A1 and y is B1,

then f1 ¼ p1xþq1yþr1,

Rule 2 : if x is A2 and y is B2,

then f2 ¼ p2xþq2yþr2:

ð3Þ

The mathematical model:
Layer 1: every node i in this layer is an adaptive node with a note

output defined by

Q1,i ¼ mAi
ðxÞ, i¼ 1,2,

or

Q1,i ¼ mAi
ðyÞ, i¼ 3,4

ð4Þ

where x (or y) is the input to the node and ai (or Bi-2) is the fuzzy set
associated with this node, and

mAi
ðxÞ ¼

1

1þ½ðx�ciÞ=ai�
2bi

ð5Þ

wheref ai, bi, ci g is the parameter set—premise parameters.
Layer 2: Every node in this layer is a fixed node labeledP, which

multiplies the incoming signals and outputs that T-norm operator
result, e.g.

O2,i ¼wi ¼ mAi
ðxÞmBi

ðyÞ, i¼ 1,2 ð6Þ

The output each node represents the firing strength of a rule.
Layer 3: Every node in this layer is a fixed node labeled N

O3,i ¼wi ¼
wi

w1þw2
, i¼ 1,2 ð7Þ

Outputs is called normalized firing strengths.
Layer 4: Every node i in this layer is an adaptive node with a node

function of:

O4,i ¼wifi ¼wiðpixþqiyþriÞ ð8Þ

where wi is the output of layer 3 andf pi, qi, ri g are the
parameter set.

Layer 5: The single node in this layer is labeled S, which
computes the overall output as the summation of incoming signals:

O5,i ¼ overall output¼
X

i

wifi ¼

P
iwifP
iwi

ð9Þ

We can perform weight normalization in the last layer.
ANFIS architecture is designed based on Mamdani and Tsukamoto

fuzzy models. Explicitly, this layer is summing the outputs of
previous layers’ nodes to be the output of the whole network. The
basic learning rule of ANFIS is the back-propagation gradient
descent, which calculates error signals (defined as the derivative
of the squared error with respect to each node’s output) recursively
from the output layer backward to the input nodes. This learning
rule is exactly the same as the back-propagation learning rule used
in the common feed-forward neural-networks. From the ANFIS
architecture illustrated in Fig. 2 and 3, it is observed that by
determination of the values of premise parameters, the overall



Fig. 5. Input variables and output of Sugeno model.

Fig. 6. Membership function of PPV.
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output f can be expressed as a linear combination of the consequent
parameters. It can be said that, ANFIS algorithm uses a hybrid-
learning rule to learn the fuzzy model, employing differentiable
functions, and therefore makes it easy to use of conventional
learning algorithms derived from the neural net theory. ANFIS
combines the classical back-propagation method to learn the
parameters of the membership functions and the conventional
least-squares estimator to learn the parameter of the first-order
polynomial of the Takagi–Sugeno–Kang fuzzy model [12]. There
are two passes in the hybrid learning procedure for ANFIS. In the
forward pass of the hybrid-learning algorithm, functional signals
go forward till layer 4 and the consequent parameters are identified
by the least-squares estimate. In the backward pass, the error rates
propagate backward and the premise parameters are updated by
the gradient descent. When the values of the premise parameters
are fixed, the overall output can be expressed as a linear combina-
tion of the consequent parameters:

f ¼
w1

w1þw2
f1þ

w2

w1þw2
f2 ¼w1f1þw2f2

¼ ðw1xÞp1þðw1yÞq1þðw1Þr1þðw2xÞp2þðw1yÞq2þðw1Þr2 ð10Þ

which is linear in the consequent parameters p1, q1, r1, p2, q2 and r2.
Performance of the developed models was tested with the help of

coefficient of correlation (R) or coefficient of determination (R2) [16],
by computing mean square error (MSE) using:

MSE¼
1

Q

XQ

1

ðy�xÞ2 ð11Þ

and by computing mean absolute error (MAE) using:

MAE¼
1

Q

XQ

1

y�x
�� �� ð12Þ

where x is target, y is output and Q is number of test patterns.
Fig. 7. Membership function of distance.
6. Maximum charge per delay estimation by ANFIS

The fuzzy modeling algorithms that is employed in this work
included the parametric-based fuzzy model (Sugeno algorithm).
The Sugeno model is used real field data instead of expert knowl-
edge learned from past experiences. The principal components of
the fuzzy model were fuzzy inference, fuzzy sets for input/output
variables, and fuzzy if-then rules. The architecture of the fuzzy
modeling presented in Fig. 4 has fuzzy rules representing a non-
linear mapping between inputs and outputs.

Distance and PPV are used as input variables, and the output
variable was Q. Fig. 5 shows input and output variables in the
MATLAB [17] environment. When supplied with adequate
Fig. 4. ANFIS model structure.
vibration data ANFIS is capable of drawing a relationship between
Q from one hand and distance and PPV from the other hand.

Adaptive Nero Fuzzy Inference System (ANFIS) Editor was used
to establish input variables and output. Both input and output
variables were fuzzified with membership function (MF) and
graphically designed. The Fuzzy Membership Function (MF) is
defined as how each point in the input space was mapped to a
membership value (or degree of membership) between 0 and 1 the
fuzzy inference mechanism. Figs. 6 and 7 show the membership
function of input1 (PPV) and input2 (Distance), which is also known
as fuzzy reasoning that is the core of a fuzzy model. Its main
function is to emulate human thinking and reasoning in an
approximate fashion.

As there are 2 input and each input has 3 membership function
the number of rules is 9(3�3). Fig. 8 presents a fuzzy if-then rule
editor, and Fig. 9 shows a rule viewer to construct fuzzy if-then rule
statements.

An optimized model of ANFIS built after several executions in
MATLAB environment and tabulated as Table 5. The values of



Fig. 9. Fuzzy rule viewer for the Sugeno model.

Table 5
Details of optimized ANFIS model built for Sungun mine.

Parameter Related information

No. of training data 30

No. of testing data 7

Train Optimization algorithm Hybrid

Membership function Gaussian

Global error function MAE

No. of optimum rules 9

No. of optimum epochs 10

MAE for train and test data 222, 235

Table 6
Comparison of error values in various approaches.

Model MAE MSE R

Duvall and Fogelson USBM [5] 387 286,200 0.75

Ambraseys–Hendron [4] 525 598,896 0.78

Rai et al. [6] 402 359,362 0.73

ANFIS 231 99,104 0.93

R= 0.75
R= 0.78
R = 0.73
R = 0.93
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correlation of coefficient (R) between real and estimated values of Q

for training and testing groups are 0.98 and 0.94, respectively.

Sungun mine blasting.
7. Comparison between applicability of the two methods

In this section, a prediction performance comparison is made
between the presently constructed ANFIS Sugeno model and the
traditional regression-based model. The results of applying the
three empirical equations and ANFIS are compared in Table 6. As
seen in this table, the applicability of ANFIS is far better than any of
the equations. Correlation coefficient for measured and estimated
data obtained from empirical equations and ANFIS has been shown
in Fig. 10. The maximum value of correlation coefficient is for
ANFIS. In addition the values of estimation error for all methods has
been offered in Table 6, according to this table, despite higher
correlation coefficient of the Ambraseys and Hendron equation the
values of MAE and MSE are also higher than other empirical
equations that are undesirable. The reason for this is that, the
maximum charge per delay estimation of Ambraseys and Hendron
equation increases proportionally with increase in distance in
comparison with other empirical equations. The estimated values
for maximum charge per delay based on 10 mm/s for empirical
equation is illustrated in Fig. 11. It is obvious from Fig. 11 that by
increasing the distance from blasting place, the maximum charge
per delay value for Ambraseys and Hendron equation has more
ascending trend. Considering all criteria’s, the result of analysis
(see Table 6 and Fig. 12) shows that ANFIS has the best efficiency in
comparison with other methods.
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8. Conclusions

A number of researches have been established to formulate the
PPV and maximum charge per delay in the blast-induced vibra-
tions. Fuzzy logic method has been found application on various
engineering areas, particularly where the problem is involved with
complexity and uncertainty. In this study the fuzzy logic method
has been employed to analyze of the problem. Also the available
empirical equations have been investigated. The main aim of this
study is to predict maximum charge per delay which is one of the
most important factors in blast pattern designing. The model
predicts maximum charge per delay value as an output parameter
for a given PPV and distance from the blast face. The comparison
shows that results from model are close to the real ones that are
desirable. According to the analysis on Sungun mine vibration data
the MAE error of estimation in the ANFIS-based model was found to
be 231 and in the regression models as 422. These values are 525
and 387 for USBM, Ambraseys–Hendron and Rai et al. models,
respectively. The correlation coefficient between predicted and
measured PPV values (R) in the ANFIS based model was equal to
0.93 and for the regression model 75, and finally 78 and 73 for
USBM, Ambraseys–Hendron and Rai et al. models, respectively. The
comparison indicated that by considering the MAE, MSE, and R the
proposed ANFIS-based model outperforms the regression-based
models in terms of prediction accuracy.
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