
RESEARCH Open Access

Detecting unknown malicious code by applying
classification techniques on OpCode patterns
Asaf Shabtai1,2*, Robert Moskovitch1,2, Clint Feher1,2, Shlomi Dolev1,3 and Yuval Elovici1,2

* Correspondence: shabtaia@bgu.
ac.il
1Deutsche Telekom Laboratories,
Ben-Gurion University, Be’er Sheva,
84105, Israel
Full list of author information is
available at the end of the article

Abstract

In previous studies classification algorithms were employed successfully for the
detection of unknown malicious code. Most of these studies extracted features based
on byte n-gram patterns in order to represent the inspected files. In this study we
represent the inspected files using OpCode n-gram patterns which are extracted from
the files after disassembly. The OpCode n-gram patterns are used as features for the
classification process. The classification process main goal is to detect unknown
malware within a set of suspected files which will later be included in antivirus
software as signatures. A rigorous evaluation was performed using a test collection
comprising of more than 30,000 files, in which various settings of OpCode n-gram
patterns of various size representations and eight types of classifiers were evaluated.
A typical problem of this domain is the imbalance problem in which the distribution
of the classes in real life varies. We investigated the imbalance problem, referring to
several real-life scenarios in which malicious files are expected to be about 10% of
the total inspected files. Lastly, we present a chronological evaluation in which the
frequent need for updating the training set was evaluated. Evaluation results indicate
that the evaluated methodology achieves a level of accuracy higher than 96% (with
TPR above 0.95 and FPR approximately 0.1), which slightly improves the results in
previous studies that use byte n-gram representation. The chronological evaluation
showed a clear trend in which the performance improves as the training set is more
updated.

Keywords: Malicious Code Detection, OpCode, Data Mining, Classification

1. Introduction
Modern computer and communication infrastructures are highly susceptible to various

types of attacks. A common method of launching these attacks is by means of malicious

software (malware) such as worms, viruses, and Trojan horses, which, when spread, can

cause severe damage to private users, commercial companies and governments. The

recent growth in high-speed Internet connections enable malware to propagate and

infect hosts very quickly, therefore it is essential to detect and eliminate new (unknown)

malware in a prompt manner [1].

Anti-virus vendors are facing huge quantities (thousands) of suspicious files every

day [2]. These files are collected from various sources including dedicated honeypots,

third party providers and files reported by customers either automatically or explicitly.

The large amount of files makes efficient and effective inspection of files particularly

challenging. Our main goal in this study is to be able to filter out unknown malicious

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

© 2012 Shabtai et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:shabtaia@bgu.ac.il
mailto:shabtaia@bgu.ac.il
http://creativecommons.org/licenses/by/2.0


files from the files arriving to an anti-virus vendor every day. For that, we investigate

the approach of representing malicious files by OpCode expressions as features in the

classification task.

Several analysis techniques for detecting malware, which commonly distinguished

between dynamic and static, have been proposed. In dynamic analysis (also known as

behavioral analysis) the detection of malware consists of information that is collected

from the operating system at runtime (i.e., during the execution of the program) such

as system calls, network access and files and memory modifications [3-7]. This

approach has several disadvantages. First, it is difficult to simulate the appropriate con-

ditions in which the malicious functions of the program, such as the vulnerable appli-

cation that the malware exploits, will be activated. Secondly, it is not clear what is the

required period of time needed to observe the appearance of the malicious activity for

each malware.

In static analysis, information about the program or its expected behavior consists of

explicit and implicit observations in its binary/source code. The main advantage of sta-

tic analysis is that it is able to detect a file without actually executing it and thereby

providing rapid classification [8].

Static analysis solutions are primarily implemented using the signature-based method

which relies on the identification of unique strings in the binary code [2]. While being

very precise, signature-based methods are useless against unknown malicious code [9].

Thus, generalization of the detection methods is crucial in order to be able to detect

unknown malware before its execution. Recently, classification algorithms were

employed to automate and extend the idea of heuristic-based methods. In these meth-

ods the binary code of a file is represented, for example, using byte sequence (i.e., byte

n-grams), and classifiers are used to learn patterns in the code in order to classify new

(unknown) files as malicious or benign [1,10]. Recent studies, which we survey in the

next section, have shown that by using byte n-grams to represent the binary file fea-

tures, classifiers with very accurate classification results can be trained, yet there still

remains room for improvement.

In this paper, which is an extended version of [11], we use a methodology for mal-

ware categorization by implementing concepts from the text categorization domain, as

was presented by part of the authors in [12]. While most of the previous studies

extracted features which are based on byte n-grams [12,13], in this study, we use

OpCode n-gram patterns, generated by disassembling the inspected executable files, to

represent the files. Unlike byte sequence, OpCode expressions, extracted from the

executable file, are expected to provide a more meaningful representation of the code.

In the analogy to text categorization, using letters or sequences of letters as features is

analogous to using byte sequences, while using words or sequences of words is analo-

gous to the OpCode sequences.

Another important aspect when using binary classifiers for the detection of unknown

malicious code is the imbalance problem. The imbalance problem refers to scenarios

in which the proportions of the classes are not equal. Previous studies presented eva-

luations based on test collections having similar proportions of malicious and benign

files in the test collections. These proportions do not reflect real-life situations in

which malicious code is significantly lower than 50% and therefore might report opti-

mistic results. As a case in point, a recent McAfee survey [14] indicates that about 4%

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 2 of 22



of search results from the major search engines on the web contain malicious code.

Additionally, Shin et al. [15] found that above 15% of the files in the KaZaA network

contained malicious code.

We rigorously evaluate the framework that is suggested in this paper, using a test

collection containing more than 30,000 files, in order to determine the optimal settings

of the framework. Additionally, we investigate the imbalance problem and evaluate

through various malicious-benign proportions, the best settings for a training set given

a test set.

Another aspect in the maintenance of such a framework is the importance of updat-

ing the training set with new known malicious files. This is intuitively important,

because the purpose of malicious files changes over time and accordingly the patterns

within the code. Moreover, these malicious files are written in varying frameworks

which result in differing patterns. However, it is not clear to what extent it is essential

to retrain the classifier with the new files. For this purpose we designed a chronological

experiment, based on a dataset including files from the years 2000 to 2007, trained

each time on files untill year k and tested on the following years.

The rest of the paper is organized as follows. We begin in section 2 with a survey of

previous relevant studies. Section 3 describes the methods we used, including concepts

from text categorization, data preparation, and classifiers. In sections 4 and 5 we pre-

sent the evaluation and the evaluation results. Lastly, section 6 discusses the results

and future work.

2. Background
2.1 Detecting Unknown Malware using Byte N-Grams Patterns

Over the past decade, several studies have focused on the detection of unknown mal-

ware based on its binary code content. The authors of [16] were the first to introduce

the idea of applying Machine Learning (ML) methods for the detection of different

malwares based on their respective binary codes. Three different feature extraction

(FE) approaches were employed: features extracted from the Portable Executable (PE)

section, meaningful plain-text strings that are encoded in programs files, and byte

sequence features.

Abou-Assaleh et al. [13] introduced a framework that uses the Common N-Gram

(CNG) method and the k-nearest neighbor (KNN) classifier for the detection of

malware. For each malicious and benign class a representative profile was constructed.

A new executable file was compared with the profiles of malicious and benign classes,

and was assigned to the most similar.

Kotler and Maloof [17] also used byte n-grams representation, however the vector of

n-gram features was binary, presenting the presence or absence of a feature in the file

and ignoring the frequency of feature appearances (in the file). In an extension of their

previous study, Kolter and Maloof [18] classified malware into families (multiple

classes) based on the functions in their respective payloads. In attempts to estimate

their ability to detect malicious codes based on their issue dates, these techniques were

trained on files issued before July 2003, and then tested on files issued from that point

in time through August 2004.

Cai et al. [19] conducted several experiments in which they evaluated the combina-

tions of seven feature selection methods, three classifiers, and byte n-gram size.

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 3 of 22



Recently, Moskovitch et al. [12] published the results of a study which used a test

collection containing more than 30,000 files, in which the files were represented by

byte n-grams. Additionally, an investigation of the imbalance problem, on which we

elaborate later, was demonstrated. In this paper we present the results of an alternative

representation of the executable files using OpCode n-gram patterns instead of using

byte n-gram patterns.

2.2 Representing Executables using OpCodes

An OpCode (short for operational code) is the portion of a machine language instruc-

tion that specifies the operation to be performed. A complete machine language

instruction contains an OpCode and, optionally, the specification of one or more oper-

ands. The operations of an OpCode may include arithmetic, data manipulation, logical

operations, and program control.

The OpCodes, being the building blocks of machine language, have been used for stati-

cally analyzing application behavior and detecting malware. Karim et al. [20] addressed

the tracking of malware evolution based on OpCode sequences and permutations. Data

mining methods (Logistic Regression, Artificial Neural Networks and Decision Trees) are

used in [21] to automatically identify critical instruction sequences that can distinguish

between malicious and benign programs. The evaluation showed a high accuracy level of

98.4%. Bilar [22] examines the difference of statistical OpCode frequency distribution in

malicious and non-malicious code. A total of 67 malware executables were compared with

the aggregate statistics of 20 non-malicious samples. The results show that malicious soft-

ware OpCode distributions differ significantly from non-malicious software and suggests

that the method can be used to detect malicious code. The approach in [22] presents a

single case in our methodology; in this paper we test several OpCode n-gram sizes while

Bilar [22] used only 1-gram. Based on our experiments, using OpCode sequences

improves the detection performance significantly. Santos et al. [23] used the OpCode

n-grams (of size n=1,2) representation to ascribe malware instances to their families by

measuring the similarity between files. This is, however, different from our goal in which

we attempt to classify unknown suspicious files as malicious or benign in order to detect

new malware.

Our approach also stems from the idea that there are families of malware such that two

members of the same family share a common “engine.” Moreover, there are malware gen-

eration utilities which use a common engine to create new malware instances; this engine

may even be used to polymorph the threat as it propagates. When searching for such

common engines among known malware, one must be aware that malware designers will

attempt to hide such engines using a broad range of techniques. For example, these com-

mon engines may be located in varying locations inside the executables, and thus may be

mapped to different addresses in memory or even perturbed slightly. To overcome such

practices, we suggest disregarding any parameters of the OpCodes. We believe that disre-

garding the parameters would provide a more general representation of the files, which is

expected to be more effective for purposes of classification into benign and malicious files.

2.3 The Imbalance Problem

The class imbalance problem was first introduced to the ML research community a little

over a decade ago [24]. Typically, the class imbalance problem occurs when there are

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 4 of 22



significantly more instances from one class relative to other classes. In such cases the

classifier tends to misclassify the instances of the less represented classes. More and

more researchers realized that the performance of their classifiers may be sub-optimal

due to the fact that the datasets are not balanced. This problem is even more relevant in

fields where the natural datasets are highly imbalanced in the first place [25], as in the

problem we describe.

Over the years, the ML community has addressed the issue of class imbalance

following two general strategies. The first strategy, which is classifier-independent, con-

sists of balancing the original data-set by using different kinds of undersampling or

oversampling approaches. In particular, researchers have experimented with random

(e.g., [26]), directed (e.g., [24,26]), and artificial sampling [27]. The second strategy

involves modifying the classifiers in order to adapt them to the data-sets. In particular,

these approaches search for methods for incorporating misclassification costs into the

classification process and assigning higher misclassification costs to the minority class

so as to compensate for its small size. This was done for a variety of classifiers such as

Artificial Neural Networks [28], Random Forests [29], and SVM [30].

In our case, the data is imbalanced in real-life conditions and reflected by the test-set

in our experiments, therefore, we would like to understand the optimal construction of

a training-set for achieving the best performance in real-life conditions. Similarly to

the work of [31], in our research we also consider the question of what is the appropri-

ate proportion of examples of each class (benign and malicious) for learning if only a

limited number of training instances can be used altogether. Their work considers the

case of Decision Trees induction on 26 different data-sets. We, on the other hand,

focus on the single problem of interest here–malware detection–but consider eight

different classifiers.

Another relevant issue to the research which emanates from the class imbalance pro-

blem concerns the choice of an evaluation metric. When faced with unequal class

sizes, classification accuracy is often an inappropriate measure of performance. Indeed,

in such circumstances, a trivial classifier that predicts every case as the majority class

could achieve very high accuracy levels in extremely skewed domains. Several propo-

sals have been made to address this issue including the decomposition of accuracy into

its basic components [25], the use of ROC analysis [32] or the G-Mean [33]. In this

paper we chose to decompose accuracy into basic components in addition to the use

of the G-mean. This approach is conceptually simpler than using ROC analysis and

sheds sufficient light on our results. The details of the evaluation measures we used

will be given in Section 5.1.

3. Methods
The goal of our work was to explore methods of using data mining techniques in order

to create accurate detectors for new (unseen) binaries. The overall process of classify-

ing unknown files as either benign or malicious using ML methods is divided into two

subsequent phases: training and testing. In the training phase, a training-set of benign

and malicious files is provided to the system. Each file is then parsed and a vector

representing each file is extracted based on a pre-determined vocabulary (which can be

an outcome of setup feature selection process). The representative vectors of the files

in the training set and their real (known) classification are the input for a learning

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 5 of 22



algorithm (such as a Decision Tree or Artificial Neural Network algorithms). By

processing these vectors, the learning algorithm trains a classifier. Next, during the

testing phase, a test-set collection of new benign and malicious files which did not

appear in the training-set are classified by the classifier that was generated in the train-

ing phase. Each file in the test-set is first parsed and the representative vector is

extracted using the same vocabulary as in the training phase. Based on this vector, the

classifier will classify the file as either benign or malicious. In the testing phase the per-

formance of the generated classifier is evaluated by extracting standard accuracy mea-

sures for classifiers. Thus, it is necessary to know the real class of the files in the test-

set in order to compare their real class with the class that was derived by the classifier.

3.2 Dataset Creation

We created a dataset of malicious and benign executables for the Windows operating

system, the system most commonly used and attacked today. This malicious and

benign file collection was previously used in [12]. We acquired 7,688 malicious files

from the VX Heaven website [34]. To identify the files, we used the Kaspersky anti-

virus. Benign files, including executable and DLL (Dynamic Linked Library) files, were

gathered from machines running the Windows XP operating system on our campus.

The benign set contained 22,735 files. The Kaspersky anti-virus program was used to

verify that these files did not contain any malicious code.

Some of the files in our collection were either compressed or packed. These files

could not be disassembled by disassembler software and therefore, after converting the

files into OpCode representation we ended up with 5,677 malicious and 20,416 benign

files (total of 26,093 files).

Code obfuscation is a prominent technique used by hackers in order to avoid detec-

tion by security mechanisms (e.g., anti-viruses and intrusion detection systems) [35].

These techniques are also applied on benign software for copyrights protection pur-

poses. Packing and compressing files can be achieved by using off-the-shelf packers

such as Armadillo, UPX and Themida. In such cases, static analysis methods might fail

to correctly classify a packed malware [36]. Several solutions to the challenge of packed

code were suggested (e.g., Ether [36], McBoost [37], PolyUnpack [38]). These methods

were proposed for automatic unpacking of packed files by applying either static or

dynamic analysis. Evaluation performed in these studies showed that unpacking files

before being classified increase the classification accuracy [37,38]. Our proposed

method can use such an approach in order to overcome packed files. In addition, we

would like to point out that classifying benign files is also useful and can reduce the

load of inspecting suspicious (or unknown) files. Also, the large number of malware

files in our dataset that could be dissembled indicates that in order to appear benign

and to pass security mechanisms (that are configured to block content that is

encrypted\obfuscated and cannot be inspected), these techniques are not always used

by hackers.

3.3 Data Preparation and Feature Selection

To classify the files we had to convert them into a vectorial representation. We had

two representations, the known one, often called byte n-grams, which consists of byte

sequences of characters extracted from the binary code [12], and the second OpCode

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 6 of 22



n-grams represented by sequences of OpCodes. Using a disassembler software, we

extracted a sequence of OpCodes from each file representing execution flow of

machine operations. Subsequently, several OpCode n-gram lengths were considered

where each n-gram was composed of n sequential OpCodes. This process is presented

in Figure 1.

The process of streamlining an executable starts with disassembling it. The disassem-

bly process consists of translating the machine code instructions stored in the executa-

ble to a more human-readable language, namely, Assembly language. The next and

final step in streamlining the executable is achieved by extracting the sequence of

OpCodes generated during the disassembly process. The extracting of sequences is in

the same logical order in which the OpCodes appear in the executable, disregarding

the extra information available (e.g., memory location, registers, etc.)

Although such a process seems trivial, malware writers often try to prevent the suc-

cessful application of the disassembly process to prevent experts from analyzing their

malwares. In this study we used IDA-Pro, the most advanced commercial disassembly

program available today. IDA-Pro implements sophisticated techniques which enabled

us to disassemble most of our malware collection successfully (approximately 74% of

the malware files).

The size of vocabularies (number of distinct n-grams) extracted for the OpCode

n-grams representation were of 515, 39,011, 443,730, 1,769,641, 5,033,722 and

11,948,491, for 1-gram, 2-gram, 3-gram, 4-gram, 5-gram and 6-gram, respectively.

Later, the normalized term frequency (TF) and TF inverse document frequency (TFIDF)

representations were calculated for each OpCode n-grams patterns in each file. The

TF and TFIDF are well known measures in the text categorization field [39]. In our

domain, each n-gram is analogous to a word (or a term) in a text document. The nor-

malized TF is calculated by dividing the frequency of the term in the document by the

Figure 1 Converting byte representation into OpCode n-grams patterns.

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 7 of 22



frequency of the most frequent term in a document. The TFIDF combines the

frequency of a term in the document (TF) and its frequency in the whole document

collection, denoted by document frequency (DF). The term’s (normalized) TF value is

multiplied by the IDF = log (N/DF), where N is the number of documents in the entire

file collection and DF is the number of files in which it appears.

The TF representation is actually the representation which was used in previous

papers in the domain of malicious code classification [13,16,17], where counting words

was replaced by byte n-grams extracted from the executable files. However, in the tex-

tual domain, it was shown that the TFIDF is a richer and more successful representa-

tion for the retrieval and categorization purposes [39] and thus we expected that using

the TFIDF weighting would lead to better performance than the TF.

In ML applications, the large number of features (many of which do not contribute

to the accuracy and may even decrease it) in many domains presents a significant pro-

blem. In our study, the reduction of the number of features is crucial and must be per-

formed while maintaining a high level of accuracy. This is due to the fact that the

vocabulary size may exceed millions of features; far more than can be processed by

any feature selection tool within a reasonable period of time. Additionally, it is impor-

tant to identify the terms that appear in most of the files in order to avoid vectors that

contain many zeros. Thus, we first extracted the 1,000 features (i.e., OpCode n-grams

patterns) with the highest Document Frequency values and on which three feature

selection methods were later applied.

The three feature selection methods operate according to the filters approach [40]. In

a filters approach method, a measure is used to quantify the correlation of each feature

to the class (malicious or benign) and estimate its expected contribution to the classifi-

cation task. The feature measure that is used by the feature selection method is inde-

pendent of any classification algorithm, thus allowing us to compare the performances

of the different classification algorithms. We used the Document Frequency measure

DF (the amount of files in which the term appeared), Gain Ratio (GR) [40] and Fisher

Score (FS) [41]. Based on each feature selection measure we selected the top 50, 100,

200 and 300 features.

Using the selected features, we evaluated eight commonly used classification algo-

rithms: Support Vector Machine (SVM) [42], Logistic Regression (LR) [43], Random

Forest (RF) [44], Artificial Neural Networks (ANN) [45], Decision Trees (DT) [46],

Naïve Bayes (NB) [47], and their boosted versions, BDT and BNB [48]. We used the

WEKA implementation of these methods [49].

4 Evaluation
4.1 Research Questions

We set out to evaluate the use of OpCodes patterns for the purpose of unknown mali-

cious code detection through three main experiments. When designing these experi-

ments our objective was to investigate the usage of OpCode for unknown malcode

detection while considering various strategies and settings of the framework. We sum-

marize the research goals in six questions:

1. Which term-representation is better: TF or TFIDF?

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 8 of 22



2. Which OpCode n-gram size is the best: 1, 2, 3, 4, 5 or 6? or a combination of

OpCode n-gram sizes?

3. Which top-selection (number of features) is the best: 50, 100, 200 or 300 and

which features selection method: DF, FS and GR is superior?

4. Which classifier is the best: SVM, LR, RF, ANN, DT, BDT, NB or BNB?

5. What is the best Malicious File Percentage (MFP) in the training set for varying

MFP in the test set?

6. How often should a classifier be trained with recent malicious files in order to

improve the detection accuracy of new malicious files?

To answer the above questions we first performed a wide set of experiments to iden-

tify the best term representation, n-gram size, top-selection and feature selection

method. After determining the optimal settings when using the OpCode representa-

tion, we compared the achieved accuracy to the byte n-gram representation used in

[12]. In the second experiment we investigated the imbalance problem to determine

the optimal settings of the training set for each classifier in varying “real-life” condi-

tions. Finally, in the third experiment, we performed a chronological evaluation to

determine how well a classifier, which was trained on past examples, can detect new

malicious file and to investigate the importance and need in updating the training set

frequently.

For evaluation purposes, we used the True Positive Rate (TPR) measure, which is the

number of positive instances classified correctly, False Positive Rate (FPR), which is the

number of negative instances misclassified, and the Total Accuracy, which measures

the number of absolutely correctly classified instances, either positive or negative,

divided by the entire number of instances. For the imbalance analysis, where the accu-

racy measure can sometimes be misleading, we also computed the G-Means measure.

This measure, which is often used in imbalance dataset evaluation studies, is a metric

that combines both the sensitivity and specificity by calculating their geometric mean.

5 Experiments and Results
5.1 Experiment 1 - evaluate OpCode n-gram representations settings

In the first experiment we aimed to answer the first four research questions presented

in section 4.1. In accordance to these questions, we wanted to identify the best settings

of the classification framework which is determined by a combination of: (1) the term-

representation (TF or TFIDF); (2) the OpCode n-gram size (1, 2, 3, 4, 5 or 6); (3) the

top-selection of features (50, 100, 200 or 300); (4) the feature selection method (DF, FS

or GR); and (5) the classifier (SVM, LR, RF, ANN, DT, BDT, NB or BNB). We

designed a wide and comprehensive set of evaluation runs, including all the combina-

tions of the optional settings for each of the aspects, amounting to 1,152 runs in a

5-fold cross validation format for all eight classifiers. The files in the test-set were not

in the training set, presenting unknown files to the classifier. In this experiment, the

Malicious File Percentage (MFP) in the training and test sets was set according to the

natural proportions in the file-set at approximately 22%.

5.1.1 Feature representation vs. n-grams

We first wanted to find the best terms representation (i.e., TF or TFIDF). Figure 2 pre-

sents the mean TPR, FPR, accuracy and G-Mean of the combinations of the term

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 9 of 22



representation and n-grams size. The mean TPRs, FPRs, accuracies and G-Means of

the TF and the TFIDF were quite identical, which is good because maintaining the

TFIDF requires additional computational efforts each time a malcode or benign files

are added to the collection. This can be explained by the fact that for each n-gram

size, the top 1,000 OpCode n-grams, having the highest Document Frequency (DF)

value, were selected. This was done in order to avoid problems related to sparse data

(i.e., vectors that contain many zeros). Consequently, the selected OpCode n-grams

appear in both sets and therefore eliminate the IDF factor in the TF-IDF measure.

Following this observation we opted to use the TF representation for the rest of our

experiments.

Interestingly, the best n-gram size of OpCodes was the 2-gram with the highest

accuracy and G-Mean values and the lowest FPR (and with TPR similar but slightly

lower from the 3-gram). This signifies that the sequence of two OpCodes is more

representative than single OpCodes, however, longer grams decreased the accuracy.

This observation can be explained by the fact that longer OpCode n-grams indicates

larger vocabulary (since there are more combinations of the n-grams), yet on the other

hand, a large number of n-grams results in fewer appearances in many files, thus creat-

ing sparse vectors. As a case in point, we extracted 443,730 3-grams and 1,769,641

4-grams. In such cases, where many of the vectors are sparse, the detection accuracy

will be decreased.

Figure 2 The mean TPR, FPR, accuracy and G-Mean for each term representation (TF and TFIDF) as
a function of the OpCode n-gram size. While the mean TPRs, FPRs, accuracies and G-Means of the TF
and TFIDF were quite identical, the mean accuracy and G-Mean of the 2-gram outperforms all the other n-
grams with the lowest FPR.

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 10 of 22



5.1.2 Feature Selections and Top Selections

To identify the best feature selection method and the top number of features, we calcu-

lated the mean TPR, FPR, accuracy and G-Mean of each method, as shown in Figure 3.

Generally, DF outperformed on all sizes of top features, while FS performed very well,

especially when fewer top features were used (top 50 and top 100). Moreover, the DF

and FS performance was more stable for varying numbers of top feature in terms accu-

racy and G-Mean. The DF is a simple feature selection method which favors features

which appear in most of the files. This can be explained by its criterion, which has an

advantage for fewer features. In other methods, the lack of appearances in many files

might create zeroed vectors and might consequently lead to a lower accuracy level.

5.1.3 Classifiers

Figure 4 depicts the mean TPR, FPR, accuracy and G-Mean for each classifier as a

function of the OpCode n-gram size using the TF representation. The performance of

both the Naïve Bayes and the Boosted Naïve Bayes was the worst for all the n-gram

sizes, having the lowest mean TPR, accuracy and G-Mean, and highest mean FPR. The

remaining the classifiers performed very well, having the Random Forest, Boosted

Decision Trees and Decision Trees outperforming. The mean accuracy, TPR and

G-Mean of the 2-gram outperforms all the other n-grams with the lowest mean FPR

for all classifiers, but not significantly.

Figure 3 The mean TPR, FPR, accuracy and G-Mean of the evaluated feature selection methods
(Document Frequency, Fisher Score, Gain Ratio) as a function of the number of top features (50,
100, 200 and 300). DF was accurate for all sizes of top features. FS performed very well, especially when
fewer features were used (top 50 and top 100).

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 11 of 22



Classifiers differ in performance within different domains and the best fitted classifier

can often be identified by experimentation. From the results we conclude that for this

problem domain, complex classifiers, such as the ensemble Random Forest algorithm

[44] which induces many decision trees and then combines the results of all trees, and

the boosted decision tree [48] generate a more accurate classifier.

Additionally, in order to compare the classifiers’ performance, we selected the set-

tings which had the highest mean accuracy level over all the classifiers. In order to

find the best settings for all the classifiers, we calculated the mean FPR, TPR, accuracy

and G-Mean for each setting that is defined by the: (1) n-gram size; (2) feature repre-

sentation; (3) feature selection method; and (4) the number of top features. Table 1

depicts the top five settings with the highest mean accuracy level (averaged over all the

Figure 4 The mean TPR, FPR, accuracy and G-Mean for each classifier (using TF representation) as
a function of the OpCode n-gram size. The performance of both the Naïve Bayes and the Boosted
Naïve Bayes was worst for all n-gram sizes having the lowest mean TPR, accuracy and G-Mean and highest
mean FPR. The mean accuracy, TPR and G-Mean of the 2-gram outperforms all the other n-grams with the
lowest mean FPR for all classifiers.

Table 1 The top five settings with the highest mean accuracy over all the classifiers.

n-gram size Representation Feature selection Top features FPR TPR Accuracy G-Mean

2 TF DF 300 0.045 0.744 0.911 0.840

2 TFIDF DF 300 0.045 0.744 0.911 0.840

2 TF DF 100 0.053 0.754 0.907 0.845

2 TFIDF DF 100 0.053 0.754 0.907 0.845

2 TF DF 200 0.047 0.729 0.906 0.830

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 12 of 22



classifiers). The outperforming setting was the: 2-gram, TF, using 300 features selected

by the DF measure.

The results of each classifier when using the best mean settings (i.e., -gram, TF,

using 300 features selected by the DF measure), including the accuracy, TPR, FPR and

G-Mean are presented in Table 2. In addition, the optimal setting of each classifier is

presented, as well as the resulted accuracy for the optimal setting, and the difference

compared to the accuracy achieved with the best averaged setting. The comparisons

show that for all classifiers, excluding the NB and BNB, the best averaged setting yields

similar performance.

The graphs in Figure 5 depict the TPR, FPR, accuracy and G-Mean of each classifier

when comparing the best averaged settings (2-gram, TF representation, using 300 fea-

tures selected by the DF measure) with the classifier’s optimal settings. The graphs

show that the Random Forest and Boosted Decision Tree yielded the highest accuracy

and lowest FPR. Naïve Bayes and Boosted Naïve Bayes performed poorly and thus we

omitted them from the following experiments.

In the following two experiments we used the best six classifiers (RF, DT, BDT, LR,

ANN, SVM) when trained on the best averaged settings (2-gram, TF representation,

300 top features selected by the DF measure).

5.1.4 Varying OpCode n-grams sizes

In this analysis we set out to answer the second part of research question 2 and to

understand whether a combination of different sizes of OpCode n-grams, as features in

the classification task, may result in better detection performance. For this we used

three OpCode n-grams sets on which the three feature selection methods were applied

with four top-selections (50, 100, 200 or 300):

- Constant n-gram size This option refers to the 6 OpCode n-grams sets that were

used in the previous experiments, in which the n-grams in each set are of the same

size (1, 2, 3, 4, 5 and 6).

- Top 1,800 over all n-gram sizes In this set, all OpCode n-grams, of all sizes, were

sorted according to their DF value. Then, the first 1,800 n-grams with the top DF score

were selected. Feature selection was applied on the collection of 1,800 n-grams patterns.

- Top 300 for each n-gram size In this set, for each OpCode n-gram size (1- to

6-gram), the first 300 n-grams with the top DF score were selected (i.e., total of 1,800

n-grams). Feature selection was applied on the collection of 1,800 n-grams patterns.

Table 2 The accuracy, FPR, TPR and G-Mean of each classifier when using the best mean
settings (i .e., 2-gram, TF representation, top 300 features selected by the DF measure).

Classifier Best averaged settings Classifier optimal settings Difference in accuracy

Accuracy TPR FPR G-Means Optimal settings Accuracy

RF 95.146 0.843 0.020 0.909 6-gram; TF; GR; top300 95.375 0.229

BDT 94.436 0.850 0.031 0.908 2-gram; TF; FS; top300 94.649 0.213

DT 93.009 0.835 0.045 0.893 2-gram; TF; FS; top300 93.741 0.732

LR 92.965 0.819 0.041 0.886 2-gram; TF; DF; top300 92.965 0.000

ANN 92.136 0.785 0.043 0.867 3-gram; TF; DF; top300 92.199 0.063

SVM 92.136 0.785 0.043 0.867 3-gram; TF; DF; top300 92.199 0.063

NB 84.537 0.517 0.068 0.694 5-gram; TF; FS; top50 85.802 1.265

BNB 84.537 0.517 0.068 0.694 2-gram; TF; DF; top50 86.683 2.146

The table also depicts the optimal settings of each classifier and the difference in accuracy with the averaged settings.

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 13 of 22



The distribution of n-grams sizes for the two n-grams sets that consist of varying n-

gram sizes is presented in Table 3. From the table we can see, as expected, that the DF

feature selection method favors short n-grams which appear in a larger number of files.

In addition, we can see that in most cases, FS and GR tend to select n-grams of size 2,

3 and 4 which we conclude to be more informative and with a tendency to discrimi-

nate better between the malicious and benign classes in the classification task.

In Figure 6 we present the mean TPR, FPR, accuracy and G-Mean of each classifier

when using the best mean settings obtained for each of the three OpCode n-grams

patterns sets:

- Constant n-gram size 2-gram, TF representation, 300 features selected by the DF

measure (as presented in section 5.1.3) - denoted by [2gram;TF;Top300;DF].

- Top 1,800 over all n-gram sizes TF representation, 300 features selected by the GR

measure - denoted by [Top1800All;TF;Top300;GR].

- Top 300 for each n-gram size TF representation, 300 features selected by the GR

measure - denoted by [Top300Each; TF;Top300;GR].

The results show that using various sizes of OpCode n-grams patterns does not

improve the detection performance and in fact for most classifiers, the performance

accuracy was deteriorated. We therefore use the constant n-gram size sets for the next

experiments.

Figure 5 TPR, FPR, Accuracy and G-Mean of each classifier when comparing the best averaged
settings (i.e., 2-gram, TF representation, 300 features selected by the DF measure) and the
classifier’s optimal settings.

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 14 of 22



5.2 Experiment 2 - The imbalance problem

In our second experiment, we addressed our 5th research question in order to find the

best Malicious File Percentage (MFP) among the training-set files for varying MFP in

the test-set files, and more specifically, for low MFP in the test-set (10-15%), which

resembles a real-life scenario. We created five levels of Malicious Files Percentage

(MFP) in the training set (5, 10, 15, 30, and 50%). For example, when referring to 15%,

we assert that 15% of the files in the training set were malicious and 85% were benign.

The test-set represents the real-life situation while the training set represents the set-

up of the classifier, which is controlled. We had the same MFP levels for the test-sets

as well. Thus, we ran all the product combinations of five training sets and five test-

sets for a total of 25 runs for each classifier. The dataset was divided into two parts.

Each time the training set was chosen from one part and the test set was chosen from

the other part, thus forming a 2-fold cross validation-like evaluation to render the

results more significant.

Training-Set Malware Percentage

Figure 7 presents the mean accuracy, FPR, TPR, and G-Mean (i.e., averaged over all

the MFP levels in the test-sets) of each classifier and for each training MFP level. It is

shown that all classifiers, excluding ANN, had a similar trend and perform better when

using MFP of 15% - 30% in the training set, while Random Forest and Boosted Deci-

sion Tree outperformed all other classifiers exceeding 94.5% accuracy and 87.1% TPR,

while keeping the FPR bellow 4%. The ANN performance was generally low and

dropped significantly for 5%, 15% and 50% MFP in the training set. Additionally, it is

shown that the FPR grows for all classifiers with the increasing of the MFP in the

training set. This can be explained by the fact that for training sets with higher MFP

most of the test sets are have a lower MFP, which in turn results in higher FPR. This

in fact emphasizes the imbalance problem.

10% Malware Percentage in the Test-Set

we consider the 10% MFP level in the test-set to be a reasonable real-life scenario, as

mentioned in the introduction. Figure 8 presents the mean accuracy, FPR, TPR and G-

Mean for a 2-fold cross validation experiment for each MFP in the training set and

Table 3 Distribution of n-gram sizes, chosen by each feature selection method, for the
two n-grams sets that consist of varying n-grams sizes.

Top 1800 over all n-grams Top 300 for each n-gram size

Feature selection Top features 1 2 3 4 5 6 1 2 3 4 5 6

DF 50 0.3 0.42 0.24 0.04 0 0 1 0 0 0 0 0

DF 100 0.17 0.39 0.28 0.13 0.03 0 1 0 0 0 0 0

DF 200 0.11 0.27 0.36 0.21 0.06 0.01 1 0 0 0 0 0

DF 300 0.08 0.25 0.34 0.23 0.09 0.01 1 0 0 0 0 0

FS 50 0.06 0.18 0.38 0.16 0.1 0.12 0.54 0.08 0.16 0.1 0.06 0.06

FS 100 0.03 0.17 0.36 0.26 0.12 0.06 0.43 0.12 0.19 0.1 0.11 0.05

FS 200 0.02 0.13 0.33 0.27 0.18 0.08 0.35 0.14 0.2 0.14 0.12 0.08

FS 300 0.02 0.1 0.3 0.3 0.21 0.08 0.3 0.15 0.2 0.15 0.11 0.08

GR 50 0 0.16 0.36 0.22 0.22 0.04 0.06 0.2 0.36 0.14 0.1 0.14

GR 100 0 0.12 0.33 0.29 0.17 0.09 0.03 0.19 0.36 0.23 0.11 0.08

GR 200 0.01 0.13 0.31 0.32 0.16 0.09 0.04 0.15 0.31 0.22 0.17 0.12

GR 300 0.01 0.17 0.3 0.28 0.15 0.08 0.04 0.14 0.28 0.24 0.18 0.13

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 15 of 22



with a fixed level of 10% MFP in the test-set. These results are quite similar in their

magnitude to the results in Figure 7, although here the performance level was higher.

For the RF and BDT, the highest performance level was in 10% and 15% of MFP in

the training set, which is more similar to the MFP in the test-set.

Relations among MFPs in Training and Test-sets

Further to our results from the training-set point of view (Figures 7 and 8), we present a

detailed description of the accuracy, TPR and FPR for the MFP levels in the two sets in

a 3-dimensional presentation for each classifier (the graphs of the two best classifiers, RF

and BDT, are presented in Figure 9; the graphs of the rest of the classifiers are provided

in Additional file 1). Interestingly, a stable state is observed in the accuracy measure for

any MFP level. In addition, we can see that for a given MFP in the training set, the TPR

and the FPR of the classifiers are stable for any MFP level in the test set. This observa-

tion, which emphasizes the imbalance problem, signifies that in order to achieve a

desired TPR and FPR, only the training set can be considered and selecting the proper

MFP in the training set will ensure the desired TPR and FPR for any MFP in the test set.

When comparing these results with the results of the byte n-grams patterns experi-

ments in [12] we notice that in terms of accuracy, the byte n-grams classifiers are

more sensitive to varying MFP levels in the training and test-sets. In particular, the DT

and BDT classifiers behaved optimally when the MFP levels in the training-set and

test-set were similar. This observation may indicate an advantage of the OpCode

n-grams representation as being less sensitive to the levels of MFP in the two sets, or

Figure 6 Mean TPR, FPR, accuracy and G-Mean of each classifier when using the best mean
settings obtained for each of the three n-grams sets: [2gram;TF;Top300;DF], [Top1800All;TF;
Top300;GR] and [Top300Each;TF;Top300;GR].

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 16 of 22



Figure 7 Mean accuracy, FPR, TRP and G-Mean (over all the MFP levels in the test-sets) for each
MFP in the training set. RF and BDT out-performed across the varying MFPs.

Figure 8 The mean accuracy, FPR, TPR and G-Mean for 10% MFP in the test-set, for each MFP in
the training set.

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 17 of 22



more specifically in the test sets which represent the changes of proportions in real life

conditions.

5.3 Experiment 3 - Chronological Evaluation

In the third experiment, we addressed our 6th research question in order to understand

the need in updating the training set. The question asks how important it is to update

the repository of malicious and benign files and whether, for specific years, the files were

more contributive to the accuracy when introduced in the training set or in the test set.

In order to answer these questions we divided the entire test collection into years from

2000 to 2007, in which the files were created. We had 7 training sets, in which training

set k included samples from the year 2000 till year 200[k] (where k = 0,1,2..,6). Each

training set k was evaluated separately on each following year from 200[k+1] till 2007.

Clearly, the files in the test were not present in the training set. Figure 10 presents the

results with a 50% MFP in the training set and10% MFP in the testing set for the two

best classifiers BDT and RF (the graphs for the rest of the classifiers are provided in

Additional file 2). Out of the ANN classifier, all other classifiers observed similar

Figure 9 The mean Accuracy, TPR and FPR for different MFP levels in the training and test sets for
the two best classifiers BDT and RF (the graphs for the rest of the classifiers are provided in
Additional file 1).

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 18 of 22



behavior in which higher TPR and lower FPR were achieved when training on newer

files. In fact, in all of the cases, the TPR was above 0.95 and FPR approximately 0.1

when training the models on a yearly basis. Finally, for all classifiers, when testing on

2007 examples, a significant decrease in the accuracy was observed; a fact that might

indicate that new types of malware were released during 2007.

6. Discussion and Conclusions
In this study we used OpCode n-gram patterns generated by disassembling the

inspected executable files to extract features from the inspected files. OpCode n-grams

are used as features during the classification process with the aim of identifying

unknown malicious code. We performed an extensive evaluation using a test collection

comprising more than 30,000 files. The evaluation consisted of three experiments.

In the first experiment, we found that the TFIDF representation has no added value

over the TF representation, which is not the case in many information retrieval appli-

cations. This is very important since using the TFIDF representation introduces

Figure 10 The results (accuracy, TPR and FPR) for with a 50% MFP on the training set and 10%
MFP on the test set for the two best classifiers BDT and RF (the rest of the classifiers are
presented in Additional file 2).

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 19 of 22



additional computational challenges in the maintenance of the collection when it is

updated. In order to reduce the number of OpCode n-gram features, which ranges

from thousands to millions, we used the DF measure to select the top 1,000 features

and tested three feature selection methods. The 2-gram OpCodes outperformed the

others and the DF was the best feature selection method. We also evaluated the perfor-

mance of classifiers when using a constant size of OpCode n-grams versus using vary-

ing sizes of n-grams. The result of this experiment showed no improvement when

using OpCode n-grams of different sizes.

In the second experiment, we investigated the relationship between the Malicious

File Percentage (MFP) in the test-set, which represents real-life scenario, and in the

training set, which is used for training the classifier. In this experiment, we found that

there are classifiers which are relatively non-reactive to changes in the MFP level of

the test-set. In general, this indicates that in order to achieve a desired TPR and FPR,

only the training set can be considered and selecting the proper MFP in the training

set will ensure the desired TPR and FPR for any MFP in the test set.

In the third experiment we wanted to determine the importance of updating the

training set over time. Thus, we divided the test collection into years and evaluated

training sets of selected years on the next years. Evaluation results show that an update

in the training set is needed. Using 10% malicious files in the training set showed a

clear trend in which the performance improves when the training set is updated on a

yearly basis.

Based on the reported experiments and results, we suggest that when setting up a

classifier for real-life purposes, one should first use the OpCode representation and, if

the disassemble of the file is not feasible, use the byte representation [12], which

appears to be less accurate. In addition, one should consider the expected proportion

of malicious files in the stream of data. Seeing as we assume that in most real-life sce-

narios low proportions of malicious files are present, training sets should be designed

accordingly.

In future work we plan to experiment with cost-sensitive classification in which the

costs of the two types of errors (i.e., missing a malicious file and false alarm) are not

equal. We believe that the application of cost-sensitive classification depends on the

goals to be achieved, and accordingly the cost of having a misclassification of each

type. Having experience in using this approach in real life setting, we can give two gen-

eral examples of such applications. The first example pertains to for anti-virus compa-

nies that need to analyze dozens of thousands of maliciously suspected (or unknown)

files, including benign files, every day. In such an application the goal is to perform an

initial filtering to reduce the amount of files to investigate manually. Thus, having a

relatively high false-positive is reasonable in order to decrease the probability of miss-

ing an unknown malicious file. Another application is as an anti-virus. In this case we

would like to decrease the probability of false-negative, which will result in quarantin-

ing, deleting, or blocking of a legitimate file. For both scenarios it is difficult to assign

the costs for the two errors (note that each type of malware can be assigned with a dif-

ferent cost level based on the damage it causes) and therefore in this paper we focus

on exploring and identifying the settings and classifiers that can classify the files as

accurately as possible, leaving the cost-sensitive analysis for future work.

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 20 of 22



Additional material

Additional file 1: Relations among MFPs in training and test-sets: accuracy, TPR and FPR for the MFP
levels in the two sets in a 3-dimensional presentation. Detailed description of the accuracy, TPR and FPR for
the malicious file percentage levels in the two sets in a 3-dimensional presentation for each classifier.

Additional file 2: Chronological evaluation: accuracy, TPR and FPR with a 50% MFP in the training set and
10% MFP in the testing set for all classifiers. Detailed description of the accuracy, TPR and FPR with a 50%
MFP in the training set and 10% MFP in the testing set for all classifiers.

Author details
1Deutsche Telekom Laboratories, Ben-Gurion University, Be’er Sheva, 84105, Israel 2Department of Information Systems
Engineering, Ben-Gurion University, Be’er Sheva, 84105, Israel 3Department of Computer Science, Ben-Gurion
University, Be’er Sheva, 84105, Israel

Authors’ contributions
RM and AS conceived of the study, studied the research domain, participated in the design of the study, performed
the analysis of the results, and drafted the manuscript. CF carried out the data collection and experiments. YE and SD
participated in the design of the study and its coordination. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 12 July 2011 Accepted: 27 February 2012 Published: 27 February 2012

References
1. Shabtai A, Moskovitch R, Elovici Y, Glezer C: Detection of malicious code by applying machine learning classifiers on

static features: A state-of-the-art survey. Information Security Technical Report 2009, 14(1):1-34.
2. Griffin K, Schneider S, Hu X, Chiueh T: Automatic generation of string signatures for malware detection. 12th

International Symposium on Recent Advances in Intrusion Detection Heidelberg: Springer; 2009, 101-120.
3. Rieck K, Holz T, Düssel P, Laskov P: Learning and classification of malware behavior. Conference on Detection of

Intrusions and Malware & Vulnerability Assessment Heidelberg: Springer; 2008, 108-125.
4. Bailey M, Oberheide J, Andersen J, Mao ZM, Jahanian F, Nazario J: Automated classification and analysis of Internet

malware. 12th International Symposium on Recent Advances in Intrusion Detection Heidelberg: Springer; 2007, 178-197.
5. Lee W, Stolfo SJ: A framework for constructing features and models for intrusion detection systems. ACM

Transactions on Information and System Security 2000, 3(4):227-261.
6. Moskovitch R, Elovici Y, Rokach L: Detection of unknown computer worms based on behavioral classification of the

host. Computational Statistics and Data Analysis 2008, 52(9):4544-4566.
7. Jacob G, Debar H, Filiol E: Behavioral detection of malware: from a survey towards an established taxonomy.

Journal in Computer Virology 2008, 4:251-266.
8. Shabtai A, Potashnik D, Fledel Y, Moskovitch R, Elovici E: Monitoring, analysis and filtering system for purifying

network traffic of known and unknown malicious content. Security and Communication Networks 2010, DOI: 10.1002/
sec.229.

9. Moser A, Kruegel C, Kirda E: Limits of static analysis for malware detection. Annual Computer Security Applications
Conference, IEEE Computer Society 2007, 421-430.

10. Menahem E, Shabtai A, Rokach L, Elovici Y: Improving malware detection by applying multi-inducer ensemble.
Computational Statistics and Data Analysis 2008, 53(4):1483-1494.

11. Moskovitch R, Feher C, Tzachar N, Berger E, Gitelman M, Dolev S, Elovici Y: Unknown malcode detection using
OpCode representation. European Conference on Intelligence and Security Informatics Heidelberg: Springer; 2008,
204-215.

12. Moskovitch R, Stopel D, Feher C, Nissim N, Japkowicz N, Elovici Y: Unknown malcode detection and the imbalance
problem. Journal in Computer Virology 2009, 5(4):295-308.

13. Abou-Assaleh T, Keselj V, Sweidan R: N-gram based detection of new malicious code. Proc of the 28th Annual
International Computer Software and Applications Conference, IEEE Computer Society 2004, 41-42.

14. McAfee Study Finds 4% of Search Results Malicious. Frederick Lane 2007 [http://www.newsfactor.com/story.xhtml?
story_id = 010000CEUEQO].

15. Shin S, Jung J, Balakrishnan H: Malware prevalence in the KaZaA file-sharing network. Internet Measurement
Conference(IMC), ACM Press 2006, 333-338.

16. Schultz M, Eskin E, Zadok E, Stolfo S: Data mining methods for detection of new malicious executables. Proc of the
IEEE Symposium on Security and Privacy, IEEE Computer Society 2001, 38.

17. Kolter JZ, Maloof MA: Learning to detect malicious executables in the wild. Proc of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM Press 2006, 470-478.

18. Kolter J, Maloof M: Learning to detect and classify malicious executables in the wild. Journal of Machine Learning
Research 2006, 7:2721-2744.

19. Cai DM, Gokhale M, Theiler J: Comparison of feature selection and classification algorithms in identifying malicious
executables. Computational Statistics and Data Analysis 2007, 51:3156-3172.

20. Karim E, Walenstein A, Lakhotia A, Parida L: Malware phylogeny generation using permutations of code. Journal in
Computer Virology 2005, 1(1-2):13-23.

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 21 of 22

http://www.biomedcentral.com/content/supplementary/2190-8532-1-1-S1.???
http://www.biomedcentral.com/content/supplementary/2190-8532-1-1-S2.???
http://www.newsfactor.com/story.xhtml?story_id = 010000CEUEQO
http://www.newsfactor.com/story.xhtml?story_id = 010000CEUEQO


21. Siddiqui M, Wang MC, Lee J: Data mining methods for malware detection using instruction sequences. Artificial
Intelligence and Applications ACTA Press; 2008, 358-363.

22. Bilar D: Opcodes as predictor for malware. International Journal Electronic Security and Digital Forensics 2007,
1(2):156-168.

23. Santos I, Brezo F, Nieves J, Penya YK, Sanz B, Laorden C, Bringas PG: Idea: Opcode-sequence-based malware
detection. Proc 2nd International Symposium on Engineering Secure Software and Systems 2010, 35-42.

24. Kubat M, Matwin S: Addressing the curse of imbalanced data sets: one-sided sampling. Proc of the 14th International
Conference on Machine Learning 1997, 179-186.

25. Chawla NV, Japkowicz N, Kotcz A: Editorial: Special issue on learning from imbalanced datasets. SIGKDD Explorations
Newsletter 2004, 6(1):1-6.

26. Japkowicz N, Stephen S: The class imbalance problem: a systematic study. Intelligent Data Analysis Journal 2002,
6(5):429-450.

27. Chawla NV, Bowyer KW, Kegelmeyer WP: SMOTE: synthetic minority over-sampling technique. Journal of Artificial
Intelligence Research (JAIR) 2002, 16:321-357.

28. Lawrence S, Burns I, Back AD, Tsoi AC, Giles CL: Neural network classification and unequal prior class probabilities. In
Tricks of the Trade, Lecture Notes in Computer Science State-of-the-Art Surveys. Edited by: Orr G, Muller K-R, Cruana R.
Springer Verlag; 1998:299-314.

29. Chen C, Liaw A, Breiman L: Using random forest to learn unbalanced data. Technical Report 666 Statistics Department,
University of California at Berkeley; 2004.

30. Morik K, Brockhausen P, Joachims T: Combining statistical learning with a knowledge-based approach - a case study
in intensive care monitoring. ICML, Morgan Kaufmann Publishers Inc 1999, 268-277.

31. Weiss GM, Provost F: Learning when training data are costly: the effect of class distribution on tree induction.
Journal of Artificial Intelligence Research 2003, 19:315-354.

32. Provost F, Fawcett T: Robust classification systems for imprecise environments. Machine Learning 2001, 42(3):203-231.
33. Kubat M, Matwin S: Machine learning for the detection of oil spills in satellite radar images. Machine Learning 1998,

30:195-215.
34. Heavens VX:[http://vx.netlux.org].
35. Linn C, Debray S: Obfuscation of executable code to improve resistance to static disassembly. Proc of the 10th ACM

conference on Computer and communications security ACM Press; 2003, 290-299.
36. Dinaburg A, Royal P, Sharif MI, Lee W: Ether: malware analysis via hardware virtualization extensions. ACM Conference

on Computer and Communications Security, ACM Press 2008, 51-62.
37. Perdisci R, Lanzi A, Lee W: McBoost: Boosting scalability in malware collection and analysis using statistical

classification of executables. Annual Computer Security Applications Conference, IEEE Computer Society 2008, 301-310.
38. Royal P, Halpin M, Dagon D, Edmonds R, Lee W: PolyUnpack: automating the hidden-code extraction of unpack-

executing malware. Annual Computer Security Applications Conference IEEE Computer Society; 2006, 289-300.
39. Salton G, Wong A, Yang CS: A vector space model for automatic indexing. Communications of the ACM 1975,

18:613-620.
40. Mitchell T: Machine Learning McGraw-Hill; 1997.
41. Golub T, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA,

Bloomfield CD, Lander ES: Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science 1999, 286:531-537.

42. Joachims T: Making large-scale support vector machine learning practical. In Advances in Kernel Methods. Edited by:
Scholkopf B, Burges C, Smola AJ. Cambridge, MA: MIT Press; 1999:169-184.

43. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W: Applied Linear Statistical Models McGraw-Hill; 1996.
44. Kam HT: Random Decision Forest. Proc of the 3rd International Conference on Document Analysis and Recognition 1995,

278-282.
45. Bishop C: Neural Networks for Pattern Recognition Oxford: Clarendon Press; 1995.
46. Quinlan JR: C4.5: Programs for Machine Learning San Francisco, CA, USA: Morgan Kaufmann Publishers, Inc; 1993.
47. Domingos P, Pazzani M: On the optimality of simple Bayesian classifier under zero-one loss. Machine Learning 1997,

29:103-130.
48. Freund Y, Schapire RE: A brief introduction to boosting. International Joint Conference on Artificial Intelligence Morgan

Kaufmann Publishers Inc; 1999, 1401-1406.
49. Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and Techniques. 2 edition. San Francisco, CA, USA:

Morgan Kaufmann Publishers, Inc; 2005.

doi:10.1186/2190-8532-1-1
Cite this article as: Shabtai et al.: Detecting unknown malicious code by applying classification techniques on
OpCode patterns. Security Informatics 2012 1:1.

Shabtai et al. Security Informatics 2012, 1:1
http://www.security-informatics.com/content/1/1/1

Page 22 of 22

http://vx.netlux.org

	Abstract
	1. Introduction
	2. Background
	2.1 Detecting Unknown Malware using Byte N-Grams Patterns
	2.2 Representing Executables using OpCodes
	2.3 The Imbalance Problem

	3. Methods
	3.2 Dataset Creation
	3.3 Data Preparation and Feature Selection

	4 Evaluation
	4.1 Research Questions

	5 Experiments and Results
	5.1 Experiment 1 - evaluate OpCode n-gram representations settings
	5.1.1 Feature representation vs. n-grams
	5.1.2 Feature Selections and Top Selections
	5.1.3 Classifiers
	5.1.4 Varying OpCode n-grams sizes

	5.2 Experiment 2 - The imbalance problem
	Training-Set Malware Percentage
	10% Malware Percentage in the Test-Set
	Relations among MFPs in Training and Test-sets
	5.3 Experiment 3 - Chronological Evaluation


	6. Discussion and Conclusions
	Author details
	Authors' contributions
	Competing interests
	References

