
European Journal of Operational Research 247 (2015) 166–178

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Decision Support

Optimizing mining complexes with multiple processing

and transportation alternatives: An uncertainty-based approach

Luis Montiel∗, Roussos Dimitrakopoulos

COSMO – Stochastic Mine Planning Laboratory, Department of Mining and Materials Engineering, McGill University, FDA Building, 3450 University Street,

Montreal, Quebec, H3A 2A7, Canada

a r t i c l e i n f o

Article history:

Received 28 February 2014

Accepted 1 May 2015

Available online 19 May 2015

Keywords:

Metaheuristics

OR in natural resources

Mining complex

Stochastic orebody simulations

Operating alternatives

a b s t r a c t

Mining complexes contain multiple sequential activities that are strongly interrelated. Extracting the material

from different sources may be seen as the first main activity, and any change in the sequence of extraction of

the mining blocks modify the activities downstream, including blending, processing and transporting the pro-

cessed material to final stocks or ports. Similarly, modifying the conditions of operation at a given processing

path or the transportation systems implemented may affect the suitability of using a mining sequence previ-

ously optimized. This paper presents a method to generate mining, processing and transportation schedules

that account for the previously mentioned activities (or stages) associated with the mining complex simul-

taneously. The method uses an initial solution generated using conventional optimizers and improves it by

mean of perturbations associated to three different levels of decision: block based perturbations, operat-

ing alternative based perturbations and transportation system based perturbation. The method accounts for

geological uncertainty of several deposits by considering scenarios originated from combinations of their

respective stochastic orebody simulations. The implementation of the method in a multipit copper opera-

tion shows its ability to reduce deviations from capacity and blending targets while improving the expected

NPV (cumulative discounted cash flows), which highlight the importance of stochastic optimizers given their

ability to generate more value with less risk.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A mining complex can be interpreted as a supply chain sys-

tem where material is transformed from one activity to another

(Goodfellow, 2014). The primary activities (or stages) consist of: min-

ing the materials from one or multiple sources (deposits); blending

the material considering stockpiling; processing the material in dif-

ferent processing paths accounting for multiple operating alterna-

tives; and transporting the products to port or final stocks using one

or multiple transportation systems.

For a given processing path (e.g. mill-roaster in a refractory ore

operation), it is possible to have multiple operating alternatives; for

example, a mill may be operated using two different options: fine or

coarse grinding (Fig. 1). If the mill is operated using fine grinding,

there is often a very high energy consumption, which is associated

with a higher processing cost and also requires larger residence times
∗ Corresponding author. Tel.: +1 514 8398664; fax: +1 514 3987099.
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or the material processed, thus limiting the mill throughput. A coarse

rinding option requires less energy and residence time in the mill,

hich decreases the operating cost and increases the mill through-

ut, however, it results in a lower recovery in the roaster downstream.

urthermore, different processing alternatives often impose different

lending requirements. For example, the tolerable amount of free sil-

ca of the input material may be lower when operating the mill at

ne grinding given that the presence of this element increases the

ardness of the material. When a mill is bottlenecking the system,

t is better to use a coarse grind with higher throughput in the early

eriods of the life-of-mine (LOM), and, to use a finer grind to maxi-

ize recovery towards the end of the LOM (Whittle, 2014). During the

arly periods, a mining complex incurs an opportunity cost for hav-

ng material with large residence times in the mill, however, as the

uantity of ore remaining in the mining complex diminishes, there is

o opportunity cost.

Once the material is processed through the different processing

aths and using some available operating alternatives, existing trans-

ortation systems, either continuous (belt conveyors, pipe transport)

r batch (trucks, rail transportation), are used to transport the pro-

essed material to one or several ports or final stocks. Accounting
r the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Operating alternatives for a mill.
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Fig. 2. Flexibility of the mining complex.

(

r

d

m

m

T

a

i

2

2

m

t

c

c

s

A

p

w

fl

p

p

r

p

a

e

o

2

O

m

t

t

or transportation systems in the optimization of mining complexes

s important, given that they may limit the overall system output.

n a mining complex, it is common to have multimodal transporta-

ion that involves the use of separate contractors or operators for

ach type of transport (Zamorano, 2011). To account for the de-

and of transportation of material processed, it is necessary to estab-

ish the feasible relations between processing paths and transporta-

ion systems; specifically, a particular transportation system may be

ble to handle output material from some of the available process-

ng paths: For example, in a pyro/hydrometallurgical complex, a hy-

raulic pipe may be able to transport the material output from the lix-

viation plant whereas the material output from the pyrometallurgi-

al plant is transported to the final stocks via trucks. Once the feasible

ransport relations are established, the demand for transportation is

valuated by considering the throughput relationships (output/input

onnages) for each processing path given the operating alternative

mplemented. For example, the output/input tonnage relation and

he metallurgical recovery in a gold flotation plant change if the mass

ull is 4 or 7 percent (Hadler, Smith, & Cilliers, 2010). When the trans-

ortation of processed material is the bottleneck in the overall sys-

em, the operating conditions at the different processing paths must

e evaluated. To overcome this limitation, it may be useful to re-

valuate throughput specifications of the processed material. Whittle

2010) shows that by increasing the copper concentrate from 28 to

2 percent in some periods on a sulfide deposit, the metallurgical re-

overy decreases by 7 percent, but the NPV increases by 6 percent

iven the possibility of transporting more concentrated ore on the

ipe, which is the bottleneck of the system.

Optimizing mining complexes by considering geological uncer-

ainty and the different activities simultaneously is a large com-

inatorial optimization problem (Fig. 2). Several efficient method-

logies have been developed in stochastic environments for the

ine production scheduling problem (Bendorf & Dimitrakopoulos,

013; Godoy, 2003; Godoy & Dimitrakopoulos, 2004; Goodfellow &

imitrakopoulos, 2013; Lamghari & Dimitrakopoulos, 2012;

amghari, Dimitrakopoulos, & Ferland, 2013; Montiel &

imitrakopoulos, 2013). The integration of multiple activities during

ptimization in deterministic frameworks include the work of

oerger, Seymour, and Hoffman (1999); Wharton (2007); Whittle

2007); Whittle (2010a); Whittle (2010). This paper presents a new

odel for optimizing multipit mining complexes that incorporates

rocessing and transportation alternatives and accounts for ge-

logical uncertainty by means of stochastic orebody simulations
Fig. 3). Stochastic simulation of mineral attributes provides possible

epresentations of the mineral deposits that are consistent with the

ata and with the geological model (Dowd, 1994). A mining complex

ay contain several deposits discretized into a large number of

ining blocks leading to optimization models of prohibitive size.

o solve the optimization model presented in this paper, a solution

pproach that uses simulated annealing algorithm is developed and

mplemented.

. Method

.1. Overview

In a mining complex, the material flows from the deposits as raw

aterial to ports or final stocks as saleable products. To optimize

he mining complex, the different stages that are involved must be

onsidered simultaneously (Fig. 4). First, the multiple material types

oming from the mine(s) are sent to the available processes or to

tockpiles where they are blended to meet the quality requirements.

t each process the material is transformed into intermediate or final

roducts, which are then transported to ports or final stocks. The goal

hen optimizing a mining complex is to maximize discounted cash

ows while minimizing deviation from mining and metallurgical

rocessing targets, such as capacities associated to the different

rocessing and transportation options and blending requirements

egarding the different metallurgical properties. These metallurgical

roperties control the operation of the different processes and

re calculated as mathematical expressions of the different grade

lements, e.g., fuel value is a metallurgical property that controls the

peration on a roaster.

.2. Optimization model

Maximize

=
T∑

t=1

(
1

S

(
S∑

s=1

discprof it(s, t) − penalty(s, t)

))
(1)

Subject to

ineproduction(s, t) =
I∑

i=1

D∑
d=0

Xitd · mis (2)

onnesentmine(s, t, d) =
I∑

i=1

Xitd · mis (3)

onnestockpiles(s, t) = tonnestockpiles(s, t − 1)

−
D∑

d=1

tonnerehandle(s, t, d)

+ tonnesentmine(s, t, 0) (4)
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Fig. 3. (a) Stochastic orebody simulations. (b) Block extraction sequence.
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Fig. 4. Activities of the mining complex.
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tonneprocess(s, t, d) = tonnesentmine(s, t, d)

+ tonnerehandle(s, t, d)
(5)

D∑
d=1

tonnerehandle(s, t, d) ≤ tonnestockpiles(s, t − 1) (6)

metalsentmine(s, t, d, m) =
I∑

i=1

(Xitd · mis · gism) (7)

metalstockpiles(s, t, m) = metalstockpiles(s, t − 1, m)

−
D∑

d=1

metalrehandle(s, t, d, m)

+ metalsentmine(s, t, 0, m)

(8)

metalprocess(s, t, d, m) = metalsentmine(s, t, d, m)

+ metalrehandle(s, t, d, m)
(9)

D∑
d=1

metalrehandle(s, t, d, m) ≤ metalstockpiles(s, t − 1, m) (10)

metalstockpiles(s, t, m)

tonnestockpiles(s, t)
= metalrehandle(s, t, d, m)

tonnerehandle(s, t, d)
(11)

onneout process(s, t, d) =
O(d)∑
o=1

(tonneprocess(s, t, d) · Ytdo · Pdo)

(12)

onnetransport(s, t, r) =
D∑

d=1

(tonneout process(s, t, d) · Ztdr) (13)

metalrec(s, t, m) =
D∑

d=1

O(d)∑
0=1

(metalprocess(s, t, d, m) · rec(d, o, m))

(14)

revenue(s, t) =
M∑

m=1

(metalrec(s, t, m) · price(m)) (15)
inecost(s, t) = mineproduction(s, t) · mc (16)

procost(s, t) =
D∑

d=1

O(d)∑
o=1

(tonneprocess(s, t, d) · Pc(d, o) · Ytdo) (17)

tockcost(s, t) = tonnesentmine(s, t, 0) · kc (18)

ehandlecost(s, t) =
(

D∑
d=1

tonnerehandle(s, t, d)

)
· hc (19)

ranscost(s, t) =
R∑

r=1

(tonnetransport(s, t, r) · τc(r)) (20)

iscprof it(s, t)

=

(
revenue(s, t) − minecost(s, t) − procost(s, t)

−stockcost(s, t) − rehandlecost(s, t) − transcost(s, t)

)
(1 + drate)t

(21)

penalty(s, t) = penalpit(s, t) + penaltrans(s, t)
+ penalpro(s, t) + penalmetal(s, t)

(22)

(p)∑
k=1

D∑
d=0

Xktd · mis + D(s, t, p)U − D(s, t, p)L = MCAP(p) (23)

onnetransport(s, t, r) + D(s, t, r)U − D(s, t, r)L = TCAP(r) (24)

onneprocess(s, t, d) + D(s, t, d, o)U − D(s, t, d, o)L = PCAP(d, o)

(25)
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Table 1

Sets.

S Set of scenarios

T Set of periods considered in the life-of-mine (LOM)

P Set of mining pits

I Set of mining blocks considering all available pits

D Set of destinations (processing paths) availables

O(d) Set of operating alternatives at destination d

M Set of grade elements (including recoverable metals)

K Set of metallurgical properties

R Set of transportation systems

∑

∑

O

Z

∑

(

d

p

t

u

t

p

Table 3

Variables in the objective function.

discprofit(s, t) Discounted profit obtained in period t under scenario s

penalty(s, t) Penalty term of objective function in period t under scenario s

m

s

g
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metalprocess(s, t, d, k)

tonneprocess(s, t, d)
+ D(s, t, d, o, k)U − D(s, t, d, o, k)L

= MTAR(d, o, k) (26)

penalpit(s, t) =
P∑

p=1

(C(t, p)U · D(s, t, p)U + C(t, p)L · D(s, t, p)L)

(27)

penaltrans(s, t) =
R∑

r=1

(C(t, r)U · D(s, t, r)U + C(t, r)L · D(s, t, r)L)

(28)

penalpro(s, t) =
D∑

d=1

O(d)∑
o=1

(
C(t, d, o)U · D(s, t, d, o)U

+ C(t, d, o)L · D(s, t, d, o)L

)
(29)

penalmetal(s, t) =
D∑

d=1

O(d)∑
o=1

K∑
k=1

(
C(t, d, o, k)U · D(s, t, d, o, k)U

+ C(t, d, o, k)L · D(s, t, d, o, k)L

)
(30)

D

d=0

Xitd −
t∑

k=1

D∑
d=0

Xjkd ≤ 0 (31)

T

t=1

D∑
d=0

Xitd = 1 (32)

(d)∑
o=1

Ytdo = 1 (33)

tdr ≤ Adr (34)

R

r=1

Ztdr = 1 (35)

All variables must be positive. Xitd and Ytdo ε {0, 1}. Ztdr ≤ 1

Tables 1–7).

The objective function is given by Eq. (1) and seeks for maximizing

iscounted profits and minimizing deviations from targets along all

eriods and scenarios (derived from orebody simulations). The first

erm of the objective function accounts for discounted profits by eval-

ating the revenues obtained by selling the different products and

he costs associated with the different activities of the mining com-

lex. The second term accounts for penalized deviations regarding
Table 2

Main variables.

Xitd Binary variable denoting whether or not a block i is mi

Ytdo Binary variable denoting whether or not a processing a

Ztdr Continuous variable that represents the proportion of o

transportation system r in period t
ining, processing, transportation and blending targets and may be

een as a penalty cost it is incurred by not meeting the different tar-

ets. The value of penalty(s,t) depends on the deviations from the tar-

ets itself and the magnitude of the per-unit penalty costs associated.

f the per-unit penalty costs are too high, the method will improve

he reproduction of the targets ignoring the first term of the objective

unction generating poor improvement of expected NPV. Conversely,

oo small per-unit penalty costs will generate impractical solutions

ith large and non-realistic NPV forecasts given the large violations

f the targets.

To manage the risk along the different periods, the per-unit

enalty costs can be discounted using the geological risk discounting

ate (GRD) introduced by Dimitrakopoulos and Ramazan (2004) (see

lso Ramazan and Dimitrakopoulos, 2013). This allows deferring risks

f not meeting targets for later periods when more information will

e available. GRD can be applied to processing, blending and trans-

ortation targets.

The tonnage mined in a given period t under a scenario s can be

valuated using Eq. (2). Scenarios are obtained from orebody simula-

ions and, due to grade and material type uncertainties, the tonnage

f a block may differ from one scenario to another. Similarly, the ton-

age sent from the pits to any particular destination d can be evalu-

ted using Eq. (3).

In a mining complex, different material types are stored in dif-

erent stockpiles given that they may have different metallurgical

roperties. The model considers one stockpile for each material type

hat contributes to the blending operation. When a particular block

s sent to the stockpiles, the assignment of any particular stockpile

s a scenario-dependent decision derived from the material type un-

ertainty. In other words, for each scenario, a stockpiled block will

e assigned to the corresponding pile related to its material type. For

odeling purposes, stockpiling a block is represented as having des-

ination d=0. Therefore, in a period t, the total tonnage presented in

he stockpiles under a scenario s is evaluated using Eq. (4).

The amount of material processed in a given destination d during

eriod t under scenario s is given by Eq. (5). Eq. (6) ensures that it

s not possible to rehandle more material than the available in the

tockpiles.

The amount of metal m sent from the pits to a particular desti-

ation d, the amount of metal m in the stockpiles and the amount

f metal m processed at a given destination d can be evaluated us-

ng Eqs. (7), (8) and (9) respectively. Eq. (10) ensures that it will not

ehandle more metal than the available in the stockpiles.

Eq. (10) controls that the grade of the material rehandled at a

iven period corresponds to the grade of the stockpiles. This con-

traint is non-linear and assumes that there is a homogenization of

he material in the stockpiles such that any material removed from

here has its average grade. Although it may be seen as a strong

ssumption, it overcomes the limitation of linearized formulations

here a constant grade is assumed for the stockpiles. Future addi-

ions to the problem may consider stochastic stockpile handling.

Eqs. (12), (13) and (14) are used to evaluate the output tonnage

rom a given destination d in period t under scenario s, the tonnage
ned in period t and sent to destination d

lternative o is implemented in destination d in period t

utput tonnage from destination d to be transported by
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Table 4

Economic and tonnage variables.

revenue(s, t) Revenue in period t under scenario s

mncost(s, t) Cost of mining the materials in period t under scenario s

procost(s, t) Cost of processing the materials in period t under scenario s

stkcost(s, t) Cost of stockpiling the materials in period t under scenario s

rehandlecost(s, t) Cost of sending material from the stockpiles to the available destinations in period t under scenario s

transcost(s, t) Cost of transporting the products to the ports or final stocks in period t under scenario s

penalpit(s, t) Penalized deviations from pits capacities in period t under scenario s

penalpro(s, t) Penalized deviations from operation alternatives capacities in period t under scenario s

penalmetal(s, t) Penalized deviations from metallurgical operational ranges in period t under scenario s

penaltrans(s, t) Penalized deviations from transportation systems capacities in period t under scenario s

mineproduction(s, t) Tonnage mined in period t under scenario s

tonnesentmine(s, t, d) Tonnage sent from the pits to destination d in period t under scenario s

tonnestockpiles(s, t) Tonnage presented in the stockpiles in period t under scenario s

tonnerehandle(s, t, d) Tonnage sent from the stockpiles to destination d in period t under scenario s

tonneprocess(s, t, d) Tonnage of material processed in destination d in period t under scenario s

metalsentmn(s, t, d, m) Amount of metal m sent from the pits to destination d in period t under scenario s

metalrehand(s, t, d, m) Amount of metal m sent from the stockpiles to destination d in period t under scenario s

tonneoutprocess(s, t, d) Tonnage of material output from destination d in period t under scenario s

tonnetransport(s, t, r) Tonnage of material transported using transportation system r in period t under scenario s

metalrec(s, t, m) Amount of metal m recovered in period t under scenario s

Table 5

Deviation variables.

D(s, t, p)U Tonnage exceeding the capacity associated with pit p in period t under scenario s. A subscript L represents shortfall

D(s, t, p)L Deficient amount of tonnage mined in pit p during period t under scenario s regarding its associated capacity

D(s, t, d, o)U Tonnage exceeding the capacity associated with the operation alternative o of destination d in period t considering the scenario s

D(s, t, d, o)L Deficient amount of tonnage input to destination d in period t under scenario s considering operating alternative o and its associated capacity

D(s, t, d, o, k)U Over-deviation from the upper target regarding the metallurgical property k in processing option o of destination d in period t under scenario s

D(s, t, d, o, k)L Under-deviation from the lower target regarding the metallurgical property k in processing option o of destination d in period t under scenario s

D(s, t, r)U Tonnage exceeding the capacity associated with the transportation system r in period t considering the scenario s

D(s, t, r)L Deficient amount of tonnage regarding the capacity associated with transportation system r in period t under scenario s

Table 6

Economic parameters.

pricem Price of metal m

mc Per-unit mining cost

pcdo Per-unit processing cost in destination d using operation alternative o

kc Per-unit stockpiling cost

hc Per-unit rehandle cost

τ c Per-unit transportation cost using transportation system r

drate Discount rate

t

c

t

t

o

b

t

s

e

p

v

m

t

i

transported by transportation system r in period t under scenario s

and the amount of metal m that will be recovered in period t under

scenario s.

At a given processing destination, each available operating al-

ernative may have its corresponding associated capacity, operating
Table 7

Operating parameters.

mis Mass of block i under scenario s

Pdo Proportion output/input tonnage in operating alternative o of destina

Adr 0–1 parameter indicating whether or not the output material from de

recdom Metallurgical recovery of metal m in destination d using the operatio

MCAP(p) Mine capacity in pit p

TCAP(r) Capacity of transportation system r

PCAP(d, o) Capacity in processing destination d using operating alternative o

MTAR(d, o, k) Operational target of property k in destination d using operating alter

C(t, p)U Per-unit penalty cost associated with over-deviation of production in

C(t, p)L Per-unit penalty cost associated with under-deviation of production i

C(t, d, o)U Per-unit penalty cost associated with over-deviation of production in

C(t, d, o)L Per-unit penalty cost associated with under-deviation of production i

C(t, d, o, k)U Per-unit penalty cost associated with over-deviation from upper targ

destination d

C(t, d, o, k)L Per-unit penalty cost associated with under-deviation from lower tar

of destination d

C(t, r)U Per-unit penalty cost associated with exceeding the capacity of transp

C(t, r)L Per-unit penalty cost associated with failing to meet the tonnage cap
ost, recoveries, operational ranges for metallurgical properties and

hroughput specification (relation between output/input tonnages).

The revenues and costs associated with the different activities of

he mining complex are evaluated using Eqs. (15)–(20).

The discounted profit, which is the term that appears in the

bjective function, can be calculated by discounting the difference

etween the revenues and the costs associated with the different ac-

ivities (Eq. (21)).

To control the operation at the different processing destinations,

everal metallurgical properties may be considered. At any given op-

rating alternative of a particular destination, these metallurgical

roperties must fall in between some operational ranges. The de-

iations from these operational ranges must be also minimized by

eans of penalty costs. penalty(s,t) is the second term of the objec-

ive function and can be calculated in each period and scenario us-

ng Eq. (22). Eqs. (23)–(26) allow evaluating the deviation from the
tion d

stination d can be transported using transportation system r

n alternative o

native o

pit p during period t

n pit p during period t

operation alternative o of destination d during period t

n operation alternative o of destination d during period t

et of metallurgical property k in period t considering operation alternative o of

get of metallurgical property k in period t considering operation alternative o

ortation system r during period t

acity of the transportation system r during period t
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Fig. 5. Block based perturbations.
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c

a

o
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t

d

M
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e

a

ifferent targets. The penalties that affect the second term of the ob-

ective function are calculated using Eqs. (27)–(30).

Eq. (31) represents slope constraints. Eqs. (32), (33), (34) and (35)

nsure that a block is mined only once, that only one alternative is

hosen at a given destination in a certain period, that all the out-

ut material of a given destination is transported and that feasible

rocess-transport relationships are respected.

The number of binary variables Xitd is given by the number of

locks in which the open pits are discretized, the number of peri-

ds of the LOM and the number of processing destinations. A mining

omplex may contain several deposits discretized into a large num-

er of blocks (hundreds of thousands or millions) which generates

illions of integer variables. The mine production scheduling prob-

em incorporated in the optimization of mining complexes is NP-hard

Faigle & Kern, 1994). Hence, it is necessary to find solution methods

hat overcome this limitation.
.3. Solution approach

Given the complexity of the problem, a method that uses simu-

ated annealing is proposed to generate solutions with mining, pro-

essing and transportation policies. The proposed method perturbs

n initial solution iteratively to improve the objective function. In

rder to avoid local optimal solutions and to explore the solution

omain (the set of all possible mine production schedules with op-

rating policies for processing paths and transportation systems),

he method allows deterioration based on a decision rule and uses

iversification. The decision rule is the same implemented by the

etropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, &

eller, 1953) and allows the exploration of the solution domain while

onverging to a final good-quality solution. A diversification strat-

gy over the solution domain is performed by means of perturbation

t different decision levels of the mining complex (blocks, operating
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Fig. 6. Operating alternative based perturbations.
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alternatives, transportation systems). The proposed algorithm can be

implemented multiple times to improve the final solution by control-

ling the number of cycles.

2.3.1. Decision rule

Metropolis et al. (1953) introduce an algorithm to provide a simu-

lation of a collection of atoms in equilibrium at a given temperature.

The Metropolis algorithm perturbs the initial state and, at each iter-

ation, an atom is displaced and the resulting change in energy �E is

computed. If �E ≤ 0, the displacement is accepted. The case �E > 0 is

accepted or rejected based on random sampling of a probability dis-

tribution P(�E) = exp(−�E/kBT ) where KB is a constant and T the

temperature of the state. Kirkpatrick, Gelatt, and Vecchi (1983) use

a cost function in place of the energy and define configurations by a

set of variables to generate a population of configurations of a given

optimization problem at some temperature. This temperature acts

as a control parameter of the same units as the cost function. Pre-

vious implementation of simulated annealing in mine planning have

demonstrated its ability to improve mine production scheduling and

pit designs in terms of expected NPV and meeting production tar-

gets (Albor & Dimitrakopoulos, 2009; Godoy, 2003; Goodfellow &

Dimitrakopoulos, 2013; Leite & Dimitrakopoulos, 2007). Because of

this, simulated annealing was chosen among other metaheuristics to

solve the problem of optimizing multipit mining complexes while ac-

counting for geological uncertainty. However, other methods should

be tested in the future searching for a better integration with the

problem and a possible deeper exploration of the solution domain.

Given the nature of the optimization problem considered in this

paper, which is a maximization problem and not a cost or deviation

minimization one, a perturbation that deteriorates the current solu-

tion is the one that decreases its objective value. Accounting for this,

the probability distribution is given by Eq. (36) with T being the an-

nealing temperature.

P(�O) = P(Onew − Ocurrent ) =
{

1 if (�O ≥ 0)

e
−(�O)

T if (�O < 0)

}
(36)

The probability of accepting an unfavorable perturbation is

greater at higher temperatures. As the optimization proceeds, the
emperature is gradually lowered by a reduction factor. When the

emperature approaches zero, the probability of accepting an unfa-

orable swap tends to zero. This allows the algorithm to converge to

final solution.

The total number of swaps and the number of swaps at a given

emperature control the end of the algorithm and the changes of tem-

erature throughout the iteration process.

.3.2. Perturbation mechanism

The proposed algorithm requires an initial mining sequence to

ssign periods and destinations to mining blocks and a set of ore-

ody simulations for each deposit to evaluate profits, costs, produc-

ions and deviations at the different activities of the mining complex.

hile reading the orebody simulations, the algorithm evaluates the

verall profitability of a block at a given destination by accumulat-

ng the economic value of the block in that destination through all

cenarios. For simplicity, the overall profitability of a block at a given

estination will be referred to as OPBD. Based on the OPBD, it is pos-

ible to determine the optimal destination of a given block. One or

everal waste dumps may be considered and they are treated as pro-

essing destinations with null recoveries.

The solution is improved by means of the perturbation mecha-

ism. The algorithm performs perturbation at three different level or

tages: blocks, operating alternatives and transportation systems. At

ny level of perturbation, a new solution will be accepted based on

he decision rule explained in the previous section.

Block Based Perturbations (BBP): The algorithm selects a block ran-

omly and checks its OPBD in the different destinations. It perturbs

he solution by modifying periods and destinations of mining blocks.

oving the extraction period of a mining block to a previous period

ill be referred to as pulling up the block, whereas moving the block

o a following period is referred to as pushing down the block. If the

lock has a positive OPBD in the optimal destination, the algorithm

terates the candidate period from a previous to a following period,

avoring first the chance of pulling up the block given the time value

f money. In the case where a block has negative OPBD in all destina-

ions, the algorithm iterates from the following period to the previous

ne, favoring first pushing down the block (Fig. 5). Before accepting
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Fig. 7. The heuristic approach.
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ny candidate period, the algorithm checks that slope constraints are

espected.

For a block with positive OPBD in its optimal destination, the set

f candidate destinations are those with positive OPBD. The algo-

ithm sorts candidate destinations based on the OPBD and iterates

rom the most profitable destination to the less profitable one (but

till with positive OPBD). If the block has negative OPBD in all desti-

ations, the only candidate destination is its optimal destination (the

ne with higher OPBD). This ensures that waste blocks are always

ent to the waste dump(s) as they are treated as destinations with

ull recoveries. There may be cases where blocks have negative OPBD

n all destinations but the optimal destination in not a waste dump;
hat is, although processing that block in a particular processing path

enerates a negative profit, the profit losses are less by processing

he block than by sending it to a waste dump. In these cases, optimal

estinations are also respected.

Although, pulling up a positive block and pushing down a neg-

tive one improve NPV expectations because of the time value of

oney, the objective value of the new solution generated does not

ecessarily increase as there is a penalty term also affecting the ob-

ective function. There may be cases where the NPV increases, but

he new solution deteriorates the objective value due to the penal-

zed deviations. A similar analysis can be made for the opposite case;

perturbation that decreases NPV expectations does not necessarily
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Fig. 8. Multipit operation.

3

c

deteriorate the current solution. The objective value can be seen then

as a trade-off between improving the NPV and decreasing deviation

from operational targets.

Operating Alternative Based Perturbations (OBP): In the previous

section, block based perturbations were described; however, the op-

erating alternatives implemented at each destination are not simul-

taneously modified. The set of perturbations at the OBP level refer

to swapping operating alternatives at the different destinations (pro-

cessing paths); e.g., swapping from fine to coarse grinding in the mill

in some periods of the LOM. Modifying the operating alternative at a

particular destination in a given period may vary the objective value

as: (i) processing cost and recovery may change, which may affect the

expected NPV; (ii) capacity and operational metallurgical ranges may

change, which affect the penalty term in the objective function.

Given a particular period and destination, the algorithm selects

randomly an available operating alternative as the candidate alterna-

tive, and evaluates the objective value when swapping the operating

alternative to the candidate one (Fig. 6). The new solution is accepted

or rejected based on the decision rule explained previously.

Transportation System Based Perturbations (TBP): As previously ex-

plained, the first level of perturbations modify period and destina-

tions of mining blocks, whereas the second level of perturbations

modify operating alternatives at the different periods and destina-

tions. The third level of perturbations is referred to as the transporta-

tion system based perturbations. For a given destination and period,

the algorithm attempts to perturb the proportion of output mate-

rial transported using the available transportation systems; e.g., the

mill-roaster processing path (destination) change its transportation

arrangement for the output material from (70 percent trucks/30 per-

cent pipe) to (50 percent trucks/50 percent pipe). This set of pertur-

bations seeks to minimize the transportation costs and penalized de-

viations in the objective function. The variations of the proportions of

transportation systems utilized are generated using random numbers

but ensuring that 100 percent of the output material from a given

destination is transported using the feasible transportation systems

(mass conservation). Perturbations are accepted or rejected based on

the decision rule described previously.

The Heuristic Approach: The different activities of a mining com-

plex are strongly interrelated. Any modification in a particular activ-

ity modifies the optimal operation at the other activities of the min-

ing complex; e.g., modifying the mining sequence affects the optimal

operating parameters at a given destination and the transportation

system implemented. The same occurs when modifying operating

parameters or transportation arrangements. Given the interrelation

between the different activities, the algorithm integrates the multi-

level perturbations in an iterative way (Fig. 7).

At any given temperature, a user-defined number of BBP is per-

formed, when it reaches this predefined number, the temperature

in this level of perturbation is lowered and the OBP starts. Similarly,

when it reaches a user-defined number of OBP, the temperature in

this level of perturbation is lowered and the TBP starts. When the

three levels of perturbations are performed, the algorithm returns

to the first level (BBP). It continues until the total number of BBP is

reached.

The heuristic approach can be implemented iteratively by control-

ling the number of cycles. However, it must be important to establish

a trade-off between the quality of the solution and computational

time, given that it increases linearly with the number of cycles. Fur-

thermore, there may be a number of cycles from where no significant

improvement in the objective value of the solution is obtained.

3. Implementation of the method: a multipit operation

The algorithm is written in C++ programming language, compiled

in Microsoft Visual Studio 2010 and runs on an Intel processor core i7

2600s with 8GB of RAM, using Windows 7 as operating system.
.1. Overview of the operation

The method is implemented in a mining complex that produces

opper and contains two different pits: Pit A and Pit B. The material

extracted from both pits has been classified in five different types that

originate different metal recoveries at the different destinations. Five

destinations are available (Fig. 8), including a waste dump.

Twenty stochastic orebody simulations (Remy, Boucher, & Wu,

2008; Maleki & Emery, 2015) were provided for each deposit,

which consider uncertainty in both grades and material types. Past

work have demonstrated that at the scale of mine planning, solu-

tions converge after ∼ 15 stochastic orebody simulations (Albor &

Dimitrakopoulos, 2009; Dimitrakopoulos & Jewbali, 2013). Three

variables of interest are considered in the orebody simulations: cop-

per, which is the selling product of the mining complex; and two met-

allurgical properties that control the operation in the small and the

big mill.

3.2. Base case

An initial solution for the multipit multiprocess problem is gen-

erated using Whittle, a widely used software for strategic mine plan-

ning. Whittle discretizes the deposits into nested pit-shells and gen-

erates good quality solutions in the deterministic space by combining

pit-shells and benches at the different deposits during scheduling.

This initial solution determines the periods and destinations of min-

ing blocks for both pits, and is generated considering the estimated

geological models (E-types) of the two deposits; that is, the average

grade of each block from the available simulations. This solution will

be referred to as base case schedule and it is generated using a con-

ventional optimizer widely used in the mining industry.

The results obtained by implementing the base case schedule are

depicted in Fig. 9. Large and impractical deviations in terms of capaci-

ties and blending targets are presented when implementing the base

schedule over the different scenarios. After the pre-stripping years,

deviations in the small mill are 18 percent in average and 22 percent

in the big mill. Regarding the blending element 1 (BEL1) that controls

the operation of the small mill, the deviations in the first 7 years of

operation are in average 7 percent, whereas the blending element 2

(BEL2), that controls the operation of the big mill, deviates in average

1.8 percent in these periods.

Any conventional mine production scheduler attempts to opti-

mize the sequence of extraction of a given deposit using a single es-

timated model. Interpolation methods used in estimation generate

averaged-type models that smooth the mineral grades and do not

reproduce the spatial variability of the drilling data. Given the non-

linear transformations associated with the mine planning process, an

averaged-type geological model does not generate a solution with av-

erage performance. This originates that a solution generated using a

deterministic method do not perform as predicted in the estimated

model.
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Fig. 9. Base case schedule.

Fig. 10. Objective function terms at different temperatures.

Fig. 11. Objective function terms vs. number of cycles.
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Fig. 12. Case 1: multipit multiprocess.
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3.3. Optimization parameters

To implement the approach, optimization parameters such as ini-

tial temperature, reduction factors, penalties, cycles and number per-

turbation must be calibrated. The penalties must account for the or-

der of magnitude of the different targets in order to balance the pe-

nalization in the objective function. Fig. 10 displays the evolution of

the terms of the objective function with the number of perturbations

for five different temperatures. An initial temperature of 0 means

that only perturbations that improve the objective value are accepted

(pure iterative improvement) which limits the ability of the method-

ology of escaping from local optimal solutions. A very large initial

temperature implies accepting both, favorable and unfavorable per-

turbations with high probability, which may not improve the initial

solution as the solution will not necessarily converge to a final good

solution.

The same analysis is performed to evaluate the number of cycles

(Fig. 11). It can be observed that after two cycles, the improvement

in expected NPV is negligible, whereas no significant reduction in pe-

nalized deviations is attained after one cycle.

The perturbation mechanism is performed until a stopping crite-

rion is reached. A stopping criterion can be the total number of per-

turbations which controls the computational time of the implemen-

tation of the method. The case study shows the ability of the algo-

rithm to perform 10 million perturbations in less than 1 hour in a

mining complex comprised of two pits and 176,000 mining blocks.

The algorithm will stop also if no significant improvement in the

objective value is achieved after a certain number of perturbations,

which means that the algorithm converged to a solution. In this case

study, the solution converges after 2 million perturbations, which im-

plies that the method is capable of generating solutions for real-size

problems in practical times.
 w
3.4. Case 1: multipit multiprocess

The proposed approach is implemented considering the economic

and technical parameters used in the base case. The results obtained

are displayed in Fig. 12.

Low deviations from capacities and blending targets are expected.

fter the pre-stripping years, deviations from the capacity of both the

mall and big mills are 1 percent on average. The probability of devi-

ting from the operational ranges of BEL1 is largely reduced, obtain-

ng an average expected deviation of 0.4 percent. Larger probabilities

f deviating are presented at the end, originated from the geologi-

al risk discounting applied to the penalties that allow deferring risk

o later periods when more information becomes available. For BEL2,

here are expected deviations of 1.3 percent. The expected NPV is 3

ercent higher when compared to the base case; however, given the

arge and impractical deviation from targets in the base case, its NPV

orecast is not reliable.

.5. Case 2: multipit multiprocess with operating alternatives

t the mills

The method is implemented considering the case where multiple

perating alternatives are available in both mills. In case 1, fine grind-

ng option is selected by default. The method is now able to choose

hich option to implement at each mill along the different periods.

or both mills, when operating using a coarse grinding option, the

apacities increase by 11.6 percent and the metallurgical recoveries

ecrease by 2 percent. The operational ranges for BEL1 and BEL2 also

hange with the two different operating alternatives. Given the flex-

bility in the operation of the mills, the method is able to perform

econd level perturbations (OAP). Fig. 13 display the results obtained

hen implementing the method.
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Fig. 13. Case 2: multipit multiprocess with OAs at the mills.

Fig. 14. NPV of the Case 2 solution.
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The coarse grinding option is selected in years 5–8, 10, 12, 13, 16,

8, 21 and 22 in the small mill, and in years 16 and 19 in the big mill.

lthough capacities of the mill change when swapping from one al-

ernative to another, the algorithm pushes material in a way that de-

iation from capacities of both mills are well controlled (in average

percent in small mill and 3 percent in the big mill). The same be-

aviour is observed with respect to the blend element targets; BEL1

umps in periods when the small mill operates at coarse grinding to

eet the new blending requirements, whereas BEL2 jumps in peri-

ds when the big mill swaps to coarse grinding. In average, BEL1 and

EL2 deviate 0.7 and 1.2 percent respectively.

The risk analysis of the NPV expected by implementing the so-

ution generated in the case 2 is displayed in Fig. 14. This solution

enerates an expected NPV 5 percent higher than the base case. As

as previously mentioned, the NPV forecasts of the base case solu-

ion are not reliable given the large deviations from capacities and

lending targets. The base case solution is improved by means of the

wo levels of perturbation implemented (BBP and OBP).

. Conclusions

Mine planners optimize mining complexes considering that in-

erpolated geological models represent accurately the reality in the

round, ignoring the geological uncertainty associated with mineral
eposits. Interpolation methods generate averaged-type deposits by

efinition. Given that the transfer function that relates grades of min-

ng blocks and economic outputs of a mining complex is non-linear,

he use of averaged-types deposits in the optimization, as in stan-

ard industry practices, generates solution with poor performance

ver a set of possible scenarios. By contrast, risk-based formulations

an make use of the joint local uncertainty by considering stochastic

rebody simulations, which can lead to solutions with higher reward

nd less risk.

A risk-based method to optimize mining complexes comprised

f multiple pits, stockpiles, blending requirements, processing paths,

perating alternatives and transportation systems is presented and

mplemented. Due to the incorporation of geological uncertainty and

ther components of a mining complex, the solutions generated with

he method outperform solutions obtained using conventional deter-

inistic approaches in terms of expected NPV and meeting produc-

ion targets. The solutions generated define the sequence of extrac-

ion of the mining blocks in the different pits, the operating alter-

ative implemented at each processing path, and the transportation

ystem used to carry the processed material to the final stocks.

The implementation of the method in a multipit copper operation

llows reducing the average deviations from capacities and blending

argets considering an initial solution generated using a conventional

ptimizer over a single estimated model: from 18 to 1 percent re-

arding small mill capacities, from 22 to 3 percent regarding big mill

apacities, from 7 to 0.3 percent regarding BEL1 in the first 7 peri-

ds, and from 1.8 to 0.6 percent regarding BEL2 in the first 7 periods.

lthough NPV forecasts for the base case are not meaningful given

ts large deviations from capacities and blending targets, the solution

enerated by implementing the proposed method generates an ex-

ected NPV 5 percent higher than the base case, which highlights the

bility of the method to generate a higher NPV with less risk. The ob-

ective value that accounts for both NPV and penalized deviations is

mproved by 105 percent.

The operating and transportation perturbation mechanisms act

s a diversification strategy for the scheduling of the mining blocks.

owever, when no processing and transportation alternatives are

vailable, the exploration of the solution domain will be very lim-

ted generating fast convergences to local optimal solutions. To
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overcome this limitation, a diversification strategy at a mining block

scale should be added to the method. Future work should also con-

sider mining complexes with underground operations and other

sources of uncertainty as markets, stockpiles, etc.
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