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Abstract

The Internet is undergoing substantial changes from
a communication and browsing infrastructure to a
medium for conducting business and marketing a myriad
of services. The World Wide Web provides a uniform and
widely-accepted application interface used by these ser-
vices to reach multitudes of clients. These changes place
the web server at the center of a gradually emerging e-
service infrastructure with increasing requirements for
service quality and reliability guarantees in an unpre-
dictable and highly-dynamic environment.

This paper describes performance control of a web
server using classical feedback control theory. We use
feedback control theory to achieve overload protection,
performance guarantees, and service differentiation in
the presence of load unpredictability. We show that feed-
back control theory offers a promising analytic foun-
dation for providing service differentiation and perfor-
mance guarantees.

We demonstrate how a general web server may be
modeled for purposes of performance control, present
the equivalents of sensors and actuators, formulate a
simple feedback loop, describe how it can leverage on
real-time scheduling and feedback-control theories to
achieve per-class response-time and throughput guar-
antees, and evaluate the efficacy of the scheme on an
experimental testbed using the most popular web server,

�The work reported in this paper was supported in part by the NSF
under Grant EIA-9806280.

Apache. Experimental results indicate that control-
theoretic techniques offer a sound way of achieving de-
sired performance in performance-critical Internet ap-
plications. Our QoS (Quality-of-Service) management
solutions can be implemented either in middleware that
is transparent to the server, or as a library called by
server code.

Keywords: Quality of Service, Web Servers, Control
Theory, Performance Guarantees

1 Introduction

The Internet has become an important medium for con-
ducting business and selling & buying services. The
web presents a convenient interface for the emerging
performance-critical applications such as online trading
and e-commerce. These applications require stringent
performance guarantees from the web server (e.g., that
an online trade will be executed in a timely manner to
avoid potential financial loss). Attainment of these guar-
antees is especially difficult due to the unpredictable na-
ture of the Internet and server load. In this paper, we
show how feedback control theory can be used as an ana-
lytic engine to provide robust performance guarantees in
the presence of load and resource uncertainty. Feedback
control theory was originally developed for physical
process control. Its use in the context of software per-
formance control is novel. Software performance con-
trol presents a myriad of interesting challenges such as
selecting proper software sensors and actuators, model-

1



ing the software process for the purposes of control, and
mapping computing problems such as protection against
overload into the feedback control domain. Solutions to
these challenges are presented in this paper. Experimen-
tal evaluation on a real server prototype demonstrates the
success of our approach.

We address three forms of performance guarantees
required by current web applications. First, a web server
may host several sites on behalf of parties with poten-
tially conflicting interests. Hence, it needs to protect
each party from possible overload or malicious behav-
ior caused by another party. We call this requirement
performance isolation. Second, the server may need
to give preferential treatment to more important clients,
which we callservice differentiation. Third, the server
may need to adapt its Quality of Service (QoS) grace-
fully, for example, by adapting the resolution of images,
to avoid undesirable effects such as unbounded delays
and connection failures due to overload. We call this re-
quirementQoS adaptation.1 In performance-critical ap-
plications such as online trading, e-commerce, and real-
time databases, failure to meet the above performance
requirements may result in loss of customers, serious fi-
nancial damages, or legal liabilities.

We show that classical feedback control theory of-
fers a solution to the problem of achieving the afore-
mentioned performance guarantees in unpredictable en-
vironments such as the web, and discuss the challenges
involved in this approach. We demonstrate that a web
server can be approximated by a time-varying linear
model for purposes of performance control, describe
the needed software actuators and sensors in the soft-
ware system, and cast server performance control as a
classical feedback control problem. Experimental re-
sults derived from testing the scheme on a widely-used
web server (Apache) illustrate the potential of the ap-
proach. Real-time (deadline-monotonic) scheduling the-
ory [12] makes response-time guarantees possible if
server utilization is maintained below a pre-computed
bound. In the absence of exact knowledge of per-client
load, utilization can be maintained around the bound via
feedback control to enforce the specified response-time
bounds. Feedback control can also be used to guarantee
hosted sites a given throughput independently of load on
other sites, and to provide differentiated services.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 describes the

1In this paper, we address QoS adaptation to server-side loadcon-
ditions. Adaptation to network conditions has been addressed in pre-
vious literature, such as [28].

computing system being controlled. Section 4 presents
the control problem, the issues involved with sensors
and actuators, their modeling, and closing the feedback
control loop around a popular web server. Section 5
describes how the utilization control loop discussed in
Section 4 can be used for performance isolation and ser-
vice differentiation. Section 6 describes the implementa-
tion of a working prototype using an Apache web server.
Section 7 evaluates the performance of the prototype that
implements the feedback control loops on an experimen-
tal testbed. Section 8 concludes the paper with a sum-
mary of contributions and suggests avenues for future
work.

2 Related Work

Despite the increasing need for QoS-aware server de-
sign, most of today’s web servers offer poor perfor-
mance under overload, provide no means for prioritizing
requests, and have few mechanisms for pre-allocating
the end-system capacity to a particular site or hosted
service. Web administrators usually resort to overde-
sign [50] for overload protection as well as for providing
an “acceptable” level of performance. As a result, per-
formance guarantees cannot be made for different clients
or client categories. When the server gets overloaded,
all clients may suffer unacceptably long delays and/or
connection failures even if enough resources may exist
to serve asubsetof clients efficiently.

Policies for quality differentiation among multiple
classes of service on the web have been investigated in
recent literature. An important measure of quality is the
responsiveness of the server. In the simplest case, it is
desired to differentiate between two classes of clients,
premiumandbasic, such that premium clients receive
better service than basic clients in case of overload. For
example, the authors of [26] proposed and evaluated
policies that impose restrictions on the amount of server
resources (such as threads) available to basic clients.
In [9, 1] QoS-aware admission control and scheduling
algorithms were proposed to provide premium clients
with better service.

Several efforts developed general architectures for
tiered services in a web environment. In [17] a server ar-
chitecture is proposed which maintains separate service
queues for premium and basic clients. The architecture
is independent of a particular policy for discrimination
among requests. It enforces a differential treatment of
choice after request classification is performed. Scala-
bility issues in implementations of tiered web services
are addressed in [35], where the authors focus on high-
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performance servers. In [34] an adaptive delay differ-
entiated services architecture is described that is based
on performance isolation and admission control. Un-
like these architectures, ours uses control theory as a
mathematical foundation for adaptation. User studies
are discussed in [19, 16] which analyze the perceived
quality of adaptation from a user’s perspective. In [23],
an architecture is proposed for online transcoding of
web objects. Transcoding adapts to differences in client-
side resources, such as differences in resource capacity
between low-bandwidth wireless and high-bandwidth
wired clients. Transcoding can also adapt service qual-
ity to variable network bandwidth. Unlike transcod-
ing architectures which adapt to client-side and network
resource variability, we are motivated by the need for
adaptation to server-side load. If the server CPU is over-
loaded, transcoding only imposes additional overhead
and is therefore inapplicable.

Application-level quality adaptation techniques were
investigated at length in the multimedia community,
for example, in the dynamic distillation architecture by
Fox [28] and the active services framework for mul-
timedia transcoding [11, 10]. Adaptive QoS frame-
works for multimedia systems include the QoS-A
framework [22], the Heidelberg QoS model [53], V-
net [27], NetWorld [25], the QoS-adaptation model
of [8], COMETS’ Extended Integrated Reference Model
(XRM) [37], the OMEGA end-point architecture [45],
and the QoS Broker [44]. Odyssey [46], presents a
framework for experimenting with application-aware
adaptation on mobile computing platforms. The AQUA
system [36] has developed QoS negotiation and adap-
tation support for allocation of CPU and network re-
sources. A good survey of such architectures can be
found in [13, 14].

Multimedia connections, such as streaming audio
and video, impose very different load characteristics on
servers compared to those imposed by web traffic. Web
load is composed of a large number of inbound requests,
each for a small amount of data. Quality of service
is a discrete parameter with only a few possible set-
tings. In contrast, multimedia requests generate continu-
ous streams which persist for a prolonged time duration.
Quality of service is a continuous parameter which can
be varied smoothly such as adapting display resolution
or the quality of JPEG encoding. Due to these differ-
ences, techniques developed in the multimedia commu-
nity are not applicable in our web server context.

QoS adaptation was also addressed more generally
in the real-time systems community. Typically, the ap-

proach assumes that an application can tolerate mul-
tiple levels of service which vary in their quality and
resource requirements. Given the requirements of dif-
ferent QoS levels, an adaptation mechanism determine
the right QoS level depending on load conditions. Such
QoS-adaptive service models were presented in [32, 31,
24, 4, 8]. Resource allocation mechanisms were de-
veloped to take advantage of adaptation. For example,
the Q-RAM architecture [47] introduces QoS-sensitive
near-optimal resource allocation algorithms for applica-
tions with multiple resource requirements and multiple
QoS dimensions. FARA [49, 48] presents a hierarchi-
cal adaptation model for complex real-time systems and
algorithms for optimizing multi-dimensional adaptation
cost. An end-to-end QoS model is presented in [32]
in the context of a middleware approach to QoS man-
agement that requires application cooperation. The ap-
proach is extended in [21] to account for practical limi-
tations such as inaccuracies in estimating application re-
source requirements. These architectures, however, gen-
erally required a rather detailed model of the application,
which may not be available for web servers.

Operating systems support for server QoS has been
addressed in prior research efforts. Much work fo-
cused on CPU scheduling and resource allocation such
as Hierarchical scheduling [30], processor capacity re-
serves [42], CPU reservations [33], and resource con-
tainers [15]. In contrast, we develop a resource manage-
ment architecture in middleware which can run on top of
any standard operating system, thereby creating a more
portable solution.

Our work [5, 6, 3, 40] differs from prior approaches
to middleware resource management, such as [21] in
that it offers performance guarantees that are based on
well-understood theoretical foundations derived from
feedback-control theory. Recently, there has been a lot
of resurgent interest in control theory as a vehicle for
performance control in distributed computing systems.
For example, in [41], elements of control theory are ap-
plied in a web caching context to guarantee a desired dif-
ference between the hit ratio on different content classes.
In [39] a feedback-control model is used to design a rel-
ative delay controller for web servers. In [29] linear
feedback control principles are applied for controlling
the queue fill levels of a Lotus Notes server. Feedback-
control theory is applied to thread scheduling in [52]
to improve pipeline performance in multimedia appli-
cations. In this paper, we focus on utilization control
as a basic building block to achieve more complex con-
trol objectives and satisfy a wide range of performance
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requirements. We show that our scheme is very versa-
tile in that it can provide absolute guarantees on both
response time and throughput, as well as enable perfor-
mance isolation, service differentiation, and statistical
multiplexing (excess capacity sharing) in web servers.

3 The Computing Server

We consider a distributed client-server system in which
clients send a succession of requests to the web server
across a communication network. Each service request
has an implicit soft deadline by which it must be served
(perhaps determined from the importance, preferences,
or subscription fees of the client). The delay seen by the
client includes the time a request spends in the network
plus the time it spends on the server. Research in the net-
working community addressed the problem of bounding
network delays, as in diff-serv [18] and int-serv [20] ar-
chitectures. We address the complementary problem of
bounding theserver-sidedelay, and the problem of guar-
anteeing a given throughput to individual hosted sites.
With the dramatic increase in the number of Internet
clients, servers are becoming potential bottlenecks.

Serving a request consumes multiple server re-
sources, such as memory, disk bandwidth, communica-
tion bandwidth, and CPU cycles. The capacity of the
server is limited by that of the bottleneck resource. In
this paper, we assume that a single bottleneck exists. In
our experience, this assumption is representative of the
great majority of cases. This is true partly because of
the large disparity in the costs of the different server re-
sources. For example, Internet connection bandwidth is
usually much more expensive than CPU power, causing
the former to become a bottleneck in a realistic server.

Our architecture is primarily geared for serving static
web content. Dynamically generated content poses ad-
ditional challenges that arise from the variability of the
execution times of the content-generating scripts which
makes it more difficult to predict service delays. Fortu-
nately, most server installations separate static and dy-
namic content for performance reasons, serving each
from its own dedicated machines. The separation allows
our results to be applied directly to the static content
servers. In [3] we provide evidence of the applicability
of our approach to dynamic content as well. However, a
full-fledged evaluation of this approach in the presence
of dynamically generated content is outside the scope of
this paper.

We consider QoS-sensitive workloads. We assume
that theith request has a deadlineD

i

and consumes an
amountC

i

of the bottleneck resource. Since each re-

quest must be executed by its deadline, the utilization of
the bottleneck resource isU =

P

i

C

i

=D

i

, where the
summation is carried out over all current requests. A re-
quest is said to becurrentif it has arrived but its deadline
has not yet expired.

4 The Control Problem

The objective of our performance control loop is to (i)
avoid server overload, and (ii) meet the individual re-
sponse time and throughput guarantees. Several chal-
lenges present themselves in addressing this problem.
First, one must develop the equivalent of sensors and ac-
tuators for performance control of the web server. The
sensors should use only readily measurable quantities in
the web environment. The actuators should adjust the in-
ternal load on the server given an uncontrolled amount
of external load (web requests). Second, one must derive
the web server model for the purposes of control. This
involves a combination of theoretical analysis to derive
model structure and experimental profiling to compute
model parameter values for the platform under consid-
eration. Third, one must establish the relation between
meeting individual response time deadlines and the set-
tings of the server control loop. Finally, one must verify
that the resulting design performs well and does not im-
pose unacceptable overhead. These difficulties are ad-
dressed as described in the following subsections. Sec-
tion 4.1 reviews how meeting individual time constraints
is translated into an aggregate utilization control prob-
lem. Section 4.2 describes issues in designing the ac-
tuator. Section 4.3 describes challenges in choosing the
sensors. Section 4.4 discusses system modeling for the
purposes of feedback control and presents the procedure
we used for controller tuning.

4.1 Meeting Time Constraints

It has been recently proved [7] that a group of aperiodic
tasks with arbitrary arrival times, computation times,
and relative deadlines (i.e., maximum response times),
scheduled by a fixed-priority (deadline-monotonic) pol-
icy, will always meet their deadline constraints as long
asU < 0:58. This result is a generalization of the fa-
mous Liu and Layland’s schedulable utilization bound
of ln 2 [38], derived for periodic tasks. The new bound
leads to a simple implementation of a server that guaran-
tees aperiodic request deadlines; the server simply needs
to ensure that its utilization does not exceed the afore-
mentioned bound. Since it is also desired to maximize
server throughput, the utilization should be maintained
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exactly at the upper bound, if possible. The key diffi-
culty in implementing an algorithm that would observe
the utilization bound is the lack of proper estimates of
resource load imposed by an individual client.

A classical linear feedback control problem can be
formulated to keep server utilization at or below0:58.
Server load can be approximated by a liquid flow model.
Since a typical server can handle thousands of clients
concurrently, each client contributes an unknown, but
small, amount to this flow, represented by a series of
requests. The control loop, depicted in Figure 1, mea-
sures server utilization and determines (based on load
conditions) a subset of clients that may receive service
at the current time. The size of this subset is adjusted
to keep the utilization at the desired level. As stated
earlier, the three main challenges in implementing the
control loop are (i) the choice of a proper actuator that
can affect server utilization, (ii) the choice of a monitor
that can measure current utilization reliably, and (iii) ap-
propriate modeling and control of the server. The above
three challenges are elaborated upon below.

Utilization
Controller

Actuator
Server
Process

Monitor

-

+
U

dU = 0.58  

Figure 1. The utilization control loop

4.2 The Actuator

The actuator is the element responsible for translating
abstract controller output into physical action taken by
the web server to change its load. In general,admis-
sion controlcan be used as an actuator in computing
servers. In the simplest case, admission control lim-
its the number of clients who access the server concur-
rently. Client rejection is undesirable but unavoidable
because no scheme can provide QoS guarantees to all
web clients, unless it limits the total number of clients on
the Internet to the maximum number that can be served
by a single server concurrently. The challenge a control
loop overcomes is that of providing performance guar-
antees to the clients whom the “actuator” chooses to ad-
mit.

As mention in Section 2, an extension of pure
admission-control schemes is thedegradationof clients’
QoS. The actuator can offer “degraded” service levels in
addition to the nominal service level. Rejection can be
thought of as an extreme degradation point at which the

client receives no service. Degradation in web servers
can be accomplished by content adaptation. The web
content degradation approach (for server overload con-
trol) is investigated in [5], where we survey an impor-
tant category of today’s e-commerce sites and present
evidences of its suitability for degrading content to re-
duce load. In our study, GIF and JPG images alone
were found to constitute, on average, more than 65%
of the total bytes surveyed. In many cases, these im-
ages can be compressed without an appreciable degra-
dation in QoS. Reducing the number of embedded ob-
jects per page (such as little icons, bullets, bars, sepa-
rators, and backgrounds) can result in significant addi-
tional resource savings. Reducing local links is another
way of adapting site content. This reduction will affect
user browsing behavior in a way that tends to decrease
the load on the server as users access less content. The
latter approach is sometimes followed manually by ad-
ministrators of larger sites such aswww.cnn.comof the
Cable News Network (CNN), e.g., upon overload caused
by important breaking news.

To achieve degraded levels of service, the content
must be pre-processeda priori and stored in multiple
copies that differ in quality and size. Since a typi-
cal web site is usually in the megabyte range, stor-
ing multiple copies is cheap in terms of disk space.
Multiple content trees, e.g., “/fullcontent” and “/de-
gradedcontent” are populated with the appropriate con-
tent off line. A URL, such as, “/mypicture.jpg” is then
served from either “/fullcontent/mypicture.jpg” or
“/degradedcontent/mypicture.jpg” depending on load
conditions. The actuator simply prepends the desired
tree name to each requested URL at run-time causing the
request to be served from a particular tree. The conven-
tion applies to dynamic content as well, e.g., that gener-
ated by CGI scripts. Multiple content trees may contain
different versions of the named CGI script that vary in
resource requirements. The different content trees cor-
respond to different (discrete) levels of quality that the
web service offers to its clients.

In general, let’s consider an actuator withM discrete
service levels (e.g., content trees). These levels are num-
bered1; : : : ;M from lowest quality to highest quality.
The level0 is added to denote the special case of re-
quest rejection. The actuator accepts as input the control
variablem in the range[0;M ] and translates it into the
fraction of clients to be served at each service level.

If m is an integer, it uniquely determines the service
level to be offered to all clients. In general,m is a frac-
tional number composed of an integral partI and a frac-
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tionF , such thatm = I + F . If m is not an integer, we
let the two nearest integers (namely,I andI + 1, where
I < m < I + 1) determine the two most appropriate
service levels at which clients must be served under the
given load conditions. The fractional partF determines
the fraction of clients served at each of the two levels. In
effect,m is interpreted to mean that a fraction1� F of
clients must be served at levelI , and a fractionF at level
I + 1. This specification constrains only the total frac-
tion of clients to be served at each level without dictat-
ing whichclients they should be. The latter is a separate
policy that may operate within the confines of the for-
mer. For example, if all clients are equal, upon receipt
of a request, a pseudo-random valueN 2 [0; 1] may be
computed by hashing the received client’s id (e.g., its IP
address) into a number in the range [0, 1]. IfN < F

the request is served from treeI + 1. Otherwise, it is
served from treeI . A “good” hashing function will map
client IDs to the target range in a uniformly distributed
fashion. The policy ensures that for a givenm the qual-
ity level seen by each client is consistent and depends on
the client’s identity. Figure 2 shows how a given value
of m determines both the trees from which requests are
served and the fraction of requests served from each tree.

Tree #2

Minimum Content Full  Content

0 1 2 M

Rejection
Level

m
Serve from Serve from

Tree #1

Figure 2. The Degradation range
Server utilization will increase, possibly nonlinearly,

whenm is increased, and vice versa. At the upper ex-
treme,m = M , all requests are given highest quality
service. At the lower extreme,m = 0, all requests are
rejected. The actuator changes the amount of load on a
server with discrete service levels, depending on its in-
putm.

4.3 The Monitor

The control loop manipulates the actuator inputm based
on feedback (from the monitor) on current server re-
source utilization. Most operating systems provide
means for monitoring utilization, such as percentage
of consumed CPU cycles, disk and network band-
width. Unfortunately, utilization measurements in prac-
tical systems tend to be extremely noisy. One option
would be to use a filter to smooth these measurements.
However, the filter will introduce an additional lag that
may reduce the tightness of utilization control.

In the case where the web server deals mostly with
static files (i.e., if dynamic content is statistically in-
significant or served from a separate server), one can
express server utilizationU as a function of the served
request rateR and delivered byte bandwidthW . Both
of these variables can be measured very accurately in
a computing server. In [2], we showed that bottleneck
resource utilization is given by:

U = aR+ bW (1)

wherea andb are constants which can be computed by
a linear regression. The intuition behind Eq. (1) comes
from the fact that the resource requirementsC

i

of serv-
ing a file are composed from a fixed overhead plus a
variable overhead that depends on the lengthx

i

of the
file. Thus,C

i

= a + bx

i

, wherea andb are constants
that depend only on the type of platform used. Aggre-
gating resource consumption over multiple requests and
averaging over time we arrive at Eq. (1). The expres-
sion gives a noise-free utilization estimate which we use
for feedback in the control loop of Figure 1. If only a
fractionf of requests are admitted, server utilization is
given by:

U = aRf + bW + cR(1� f) (2)

wherec is the cost of rejecting one request. In Eq. (2),
R is the total request rate received by the server (includ-
ing requests that will be rejected),f is the fraction of
admitted requests, andW is the total byte rate sent by
the server. To use Eq. (2), one must compute parameters
a, b, andc, and determine their sensitivity to variations
in the operating conditions of the computing system. In
a preliminary investigation, we computec experimen-
tally by instrumenting the server to reject all requests
and obtaining the reciprocal of the maximum attained
rejection rate. This results inc = 0:55ms. To esti-
matea andb, we fit the web server with a recursive least
squares estimator that measuresR, W , andU and in-
fers the coefficients of Eq. (1). In [3], we present an
evaluation of this estimator;a andb are computed us-
ing data collected in real-time on an Apache web server
subjected to a varying request rate. Figure 3 illustrates
the conversion of the resulting estimates in a represen-
tative experiment. Figure 3-a shows the workload that
we applied to the server for parameter estimation pur-
poses. In particular, it depicts the request rateR on
the server and the resulting bandwidthW delivered as
a function of time during the experiment. Requests for
short web pages where interleaved with those for long
pages to offer load points with different proportion ofR

to W . The horizontal axis depicts the sampling count
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c) Estimated model parameters

Figure 3. Online estimation of Apache
server model, low load

(one sample ofR, W , andU was taken every 3 sec-
onds). Figure 3-b depicts the measured CPU utilization,
U , during this experiment due to the applied workload.
Figure 3-c depicts the output of the least squares esti-
mator. In can be seen that the estimator converges to
the valuesa = 830�s, andb = 33�s=kB. Thus, from
Eq. (2),U = 0:83Rf+0:035W +0:55R(1�f), where
R is in requsts=ms andW is in kB=ms. During nor-
mal operation the monitor will use the above equation to
estimate utilization periodically at some period, T.

4.4 The Controller and System Model

Control theory offers analytic techniques for closing the
feedback loop from monitor to actuator in a way that
achieves performance specifications. As a first step to-
wards system utilization control, we use a digital ap-
proximation of a linear continuous PI controller given
by the equationG(s) = K

p

(1 + K

i

=s). The con-

trolled software system (including the web server, ac-
tuator, and monitor) is modeled by a transfer function
P (s). In the simplest case, we assume thatP (s) is
a static gain,p (i.e., process dynamics are negligible).
The gain is linearized by obtaining the derivative of the
output (utilization) with respect to the input,m. Thus,
p = dU=dm around the operating point (which typi-
cally is U = 0:58). Intuitively, the maximum gain,
p

max

, occurs when the range ofm is minimum for the
same range in outputU , i.e., when the actuator supports
only client rejection, but no intermediate service levels.
In this case,m = f , the fraction of admitted clients,
andp

max

= dU=df . LetU
accept

be the utilization that
would result if all clients were admitted. If presently a
fraction f of the clients is admitted, the actual utiliza-
tion isU = U

accept

f + c(1� f)R. Differentiating with
respect tof , we obtainp

max

= U

accept

� cR. It may be
more convenient to express the gain in terms of actual
current utilization,U . Algebraic manipulation yields:

p

max

= (U � cR)=f (3)

Designing the controller for the maximum process gain
will guarantee stability for all other gain values. While
the server has additional dynamics, they are of the or-
der of milliseconds and thus will be neglected given the
range of human perception. In addition to the gain, dig-
ital sampling introduces an effective dead-time of half
the sampling period,T

d

= T=2. Under the above gen-
eral assumptions, the simplified transfer function of the
computing system,P (s), is given by the Laplace trans-
form:

P (s) = p

max

:e

�sT=2 (4)

The natural frequency of oscillation of this loop,w, is
obtained by settings = jw in the poles of the closed
loop transfer function, wherej is the imaginary unit vec-
tor. This yields:

p

max

e

�jwT=2

K

p

(1 +K

i

=jw) = �1 (5)

For stable control, a gain marginG is specified as a de-
sign parameter. From Eq. (5), the closed loop gain and
phase at the natural frequency of oscillation are:

p

max

je

jwT=2

jK

p

j1 +K

i

=jwj = 1=G (6)

wT=2 + tan

�1

(K

i

=w) = � (7)

Incidentally, if the damped frequency of oscillation is
not far fromw, successive peaks of the closed loop os-
cillations will have a ratio of approximately1=G2. It is
a common practice in industrial PI controller tuning to
set the controller phase to��=6 [51]. In this case:
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tan

�1

(K

i

=w) = �=6; (8)

Eq. (6), Eq. (7), and Eq. (8) are three equations in three
unknowns,K

p

,K
i

, andw, two computed model param-
eters,p

max

andT , and one design parameter, namely
the gain marginG. They can be solved forK

p

andK
i

for a particular gain margin to achieve a specified tran-
sient response. The system is time-varying. Controller
settings depend on process gain which changes with the
incoming request rate, utilization, and fraction of admit-
ted requests, as seen from Eq. (3). For purposes of con-
troller tuning, utilization in Eq. (3) can be substituted by
its set point value.

To evaluate the resulting control loop performance,
we consider controlling the utilization of an Apache web
server on the Linux operating system. The combination
of Apache over Linux is representative of many web
server configurations today. The experimental server
platform was an AMD-based PC connected via a lo-
cal area network to client machines. Several machines
were used to run client software that tests the server with
a synthetic workload. We used a web-load generator,
called httperf [43], on the client machines to bombard
the server with web requests. The server code was mod-
ified to implement the discussed control loop.

Figure 4 depicts the achieved utilization. In this ex-
periment, the request rate on the server was increased
suddenly, attime = 0, from zero to a rate that over-
loads the server. Such a sudden load change approxi-
mates a step function. It is more difficult to control than
small incremental changes, thereby stress-testing the re-
sponsiveness of our control loop. The target utilization,
U

t

, was chosen to be just below0:58 (preventing mi-
nor fluctuations from exceeding the schedulable utiliza-
tion bound). The actuator was using admission control.
Figure 4 compares the open loop server utilization to
the closed loop utilization (with gain margin values of
G = 4 andG = 10). As shown in Figure 4, the con-
troller was successful in reducing server utilization to
remain successfully around the target for the duration of
the experiment. Utilization control was achieved by ad-
mitting the “right” number of clients. One can observe
that the exponential decay in tracking error follows a
damped profile that converges quickly to the set point.
A zero steady state error is achieved.

With server utilization steadily around0:58, we were
able to verify by instrumenting the client software that
individual request deadlines were met. At the expense
of rejecting excess clients, all admitted clients received
their requested pages within their respective timing con-
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Figure 4. Utilization Control Performance

straints.

5 QoS Management

In this section we describe how the general architecture
described in the previous section is extended to support
the following important features:

� Performance isolation and QoS guarantees: A web
server can host multiple independent sites. We
associate avirtual server with each hosted site.
The virtual server guarantees a maximum request
rate and maximum delivered bandwidth for the site
independently of the load on other sites thereby
achieving performance isolation.

� Service differentiation: Clients may have different
priorities. In addition to achieving performance
isolation and QoS guarantees, each virtual server
supports request prioritization. Upon overload,
lower priority requests are degraded first.

� Excess capacity sharing: While each virtual server
adapts content under overload to remain within
its individual capacity allocation, if some virtual
server does not consume all its allotted resources,
the excess capacity is made available to other vir-
tual servers allowing them to exceed their capacity
allocation if so needed to avoid client degradation.

5.1 Performance Isolation

We export the abstraction of virtual servers. A virtual
server is configured for a specified maximum request
rateR

max

and a specified maximum delivered band-
width W

max

. Together, these specifications constitute
a throughputguarantee. Namely, the configuration ex-
presses an agreement whereby the server guarantees the
ability to deliver an aggregate bandwidth of up toW

max

as long as the aggregate request rate does not exceed

8



R

max

. If the request rate condition is violated (i.e., ex-
ceedsR

max

) the bandwidth guarantee is revoked. The
virtual server may adapt delivered content to achieve the
maximum possible bandwidth delivery for the given re-
quest rate without overrunning its capacity allocation.
The following provisions in our architecture cooperate
to export the virtual server abstraction and achieve per-
formance isolation:

� Capacity planning: The maximum maintainable
request rateR

max

i

and the maximum delivered
bandwidth W

max

i

specification of each virtual
serveri are converted into a corresponding target
capacity allocation,U�

i

= aR

max

i

+ bW

max

i

. Set-
ting aside an amountU�

i

of the bottleneck resource
for virtual serveri will allow it to meet its through-
put guarantee. To meet service response time guar-
antees of individual requests, the target utilization
sum
P

i

U

�

i

over all virtual servers residing on the
same machine should be less than0:58 [7]. This is
checked each time the adaptation software parses
its configuration file. If the administrator config-
ures a new virtual server that makes

P

i

U

�

i

> 0:58,
a capacity planning error is returned. Note that if
only throughput guarantees are required, we can al-
low
P

i

U

�

i

to be higher than0:58 (but less than 1).

� Load classification:A load classifier intercepts in-
put requests and classifies them to identify the vir-
tual server responsible for serving each request.
Request classification can be done based on the re-
quested content, addressed site, or other informa-
tion depending on system administrator’s policy.
If each virtual server is associated with a hosted
site, requests are classified based on the site name
embedded in the URL string. Load classification
allows proper load bookkeeping for each virtual
server independently to achieve performance iso-
lation.

� Utilization control: When requests are classified,
the request rateR

i

and delivered bandwidthW
i

can
be computed individually for each virtual server
i, from which a corresponding utilization value,
U

i

= aR

i

+ bW

i

, is obtained. The utilizationU
i

of each virtual server is controlled by a separate in-
stance of the utilization control loop described in
Section 4. Each control loop achieves the degree of
content degradation necessary to keepU

i

of its vir-
tual server at or below its target value,U

�

i

, thereby
achieving the server’s individual performance guar-

antees, while preventing overload. The architecture
is depicted in Figure 5.

Server

Rj, BWj

Web

Tree Tree
Full Content Degraded ContentStorage

Utilization
Controller

Load
Monitor

Content
Adaptor

Classify

Responses

Requests

Modify URI

Figure 5. Architecture for Performance Iso-
lation

5.2 Service Differentiation

In this section we describe how service differentiation
is incorporated into our architecture for adaptive content
delivery. The goal is to support client prioritization such
that lower priority clients are degraded first. Consider
a virtual server that supports client prioritization. Let
there bem priority classes defined within that server,
such that priority 1 is highest, and prioritym is lowest.
Collectively, clients of the virtual server are allocated a
target utilizationU� derived from a maximum rate and
maximum bandwidth specification for that server. This
capacity should be made available to clients in priority
order. We allocate the entire virtual server capacity to
the highest priority class. The unused capacity of each
class is measured and allocated to lower priority classes.
If this capacity is not enough, these clients will be de-
graded or rejected accordingly by the utilization control
loop. The following rule is used to degrade clients:

� For each priority classj, the target utilization is
U

�

j

= U

�

�

P

i<j

U

i

, whereU
i

= aR

i

+ bW

i

is
the current measured utilization of the (higher pri-
ority) classi. A separate control loop is used for
each class to keep its utilization around the target.

� Given the target utilization of each classj, as well
as its measured utilization,U

j

= aR

j

+ bW

j

, the
control technique described in Section 4 is applied
within each control loop to compute the controller
outputm

j

for this class.
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� Service (e.g., content tree) for each class in decided
by the actuator in accordance with the value of its
specificm

j

as described in Section 4.

In the presence of low priority traffic, a higher priority
class should also account for the overhead it may take to
reject lower priority requests under overload. This can
be figured in the computation ofU�

j

as follows:
U

�

j

= U

�

�

P

i<j

U

i

�

P

l>j

U

reject

l

.
whereU

reject

l

= cR

l

is the overhead of rejecting all
current requests of a lower priority classl, the overhead
of rejecting a single request beingc. In out current im-
plementation, we support two priority classes,premium
andbasic. Premium traffic is that governed by a guar-
anteed QoS contract. Basic traffic has no guarantees.
It is served using the leftover utilization from premium
clients. Note that, since basic clients have no guarantees,
the utilization restriction

P

i

U

�

i

< 0:58 applies only to
premium traffic.

5.3 Sharing Excess Capacity

An important advantage of grouping several virtual
servers on the same machine is the ability to better reuse
extra server capacity. Consider two physically separated
servers, each of capacity,C. If load on one exceeds ca-
pacity while the other is underutilized, there is no way
to reroute extra traffic to the idling server (unless a gate-
way is used in front of the server farm to balance load).
Idling resources may be wasted on one server while re-
quests are being rejected on another. A single server
of capacity2C does not suffer this problem. We there-
fore extend the preceding mechanisms to allow virtual
servers to exceed their contracted target utilization,U

�,
as long as there is extra capacity on the machine. Since
the virtual server has no contractual obligation to pro-
vide the extra capacity in the first place, extra request
traffic for any virtual server is uniformly treated on best-
effort basis as non-guaranteed. Non-guaranteed traffic
is allowed to occupy the excess capacity on the machine
using a mechanism similar to that of service differentia-
tion described in the previous section. This mechanism
requires a simple modification to the actuators of pre-
mium traffic. Assume the controller output in the uti-
lization control loop of a premium virtual serveri ism

i

.
Let the controller output of the utilization control loop
of best effort traffic bem

b

. A request for a given pre-
mium virtual serveri will be adapted by the actuator of
premium traffic ifm

i

> m

b

and with the actuator of
best effort traffic otherwise. Thus, the request is handled
according to the higher ofm

i

andm
n

. When the indi-
vidual virtual server is overloaded while the machine as

a whole is not,m
b

> m

i

. Consequently, incoming re-
quests are served with quality determined bym

b

which
is higher than that warranted bym

i

thus utilizing excess
machine capacity. On the other hand, if the machine
is overloaded,m

b

< m

i

. Consequently, the quality of
content delivered by virtual serveri is determined by
m

i

. Thus, the individual virtual server is policed not to
exceed its capacity allocation. The mechanism allows
smooth and informed switching between a mode of op-
eration where an individual virtual serveri is allowed to
exceed its capacity allocation and a mode of operation
where it is policed to capacity. We present an evaluation
of these techniques in Section 7. Implementation details
are discussed next.

6 Implementation

The discussed software was implemented in C for a
UNIX platform. For the purpose of experimentation an
Apache web server was used. In this section we give
more details on software implementation, the testing en-
vironment and evaluation of adaptation software.

6.1 Web Server Model

In order to improve concurrency, web servers adopt ei-
ther a multithreaded or a multi-process model. Multi-
threaded web servers keep common state in the same
address space which makes it easier to monitor it. In
multi-process servers, such as Apache 1.3.0, used in our
experiments, the absence of a common address space
complicates monitoring. Since spawning a process is
a heavy-weight operation, a static pool of processes is
usually created at server startup. Independent processes
listen on a common web server socket. A process that
accepts a connection handles it until it is closed.

The adaptation software is designed as a middleware
layer between the web server and the underlying oper-
ating system. The middleware API may be called di-
rectly from the web server if desired, in which case it
is not transparent. Alternatively, middleware calls may
be made from the socket library used by the server, in
which case server code remains unmodified. We begin
by describing the API of our adaptation middleware.

6.2 Adaptation Software API

Adaptation mechanisms described in this paper require
three entry points. Namely, (i) an initialization point,
(ii) a request pre-processing point, and (iii) a request
post-processing point. The first point is called once
upon server startup. The latter two are called upon
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the receipt of each request and after the sending of
each reply respectively. The specific calls are as fol-
lows. adaptsoft init () is called from the main server
process before forking workers. The function will ini-
tialize some global variables and fork off theutiliza-
tion controller which will implement the controllers in
server utilization control loops.adaptsoft adapt (URL,
client IP) is called by workers each time an HTTP re-
quest is received. It classifies the client and implements
the actuators that decide on the service levels of indi-
vidual requests, prepend the right content tree name to
the requested URL, and return the new URL name to
be served, or NULL if the request is to be rejected.
adaptsoft log size (URL byte size) is called by work-
ers when the function responsible for sending the reply
returns. The call updates transmitted bandwidth mea-
surements by the byte size of the served page.

6.3 Implementing Load Monitoring

When a request is first dequeued from the server socket’s
listen queue by some worker process,P

i

, the func-
tion adaptsoftadapt () is called in the context ofP

i

.
This function classifies the request as belonging to vir-
tual serverj. The function then increments a counter,
r

i

[j], that accumulates the number of requests for vir-
tual serverj seen by worker processP

i

. WhenP
i

has
finished processing the request, it sends out the response
and callsadaptsoftlog size()passing it the number of
bytes sent. The functionadaptsoftlog size()updates a
counter,b

i

[j], that accumulates the total bytes sent by
processP

i

on behalf of virtual serverj.
Periodically, a call toadaptsoftadapt ()by process

P

i

also invokes the utilization monitor. The function
computes on behalf of each virtual serverk the request
rateR

i

[k] = r

i

[k]=t that processP
i

has seen for the vir-
tual server within the lastt time units, and the bandwidth
W

i

[k] = b

i

[k]=t that processP
i

has delivered on behalf
of the virtual server within that time interval. Finally it
computes the utilizationU

i

[k] = aR

i

[k] + bW

i

[k] that
processP

i

consumed on behalf of each virtual server
k, and stores the respective values ofU

i

[k] in shared
memory. All countersr

i

[k] andb
i

[k] are then cleared
in preparation for the next period. Note that the utiliza-
tion measurement function is invoked separately in each
worker processP

i

to compute its contribution to the uti-
lization of virtual servers.

6.4 Implementing Utilization Control

The utilization controllers are implemented in a sepa-
rate process forked off byadaptsoftinit() during startup.

The process executes a loop that wakes up periodically
to compute the extent of degradation for each virtual
server then sleeps until the next period. Upon wak-
ing up, the controller computes the utilization,U

k

of
each virtual serverk by aggregating the recorded con-
tributionsU

i

[k] of all worker processes,P
i

, towardsU
k

.
Thus,U

k

=

P

i

U

i

[k]. This utilization is then compared
to the desired utilization for the virtual server and the
degree of degradationm

k

is computed accordingly as
described in Section 4. The value ofm

k

for each virtual
serverk is stored in shared memory.

Each timeadaptsoft adapt (URL, IP) is invoked in
the context of a worker process upon the receipt of some
new request it will classify it and read from shared mem-
ory the current value ofm

k

for the corresponding virtual
server. The function will then determine which content
tree to serve the request from, and prepend the requested
URL name by the name of that tree. (For simplicity, we
omitted in this section the implementation details related
to performance differentiation among clients of the same
virtual server.)

7 Evaluation

In this section we present a performance evaluation of
the developed software. This software was tested on
multiple testbeds including a Linux platform (some test
results of which were presented in Section 4), a Solaris
platform and an HP-UX platform. The same perfor-
mance trends were observed on all three platforms. In
this section we report on our HP-UX tests, which are
more comprehensive. In these tests, an Apache 1.3.0
web server was executed on a single-processor K460
(HP PA-8200 CPU) workstation running HP-UX 10.20,
with 512MB main memory and GSC 100-BaseT net-
work connection. To emulate a large number of web
clients we used httperf [43], a testing tool that can gen-
erate concurrently a large number of HTTP requests for
specified URLs at a specified rate. In order to overload
the web server, httperf was run on 4 workstations collec-
tively emulating the community of clients. The worksta-
tions were connected to the server via a 100Mb switched
Ethernet.

7.1 Baseline Performance

Figure 6 compares the performance of a server that im-
plements our extensions to that of a regular Apache
server. It plots the connection error probability versus
request rate. In this experiment we generated requests
for 64K images at an increasing rate. An adapted 8K
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version of the images was available in the degraded con-
tent tree. As shown in the figure, the traditional server
suffers an increasing error rate when offered load ex-
ceeds capacity at about 160 reqs/s. In contrast, the ac-
tuator in our adaptive server switches to less resource-
intensive content thus exhibiting almost no errors up to
about 3 times the above rate. In general, the extent of
performance improvement will depend on workload and
degree of content degradation available.
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Figure 6. A Baseline Comparison

7.2 Estimating Service Time

In our first experiment, we profiled the Apache server
to determine the time,T

s

(x), it takes to serve a URL of
sizex. Measuring server response time was found not to
be indicative of service timeT

s

(x) because the former
includes queuing time, network latency, etc. We there-
fore measured service time by obtaining the inverse of
the maximum throughput. The idea is that if the server
can serve no more thann requests per second, then, for
all practical purposes, each request takes1=n to serve.
The experiment was repeated for different sizes of the
requested URL. Table 1 shows the maximum through-
put and the corresponding service time for each URL
size.

Table 2 compares the measured service times to ser-
vice times computed using the linear approximation
T

s

(x) = A + Bx wherex is URL size,A = 1:604,
B = 0:063. The constantA can be thought of as the
time it takes to serve a zero-size URL. The constantB

is the additional service time required per KB of URL
size. It can be seen that the quality of this approxima-
tion is very good for smaller URL sizes, but deteriorates
significantly as URL size increases. The reason is that
the service time computed from the linear expression ap-
proximates theend-system’sservice time. When the re-
trieved URLs are small the maximum request rate is de-
termined by the end-system’s bandwidth (including both

URL Size (KB) Max Rate (reqs/s) T
s

ms/req
1 586 1.706
2 578 1.73
4 538 1.858
8 482 2.075
16 383 2.611
32 301 3.322
64 169 5.917
128 85 11.76
256 42 23.81
512 21 47.62

Table 1. Service time vs. request size

CPU and disk access) making the approximation accu-
rate. As URL size increases, the bottleneck shifts from
the end-system to the network. Since the end-system is
no longer the bottleneck, the estimated service time falls
below the observed service time dominated by that of
the bottleneck resource.

In order to model service time more accurately we
use a composition of two linear approximations, one es-
timates service time if the end-system is the bottleneck
and the other estimates service time if network band-
width is the bottleneck. While the former is given as be-
fore byT

s

(x) = 1:604 + 0:063x, Table 2 suggests that
the latter be given byT

s

(x) = 0:093x, which is equiv-
alent to stating that the network saturates at a transfer
rate of approximately86Mb=s. We then take the larger
of the two service times to account for the bottleneck
resource. Thus, the combined expression forT

s

is:
T

s

(x) = maxf1:604+ 0:063x; 0:093xg

The accuracy of the above approximation is shown in
Table 3. We can see that the approximation is accurate
over most of the range of URL sizes. The larger error
at size 32K is due to particulars of the OS implementa-
tion. It appears that HP-UX is optimized for long TCP
transfers, making CPU service time increase sublinearly
with transfer size thus falling below the linear estimate.
Figure 7 compares the approximations shown in Table 2
and Table 3 respectively.

The total service timeT
N

of N requests is
P

1�i�N

T

s

i

(x

i

), wherex
i

is the requested URL size
in the ith request, andT

s

i

(x

i

) is the service time of
that request. Substituting forT

s

i

(x

i

) we get: T
N

=

maxf1:604N + 0:063

P

1�i�N

x

i

; 0:093

P

1�i�N

x

i

g

where
P

1�i�N

x

i

is the total bytes requested. Let
us denote it byS. Thus, T

N

= maxf1:604N +

0:063S; 0:093Sg. If N requests were served by
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URL Size (KB) MeasuredT
s

A+Bx Error
1 1.706 1.677 -1.7%
2 1.73 1.73 0%
4 1.858 1.856 -0.1%
8 2.075 2.108 1.6%
16 2.611 2.612 0%
32 3.322 3.62 8.9%
64 5.917 5.636 -4.7%
128 11.76 9.668 -17.8%
256 23.81 17.73 -25.5%
512 47.62 33.86 -28.9%

Table 2. Simple service time approximation

the server within some time intervalT , system uti-
lization is U = T

N

=T = maxf1:604N=T +

0:063S=T; 0:093S=Tg. Note in this expression that
N=T is the observed request rateR, andS=T is the de-
livered bandwidthBW . Thus:

U = maxf1:604R+ 0:063BW; 0:093BWg (9)

In practice, requests for URLs above 64KB will con-
stitute only a small fraction of all requests on the server.
Thus, it is probably safe to assume that the first term will
usually dominate in the above expression. This reduces
it to the linear approximationU = aR + bBW we de-
scribed earlier, wherea = 1:604 andb = 0:063. Similar
results where obtained via least squares estimation.2

Note that in Equation (9),U is expressed on a scale
from 0 to 1, R is expressed inreq=ms andBW is ex-
pressed inms=kB. It is more natural to expressedR in
reqs=s, andBW in Mb=s. After the appropriate con-
version of units we get the more natural expression:

U = 0:001604R(reqs=s) + 0:007875BW (Mb=s)

(10)
Thea andb parameters are robust to changes in work-
load (e.g., changes in request rate and requested URL
size). However, since they represent, in part, the compu-
tational overhead of TCP/IP connections, these parame-
ters might change depending on the average number of
retransmissions and the number of segments required to
send a given amount of bytes. Thus, for example, thea

2If this approximation is poor for a given workload, Equation(9)
should be used.

URL Size (KB) MeasuredT
s

A+Bx Error
1 1.706 1.667 -2.3%
2 1.730 1.730 0%
4 1.858 1.856 -0.1%
8 2.075 2.108 1.6%
16 2.611 2.612 0%
32 3.322 3.62 8.9%
64 5.917 5.952 0.6%
128 11.76 11.90 1.2%
256 23.81 23.81 0%
512 47.62 47.62 0%

Table 3. Enhanced service time approxima-
tion

andb parameters might be smaller for clients accessing
the server locally via a high bandwidth LAN and larger
for clients accessing the server across a congested or
lossy wide area network. In the preceding experiments
clients were accessing the server via a LAN. We have
not experimented with server access over a wide area
network to estimate parameter robustness under these
conditions. We expect, however, thata andb will re-
main stable enough in the face of gradual client popula-
tion changes for the automated profiling to update them
in a timely and accurate manner.

7.3 Measuring Response Time

In our experiments, we found that Apache server re-
sponse time when measured across a fast network (or
from a client residing on the same machine with the
server) has two important properties. First, it is essen-
tially bi-modal. It remains low until the server becomes
overloaded, at which time it increases dramatically. Sec-
ond, the vertical magnitude of the “knee” in response
time seen at overload is roughly equal to the product
of service time,T

s

, and the maximum length of the lis-
ten queue configured for the server. For example, Fig-
ure 8 plots server response time versus request rate when
the listen queue was configured for maximum length of
48, 192, and 768, respectively. In this experiment all
requests were for URLs of size 64KB. The sudden in-
crease in server response time when the request rate in-
creases beyond 160 reqs/s makes a clear overload indi-
cator. Figure 9 plots response time versus request rate
when the URL size is changed. In this experiment the
listen queue was configured for a maximum length of
48. The requested URL size was 8KB in one experi-
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Figure 7. Comparing the Approximations

ment, and 64KB in another. As before a clear rise in
response time was observed when server capacity was
exceeded. Note that reducing server utilization below
0:58 guarantees that the server will operate below the
overload threshold.

7.4 Adaptation at Overload

Content adaptation reduces the load on the server
thereby avoiding connection failures. As request rate in-
creases on the server a threshold,R

degrade

, is reached
where content has to be degraded in order to prevent
overload. As request rate continues to increase beyond
R

degrade

, more clients must be degraded until, eventu-
ally, a pointR

reject

is reached where no further degrada-
tion is possible. If request rate increases beyondR

reject

some clients must be rejected to prevent indiscriminate
connection failures. An actuator with no support for
degradation exhibits connection failures or client rejec-
tion starting at rateR

degrade

, while an actuator with
adaptive content will continue to serve all requests up
to the higher rateR

reject

. As shown in Fig 6, we
conducted an experiment where the request rate on the
Apache server was increased for URLs of size 64KB.
An adapted 8K version of the same URL was used for
degraded content. In this experiment we found, approxi-
mately, thatR

degrade

= 160 andR
reject

= 460. The ra-
tioR

reject

=R

degrade

is the the maximum sustainable re-
quest rate of an adaptive server as compared to the max-
imum sustainable request rate of a non-adaptive server.
The valueR

reject

=R

degrade

� 1 is the net improvement
in the maximum sustainable request rate due to adapta-
tion. This improvement depends on the requested URL
size. Figure 10 plots the net improvement (in percents)
versus the average requested URL size,x. The degraded
content, in all cases, was 8 times smaller in size than the
full-length content, but the required number of server
accesses was the same. The percentage improvement in
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Figure 8. Server response time for different
listen queue lengths
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Figure 9. Server response time for different
URL sizes

maximum sustainable rate is illustrated both when the
accessed URL is a static file of sizex, and when it is a
CGI script returning a URL of sizex. In the latter case
a static memory buffer of the specified size was returned
by the script with no initialization and no meaningful
content. The CGI scripts were written in C. Results for
interpreted Perl scripts were slightly lower (not shown
in Figure).

It can be seen that the percentage improvement in
sustainable rate decreases as the requested URL size
decreases. This is because the smaller the requested
URL the more dominated is service time by the fixed
size-independent processing overhead, rather than the
size-dependent data transfer cost. The rate improve-
ment achieved by compressing the URLs is relatively in-
significant (less than 100%) for URL sizes below 32K.
Thus, content dominated by smaller objects should be
degraded by reducing the number of embedded objects
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Figure 10. Adaptation payoff: increase in
maximum sustainable rate

per page, rather than reducing the bytes per object. Also
note that CGI scripts are not amenable to degradation
by reducing the size of generated content. The fixed
overhead involved in invoking the script is so great that
the additional data-size dependent costs are insignificant
unless the returned data volume is substantial. We there-
fore suggest that dynamic content be degraded by con-
verting it to static whenever possible.

7.5 Rejection Overhead

As a last resort, our actuator rejects clients to control
utilization when no further degradation is possible. The
server can either silently close a client’s connection, or
return an error message such as “Service not Available”.
In either case some processing occurs on the end-system
before the request is rejected (e.g., protocol processing).
To quantify the amount of time spent in processing an
eventually rejected request, we instrumented the server
to reject all requests by closing the connection as soon as
the request is read off the server socket. The request rate
on the server was then increased, and the maximum re-
sponse rate was recorded. The maximum rate was found
to be around 900 reqs/s, which is the maximum rate at
which rejection can be processed. The time wasted on
each rejected request (the inverse of the maximum re-
jection rate) is thus approximately 1.1 ms/req. This is
to be compared with 1.604, the time it takes to serve a
zero-size URL (denoted by constantA in Section 7.1).
The difference is believed to be due to file system access
associated with serving the URL. It appears that this dif-
ference is not substantial. More than one millisecond of
processing time is wasted on each request even if it is re-
jected. Request classification and rejection should thus
be done at the earliest point possible upon request recep-

tion in order to conserve end-system’s resources. One
suitable place for this mechanism is at the bottom of the
protocol stack in the operating system’s communication
subsystem. The difficulty in performing classification
at the bottom of the protocol stack lies in the necessity
to violate protocol boundaries and peek into headers of
higher-level protocols such as HTTP.

It is interesting to compare the aforementioned rejec-
tion overhead to the overhead wasted on each failed con-
nection in a server that does not support rejection. Let
us denote it byT

f

. To computeT
f

, consider the Fig-
ure 11 which depicts the delivered bandwidth in a regu-
lar (unmodified) Apache server subjected to an increas-
ing request rate. The maximum delivered bandwidth (of
about 84Mb/s) occurs at the overload threshold (at rate
160 reqs/s). Onset of overload indicates that the server is
unable to serve successfully more than 160 reqs/s. Sub-
stituting in Equation (10), the following equation holds:
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Figure 11. Server Underutilization

160a+ 84b = U

max

(11)

whereU
max

is the maximum server utilization at over-
load. As overload continues to increase, the delivered
bandwidth declines to only 36 MB/s at rate of 600 reqs/s.
For the worst-case estimate ofT

f

, assume that the de-
cline in bandwidth is attributed solely to the overhead of
handling failed requests. Since the server cannot serve
more than 160 requests successfully out of the 600 it re-
ceives every second, the number of failed requests is at
least 440 reqs/s. The following equation holds:

160a+ 36b+ 440T

f

= U

max

(12)

By subtracting Equation (11) from Equation (12), solv-
ing for T

f

, then substituting for the value ofb (as de-
termined in Section 7.1,b = 0:007875s=Mb), we get
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T

f

= 0:86ms in the worst case. Note that this number
is less than the1:1 ms request rejection overhead.

The implications of the above are interesting. User-
level admission control mechanisms trivially require that
all requests be seen by the actuator (so that an admission
control decision can be made for each). This implies that
each request, whether it ends up being rejected or not,
will have to consume platform resources up to the point
where it leaves the kernel and is inspected by the server
or middleware. As shown above, each request rejected
by the server consumes1:1ms, on average.

A best-effort server, on the other hand, will serve re-
quests in a FIFO order. As a result, under overload, its
socket’s listen queue will overflow in the kernel. Many
client connections will time out and fail early in the
OS before being seen by the server. As shown, a re-
quest failed in the kernel consumes only0:86ms. As a
result, the resources wasted per failed request are less
(about22% less on our platform). The remaining capac-
ity available to requests that do get through is therefore
higher in a best effort server. Thus, while a user-level
admission control mechanism will improve the average
response time of requests that are not rejected, it will
necessarily increase the average rejection rate over the
failure rate of a server with no such mechanism. This
fact motivates using user-level adaptation instead of re-
jection as a way to control server overload whenever
possible. Content adaptation is especially suited for al-
leviating light to moderate overload conditions when the
server has enough capacity to serve a fraction of, but not
all, requests. In cases of severe overload, the server may
suffer the receive livelock problem which may preclude
serving any requests at all. Methods for resolving the
receive livelock problem such as kernel level classifica-
tion and admission control are beyond the scope of this
paper.

7.6 Performance Isolation

We described a performance isolation mechanism that
allows creating multiple adaptive virtual servers with in-
dividual rate and bandwidth guarantees. The mechanism
provides protection among individual virtual servers, as
well as protection between the virtual servers and the
non-guaranteed best-effort traffic. Figure 12 demon-
strates these features. In this experiment all requests
were for 32KB URLs.3 A background best-effort load of
300 reqs/s was applied to overload the machine (see Ta-
ble 1 for maximum sustainable rate of 32KB requests).

3In a real-life situation the workload is likely to be less severe.

In addition, two adaptive virtual servers,V
1

andV
2

, were
configured. ServerV

1

was configured for a maximum
guaranteed bandwidth of 13 Mb/s, and a maximum guar-
anteed rate of 50 reqs/s. During the experiment, a con-
stant load of 50 reqs/s was applied to that server requir-
ing a bandwidth of 12.8 Mb/s, i.e., just within the al-
located server capacity (note that bandwidth in Mb/s is
32KB/req times 8 b/B times 50 reqs/s). ServerV

2

was
configured for a maximum guaranteed bandwidth of 27
Mb/s, and a maximum guaranteed rate of 100 reqs/s.
The load on serverV

2

was increased gradually from
0 to 100 reqs/sec, giving rise to a bandwidth require-
ment of up to 25.6 Mb/s, which is also within server
capacity. It is important to note that while each virtual
server in isolation was loaded within its individual ca-
pacity limit, the aggregate load on the machine (includ-
ing non-guaranteed traffic) was well above the overload
threshold because of best-effort load. Figure 12 depicts
the offered load on each virtual server (in terms of band-
width in Mb/s assuming no content degradation), as well
as the actual bandwidth delivered by each server. Both
are plotted versus the aggregate request rate. For clar-
ity, the best-effort load is not shown. It can be seen that
the actual bandwidth delivered follows closely the of-
fered load on each virtual server. Thus, despite server
overload, virtual serversV

1

andV
2

achieve their per-
formance guarantees and suffer no content degradation.
Furthermore, variations in load on virtual serverV

1

do
not affect virtual serverV

2

. Performance isolation is thus
achieved in the sense of maintaining the QoS guarantees
independently for each virtual server regardless of other
load.

For comparison, we repeated the experiment using a
regular Apache server that does not use our adaptation
extensions. As before, a best-effort load of 300 reqs/s
was applied in addition to a 50 reqs/s load on serverV

1

and an increasing 0 to 100 reqs/s load on serverV

2

. Fig-
ure 13 depicts the results of this experiment. It can be
seen that the delivered bandwidth of both virtual servers
falls short of the offered load. The difference reflects
the fraction of connections that fail and don’t get served
due to overload. Note also how the increase in delivered
bandwidth of serverV

1

results in a decrease in delivered
bandwidth of serverV

2

. No performance isolation is ob-
served. The comparison of Figure 12 and Figure 13 il-
lustrates the advantage of the developed adaptation soft-
ware.

16



 Virtual Server 1: Offered Load
�  Virtual Server 1: Delivered BW 
�  Virtual Server 2: Offered Load
�  Virtual Server 2: Delivered BW 

|
350

|
360

|
370

|
380

|
390

|
400

|
410

|
420

|
430

|
440

|
450

|0

|10

|20

|30

|40

|50 |350 |360 |370 |380 |390 |400 |410 |420 |430 |440 |450

| 0

| 10

| 20

| 30

| 40

| 50

 

 Total Request Rate 

 D
el

iv
er

ed
 B

W
 (

M
b/

s)

 Total Request Rate 

 D
el

iv
er

ed
 B

W
 (

M
b/

s)

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

�
�

�
� �

�

� � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � �

Figure 12. Performance Isolation in Adap-
tive Server
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Figure 13. Regular Apache Performance

7.7 Service Differentiation

Adaptation software allows defining multiple priority
classes of requests. In this section we experiment with
defining two priority classes, namely a basic classB and
a premium classP . Requests of classP are treated as
higher priority than those ofB. In the experiment, we
offered a constant load of 100 premium class requests
per second. We then gradually increased the rate of ba-
sic class requests. Figure 14 plots the delivered premium
and basic bandwidth versus request rate. It also shows
the offered load of both premium and basic clients. Note
that when the server becomes overloaded, basic clients
are degraded before premium clients thus achieving ser-
vice differentiation.

7.8 Policing vs. Excess-Capacity Sharing

As we argued earlier, an important advantage of colocat-
ing several adaptive virtual servers on the same machine
is the ability to utilize unused capacity of one virtual
server by another that is overloaded. The overloaded
server should be allowed to exceed its individual capac-
ity allocation when extra capacity is available, as long
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Figure 14. Service Differentiation

as it does not affect other virtual servers. When the ma-
chine is overloaded, however, each virtual server should
be policed to its individual capacity allocation in order
to achieve performance isolation and overload control.
These two features are provided by the excess capac-
ity sharing mechanism. To evaluate the efficacy of this
mechanism we conducted two experiments. In the ex-
periments a virtual serverV

1

is created whose offered
load at run-time exceeds its capacity allocation. Low
background load is used in the first experiment. As a
result, virtual serverV

1

overruns its capacity allocation
utilizing the excess capacity on the machine. In the sec-
ond experiment, high background load is applied. As a
result, the virtual server is policed to its individual ca-
pacity limit. Moreover, in both experiments a second
virtual server,V

2

, is also used. ServerV
2

, which op-
erates within its capacity limit at all times, is shown to
deliver its offered load without degradation despite the
(controlled) capacity overrun of serverV

1

, and the back-
ground load. Excess-capacity sharing is thus shown not
to interfere with performance isolation.

Figure 15 depicts the results of the first experiment. It
shows the contracted as well as the actual bandwidth of
serversV

1

andV
2

. ServerV
1

is configured for maximum
bandwidth of 13Mb/s, and maximum request rate of 100
reqs/s. ServerV

2

is configured for maximum bandwidth
of 27Mb/s and maximum request rate of 100 reqs/s. At
run-time, the request rate ofV

2

is held constant at 100,
offering a total bandwidth requirement of 25.6Mb/s, i.e.,
just within its capacity limit. The request rate on server
V

1

is increased gradually from 0 to 250 reqs/s. The ag-
gregate rate of both servers is shown on the horizontal
axis. It can be seen that serverV

2

overruns its capacity
allocation delivering a peak of about 35Mb/s at a rate of
140 reqs/s (at which the aggregate rate is 240 reqs/s in
Figure 15). This is to be compared with its guaranteed
maximum bandwidth of 27Mb/s and maximum request
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rate of 100 reqs/s. ServerV
1

remains unaffected, since
the excess capacity sharing mechanism ensures perfor-
mance isolation.

The experiment is repeated with a background load
of 100 reqs/s. It can be seen thatV

1

is made to deliver
exactly its maximum guaranteed bandwidth (27Mb/s)
when its rate reaches the maximum guaranteed rate
(100reqs/s). This is equivalent to traffic policing, except
that in adaptive virtual servers it is achieved via content
degradation. The bandwidth consumed byV

1

drops be-
low its guarantees value when the maximum rate guar-
antee is violated by the community of clients. This is to
ensure that the total system capacity utilization of that
virtual server remains constant. Similarly, the server is
allowed to deliver more than its maximum guaranteed
bandwidth when its rate is below the maximum guaran-
teed rate. This is an optimization that makes use of the
capacity allocated to the server to deliver more band-
width when the request rate hasn’t reached its maximum
value. Again, serverV

2

is not affected due to correct
performance isolation.

8 Conclusions and Future Work

In this paper, we demonstrated the application of con-
trol theory to Internet server performance control. We
presented a QoS-management architecture that relies on
adapting the delivered content to control server utiliza-
tion. Unlike contemporary non-adaptive servers, and
unlike servers that implement “binary” — accept or re-
ject — admission control, content adaptation enables a
server to provide a smooth range of client degradation,
thereby handling overload gracefully. We proposed in
Section 4 the design and implementation of a utiliza-
tion control loop that regulates the extent of degrada-
tion (in the service level and number of clients) so as
to satisfy a pre-specified utilization bound in the pres-
ence of variable server load while virtually eliminating
connection errors. In Section 4.4 we have shown how
utilization control may be used to satisfy individual time
constraints. We demonstrated several extensions to this
mechanism that provide performance isolation, service
differentiation, excess-capacity sharing, and QoS guar-
antees. The mechanisms described in this paper are
largely independent of workload assumptions, and can
be easily applied to different platforms by appropriately
tuning a small set of parameters using well-founded ana-
lytic techniques. The architecture can be implemented in
a middleware layer transparently to existing server and
browser code thereby facilitating its deployment.

We have shown that Internet servers can be modeled
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Figure 15. Excess Capacity Sharing (Low
Background Load)
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Figure 16. Excess Capacity Sharing (High
Background Load)

by a time-varying linear transfer function for purposes
of performance control, and demonstrated how feedback
control can be applied to ensure meeting service tim-
ing constraints. All measurements in this paper were
made on an experimental platform running the popular
Apache web server which we have modified to incorpo-
rate the proposed control loop. The paper also provides a
proof of concept of the utility of control theory to man-
aging the resource allocation of an end-system for im-
proving quality of service when the bottleneck resource
is under server control.

There are several remaining issues and challenges
that warrant further research. Handling and adapting dy-
namic content is an interesting issue. The inherent un-
predictability of CGI script execution times offers new
challenges to load characterization. The experiments re-
ported in this paper used the HTTP 1.0 protocol. It is
interesting to see whether the same results will hold for
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HTTP 1.1. While some aspects of client classification
may be simplified, persistent TCP connections may im-
pose less predictable server load characteristics that are
more sensitive to client-side bandwidth. The approach
of storing multiple copies of content is affordable for
the typical size of a web site. In video servers, how-
ever, an important issue to investigate is scalable video
encoding schemes that avoid storing multiple copies of
the content. We also need appropriate content authoring
and management tools to preprocess web content in a
way that preserves enough information, yet consumes a
minimal amount of resources.

From the perspective of control theory there are sev-
eral additional issues that we would like to address. For
example, how to determine the set point and parameters
of a controller in order to guarantee that utilization is
maintained below the schedulable bound a certain per-
cent of the time (given statistical input load character-
istics such as standard deviation, or maximum burst),
how to model non-linearities peculiar to computing sys-
tems? How can these nonlinearities be accounted for
in controller tuning? How efficient are adaptive control
and robust control techniques in dealing with parameter
variations and load uncertainties (e.g., when the statis-
tical model of the load is unknown or non-stationary)?
Can automatic identification and estimation techniques
be applied to model servers, software sensors, and ac-
tuators? How to implement control-theoretical resource
management in the operating system? Examples, theo-
retical foundations, experimental evidence, and practi-
cal experience are needed in applying feedback perfor-
mance control to different computing systems. This is
an important focus of our current research.
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