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Abstract 

This paper presents an improved finite-dimensional linear ma- 
trix inequality (LMI) formulation for the &-gain synthesis 
of a piecewise-affine linear parameter-varying (PALPV) sys- 
tem. The new formulation is then used to  design a missile 
autopilot to  investigate issues such as the effectiveness, reli- 
ability, and conservatism. Our approach is based on a non- 
smooth dissipative systems framework using a continuous, 
quasi-piecewise-affine parameter-dependent Lyapunov func- 
tion (QPAL) which has been shown to yield a less conserva- 
tive, guaranteed result than previously published techniques 
based on quasi-affine parameter-dependent Lyapunov func- 
tions (QALs) or Lurb-Postnikov Lyapunov functions. The 
results in this paper improve the computational efficiency by 
using a different “convexifying” technique. We also general- 
ize our previous results by eliminating the restriction on the 
number of parameters. 

1 In t roduct ion  

A missile autopilot design problem has attracted the atten- 
tion of many researchers because it involves a large variation 
in the system dynamics and stringent performance require- 
ments [13,15]. While the gain-scheduling approach has been 
successfully applied to  many interesting problems [17], there 
are several potential difficulties when this approach is ap- 
plied to  the advanced missile autopilot design. For example, 
some parameters, such as the angle-of-attack, are arbitrar- 
ily fast varying, which violates the heuristic guideline that 
the scheduling parameters should be slowly varying [17]. A 
complicated scheduling scheme is also required to  account for 
nonlinearities in the system that have been ignored in the 
design process [13]. These potential difficulties have recently 
been overcome using a linear parameter-varying (LPV) con- 
trol approach [2,9,16,18]. 

An LPV system is characterized as a linear system that de- 
pends on time-varying parameters that are assumed to be 
exogenous signals. It is further assumed that the trajectory 
of the parameter is not known in advance but is constrained 
a priori to  lie in some known, bounded set, and its value can 
be measured in real time. Associated with the LPV system 
have been various synthesis tools such as the scaled small- 
gain framework [3,9,14,16] and the dissipative systems frame- 
work using smooth parameter-dependent Lyapunov functions 
(PDLFs) [1,4,10,18]. The authors have also proposed a dissi- 
pative systems framework using a nonsmooth quasi-piecewise 
afine parameter-dependent Lyapunov function (QPAL) for a 
PALPV system. The results in [12] showed that while the 
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QPAL approach can be computationally intensive, it leads 
to less conservative, guaranteed synthesis results than previ- 
ously published techniques based on QALs or LurBPostnikov 
Lyapunov functions. 

This paper extends our previous results [12] in an attempt 
to reduce the computational complexity by using the multi- 
convexity approach [7] in the convexifying step of the algo- 
rithm development rather than the S-procedure [6]. Further- 
more, this paper generalizes the previous results by eliminat- 
ing the restriction on the number of parameters. This new ap- 
proach is then applied to  the missile autopilot design problem. 
For a comparison, we also consider other controller design 
techniques, such as a “naive” gain-scheduling [13], complex-p 
controller [15], and the LPV control design based on the grid- 
ding technique (181. For this application, we show that the 
PALPV system can yield a more accurate model than the 
typical LFT because it provides a better approximation of 
the nonlinear missile dynamics. The QPAL approach reduces 
conservatism of the synthesis result because of the richness of 
the PDLFs used in the synthesis. Furthermore, we address 
the potential difficulty in selecting a PDLF for the gridding 
technique in the LPV control I181 and show that our new 
technique can reduce this specific difficulty. 

This paper is organized as follows: Section 2 sets up the 
problem definitions for the synthesis. Section 3 summarizes 
the &gain synthesis formulation from (111. Section 4 shows 
the missile autopilot design process and the simulation result. 
Notations are fairly standard. For notational convenience, we 
make some definitions for index: I = 21 . . . i, and 1, = 1 . . .1, 
i .e . ,  s number of l’s ,  with 10 = 0. For example, Xil ,  = Xi11 
since 1 2  = 11 and Xi l ,  = Xi .  [A(B)]1 = AI(&). Let W c 
R”, U C R” and J’ C RY. The parameter set are defined 
F A (0  E C’(2,R’) - : e( t )  E PI &t) E R, Vt E Z} where 
P = [e,,&] x .. . x [e,,O,] and R = [-VI, VI] x . . .  x [-U,, v,]. 

2 Problem Definitions 
We define a PALPV system for the general case of s 2 3 
(see [ l l ] ) .  The parameter space, P = [e,,&] x . . .  x [e,,g8], 
is partitioned into m1 x . . . x m, closed hyper-rectangles with 
width At91 x . . .  x AO,, where A& = (& - &)/mk (see 
Fig 1). In this case, each hyper-rectangle is represented by 
P, = Pil...;* where the index 1 defines the subregion of in- 
terest. Given each subspace Pl, we introduce a new local 
coordinate 81 [&I . . . e,,] * (E 9) measured from the cen- 
ter of PI .  Here, 9 is equivalent to  F5 when P is replaced 
by @ 2 [-& 2 ’ 2  &] x . . .  x [-%, %]. For each PI, an 
ALPV system is described by a set of nominal dynamics at 
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Fig. 1: Parameter subspaces for ml = m2 = 2 

the center of the parameter subspace and affine parameter- 
dependent terms. A PALPV system is a system that switches 
between ALPV systems: for ( x , O ,  w, U )  E V x 7” x W x U, 

YSl mt m. 

where aJl 8l-dFpendent system matrices are affine dependent 
in 01, e.g., At(&) = A~o+Edk=~ OlkAlk. ai(@) is the switching 
function such that each GI is well defined over the correspond- 
ing PI (se: [ll]). Wit! wT = [UT w?] and zT = [$ $1, de- 

In this paper, we consider a special form of an LPV controller 
that  for (zcr0,g) E V x 3” x Y ,  

fine [ B , ( ~ ) ] I  = [Bw1(0) Bw2I1 and [Cz(0)lT = [C,I(~)~ CFz]~. 

A key tenet of the LPV control design is that  e(.) and e(.) are 
assumed to  be measurable in real time. [Ac(b ,b) ] t ,  [Bc(e)]1 
and [CC(8)]l are continuous matrix functions on 8, and 8 1 .  
Note that these unknown controller dynamics are allowed to  
be discontinuous on the boundary of PI .  

3 &-Gain Synthesis  

The problem is to  design an LPV controller that minimizes 
an upper bound of the &-gain (yz) of the closed-loop sys- 
tem. The synthesis process follows the standard three steps 
(see [ll, 121): [Step I] Formulate the analysis problem of the 
closed-loop system; [Step 111 Eliminate the unknown con- 
troller dynamics and “convexify” to  transform into finite- 
dimensional LMIs using the multiconvexity approach [7]; 
[Step 1111 Construct the central controller dynamics analyti- 
cally. For the dissipative systems framework, we consider the 
nonsmooth QPAL. A key contribution of this paper is to ex- 
tend the QPAL to the general case of s > 3 [ll]. The QPAL, 
V(zcl ,O) = r:Pcl(0)xcl, is defined such that 
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Fig. 2: X ( 0 )  for ml = m2 = 2 

0 Continuous, piecewise-affine X ( 0 )  (see Fig 2): 

ii=l i.=l 

8 

and over PI, [ X ( e ) ] ,  = X I O  + ~ I L X I ~  where 
k = l  

0 Continuous, piecewise-affine Y ( 0 ) .  (note Y ( 0 )  is also 

0 Continuous, piecewise-smopth R(0): 

similarly defined with Y ~ , l + l p ( s - l l , .  ... Y I ( ~ - ~ ) ~ * )  

il=l i.=l 

Note that the [X(8)]! and [ Y ( ~ ) ] I  can be constructed from 

l , . . . , r n l  + 1, ..., b = l , . . . , m 3  + 1). We present only 
the results of th! +-gain sy?thesis (see [ l l ] ) .  For Jimplic- 
ity,pre define [Aje) ]~  = [A(O) - Bu(0)CzzJI and [A(O)]l = 
[A(O) - BwzC,(0)]l, which are affine in 01. We also de- 

fine [Lx ( A ,  7, .)]I = [ X ( v ) A ( q )  + A ( V ) ~ X ( ? )  + X ( T ) ] ~  and 
[Ly(A,v ,  T ) ] I  = [A(rl)?(v) + ? ( ~ ) A ( V ) ~ - -  ?(T)]I. Here, let 
0 and Q be the set of 2’ vertices of P and the set of 2‘ 
vertices of 0, respectively. 

only X ~ I ( . - ~ ) ,  Yal( . - l ) .  ... I Xl(*-l)b$ Yl(*-l)b (a = 



1 
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for all k. T h e n  the closed-loop sy s t em is uniformly asymptot- 
ically stable about x = 0 for all 0 E 7" and the &-gain (y2) 

is  less t han  y, i.e., 7 2  < y. 

Proposition 3.2 [11] Suppose y, [X(6)]1 and [?(6)]1 are 
solutions of Proposition 3.1. T h e n  a central controller, which 
makes the &-gain of the  QPALPV sys t em less t han  y, is 
given as follows (for simplicity, o m i t  dependency o n  the 0 
and 3): for  0 ( t )  E PI, 

[A,], = 8-' d , + X $ + k Z ' - X A ?  [ (  
-XBuCc - &Cy?) Z-'][, 

[Be][ = [8-'&], , [GI, = [&2-'], , 
where 

[a,] I = [-A' - y-'XBW1 B:1 + CTB:, 

- y - l c ; c z l P  + c,iB:], , 
[&I, = - [yC: + X B ~ Z ] ~ ,  [&I, = - [yB: + CZz?jIl. 

Remark 3.1 By minimizing 7, we solve a suboptimal so- 
lution for yz. The minimization is a standard convex op- 
timization subject to  LMI constraints. Generally speaking, 
these LMIs yields a larger number of LMIs than the typical 
dissipative systems approach using the quadratic Lyapunov 
function. Furthermore, to eliminate & ( t )  from the controller 
formulation, we use a method that constrains X ( 0 )  or Y(0)  
to be constant [l]. 

4 Autopilot Design 

By applying the &-gain synthesis technique to a missile au- 
topilot design problem, this section investigates the effective- 
ness, reliability, and conservatism of our new technique. 

4.1 Missile Model and Performance Objective 
We consider the benchmark pitch-axis missile dynamics [13, 
181. The missile model can be easily formulated as 

where f1 to fe are nonlinear functions of M and a. We also 
consider Znd-order actuator dynamics describing the tail de- 
flection [13, 181. qc and 1 are, respectively, command and 
actual normal acceleration in g's, while other variables are 

I C. e dnx 
Fig. 3: Weighted open-loop interconnection 

standard. M and a are assumed to be scheduling param- 
eters in the process of modeling the missile dynamics as an 
LPV system. The prescribed, bounds on these parameters are 
2 5 M ( t )  5 4 with -1.5 5 M ( t )  5 1.5, and -20 5 a(t) 5 20 
with -CO 5 6(t)  5 CO, i.e., P = [2 41 x [-20 20) and 
R = [-1.5 1.51 x [-CO 531. The assumption on the rate 
of M is made to reflect that the real Mach number is rela- 
tively slowly varying [9, 51. The angle-of-attack a(t) is ac- 
tually one of the states in the missile model so the actual 
variation of a(t)  could be larger than the prescribed value. 
An iterative design process might be necessary to design an 
LPV controller for which the closed-loop system satisfies the 
prescribed bounds. 

The goals are (1) Robust Stability: maintain stability over 
the prescribed bounds of parameters, (2) Robust Perfor- 
mance: track step commands in ac(t)  with time constant no 
greater than 0.35 sec, maximum overshoot no greater than 
lo%, and steady-state error no greater than 1%, and (3) 
Bandwidth: maximum tail deflection rate for l g  step com- 
mand in qc( t )  does not exceed 25 deg/sec. We use ratio- 
nal weighting functions to  characterize the overall closed-loop 
performance objective (similar to those in [18]). 

144(-0.05~ + 1) 17.321 
wref(s) = s2 + 2 x 0.8 x 12s + 144' we(s) = s + 0.0577' 

wd(s) = 0.01, Act(s) = 1. Note that a strictly proper 
We is used for the augmented open-loop system dynamics 
to satisfy the assumption that BW2 and C,Z are parameter- 
independent. wd and w6, are included to yield a stable LPV 
controller. The open-loop interconnection for the synthesis is 
shown in Fig. 3. In this figure, the missile model varies from 
one synthesis approach to another because of the different as- 
sumptions about the open-loop dynamics. For example, the 
LFT-p approach uses an LFT model of the missile dynamics, 
while our proposed approach uses a PALPV model. Note that 
the direct feedforward term from d to 71 is small enough that 
it can be neglected and then the augmented open-loop system 
dynamics satisfy the assumption that Cz2 is constant. A low- 
pass filter wd(S) would eliminate the direct feedforward term 
but increases the size of the augmented system dynamics. 
4.2 PALPV Modeling 
This section investigates a simple process to derive PALPV 
models for the synthesis from the original missile dynamics 
with a different number of partitions ( N ) .  For this analysis, 
the LFT model corresponds to a PALPV model with N = 1. 
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Table 1: Relative RMS of &(M, a) in (%) 

RMS(E1) RMS(Ez) RMS(E5) 

N = 3  
N = 5 0.22 1.50 0.34 

The gridding technique for the LPV control in [18] uses a 
set of the original nonlinear missile dynamics at prescribed 
(dense) grid points. The PALPV modeling process is outlined 
below. Functions f l  - f~ are symmetric in a, so we consider 
the half parameter space p = [2 41 x [0 201. First, partition 
P into N x N parameter subspaces Pi’s. Over each Pi, an 
approximate of each function f k  is assumed of the form, 

- 

where A& and &I 5 1 / N  and Ih11 5 10/N) are values of 
M and a measured from the local coordinates with the origin 
at the center of PI .  The approximate functions ?re then fit to  
the actual functions over each Pi by finding {ficio, f k i l ,  ficiz} 
such that 

This optimization problem is infinite-dimensional, but in 
practice i t  is sufficient to  solve i t  over a dense finite grid 
(e.g., 50 x 50). A post-analysis was performed to  calculate 
the approximation error (Ek(M, a)) from the fit. To compare 
the approximation errors, we normalize them as relative RMS 
errors defined as the ratio of RMS gain of &(M, a) to  that of 
f k ( M , a )  (see Table 1). As expected, the LFT model ( N  = 1) 
yields large modeling errors, especially on f ~ ( M , a ) .  To de- 
sign a reliable controller, the LFT model for the synthesis 
should take into account these large approximation errors as 
extra uncertainties. In contrast, large N leads to  a PALPV 
model that is a good approximation of the original missile 
dynamics. In this case, all Ek(M,a)’s are small enough that 
they can be ignored. We can derive a PALPV system with 
uncertainty to  represent the missile model: 

and [A][, [B]r, [C]i and [D]i are affine in and hi. Further- 

more, [AA11 = 61 [ ; : ] and -30.6 < & ( M , a )  < 123.2 

for N = 1 and 6 [ ( M , a )  x 0 for N 2 3 because the relative 
RMS error is small. We select the model with N = 3 as the 
PALPV model for the synthesis. Note that the LFT model 
is obtained by converting the above model with N = 1 to 
an LFT form with the minimum size of uncertainties using 
singular value decomposition [9]. 

4.3 Autopilot Design and Simulation 
We design pitch-axis missile autopilots using several tech- 
niques: naive gain-scheduling (NGS) [13], complex-p (C- 
p ) ,  LPV control techniques, such as our approach based on 
Proposition 3.1 (QPAL) and the typical gridding technique 
(GRID) [18]. The NGS technique linearly interpolates the 
gain, zeros, and poles of the nine nominal IFI, controllers to  
yield a gain-scheduling controller. The C-p technique designs 
a robust controller with the LFT model developed above. 
In this case, a constant scaling matrix is used to  treat the 

0.5 1 1.5 2 2.5 
time (sec) 

-25 
3 

Fig. 4: Normal acceleration r](t) 

structured time-varying uncertainties. The QPAL approach 
is based on the PALPV model with N = 3 and a special class 
of QPAL such that X is constant and Y ( M )  is piecewise- 
affine in M (see remark 3.1). The GRID approach uses the 
quadratic Lyapunov function with constant X and Y. All 
LMI-related computations are performed with the MATLAB 
LMI Control Toolbox [8]. Except for NGS, all other tech- 
niques can provide guaranteed &-gains: &-gain from QPAL 
is 1.44, GRID is 3.10, and C-p is 37.7. Our QPAL approach 
yields the best guaranteed performance because of the accu- 
rate modeling and the use of a general class of PDLFs. This 
result is also comparable to  other results [5]. As expected, 
the C-p approach yields the worst guaranteed performance. 
The very poor performance of the C-p controller is primarily 
due to  the large uncertainty for E z ( M , a )  associated with the 
LFT model (&-gain from the LFT model without E z ( M , a )  
is improved to  6.11, but i t  is not guaranteed). 

We perform nonlinear numerical simulations to  verify the per- 
formance of these controllers. The Mach number profile is 
assumed M ( t )  = -0.05 sin ( g t )  + 2.1. a(t)  is estimated by a 
simple nonlinear static estimator (181 which is a polynomial 
approximation of an inverse of the output equation (Eq. 3). 
The simulation result is shown in Fig. 4. The controller from 
NGS yields the worst performance. This result is due to the 
fact that the IFI, controllers have been optimized at local 
nominal models and clearly indicates that the naive gain- 
scheduling can be sensitive to  coupling and other nonlinear 
effects that are not included in the control design models [13]. 
The simulations of the other three cases are consistent with 
the synthesis results. The conservatism of the C-p controller 
(yopt = 37.7) is captured in terms of a relatively large steady- 
state error during 1 - 2 (sec). In contrast, our QPAL con- 
troller yields the best performance and satisfies the design 
objectives for various input commands. 

4.4 Comparison of LPV control  techniques 
We further investigate the conservatism and reliability of the 
LPV control techniques based on the above GRID and QPAL. 
For a comparison, we also consider special cases of both tech- 
niques: the GRID approach using QAL such that X ( M )  and 
Y ( M )  are affine in M (GRIDl); our QPAL approach using 
the same QAL as GRIDl (QPAL1). Note that for the QPAL 
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Fig. 5:  &-gains ws. N .  Black 0 indicates reliable re- 
sults while white o does unreliable results 

and QPALl approach, we intentionally use the PALPV model 
(Eq. 4) with zero 61 for N = 1,2.  We calculate &-gains 
from the control techniques with several different partitions 
(N). Note that while the results are guaranteed values for 
the approximate model, they may not be guaranteed values 
for the original nonlinear missile dynamics. Therefore i t  is 
necessary to  perform a post-analysis: to check eigenvalues of 
LMIs of Theorem 5.3.1 in [18] using the solutions (7, X ( M )  
and Y ( M ) )  on a dense post-analysis grid (50 x 50). The de- 
sign and post-analysis results for four design techniques are 
plotted in Fig. 5 .  In this figure, the &gains verified by the 
post-analysis are plotted by black 0; otherwise, they are plot- 
ted by white 0.  In Fig. 5, a smaller &gain indicates better 
performance of the controller for given N .  

Fig. 5 shows that GRID is reliable, but yields overly conser- 
vative results. This result is consistent with (181. This figure 
also shows that QPAL with N 2 3 yields the best perfor- 
mance and also is reliable. As N increases, the performance 
is improved even further. This improvement is primarily due 
to the richness of PDLFs used for the synthesis. As expected, 
the results of QPAL with N = 1,2  are unreliable because 
the PALPV model does not account for the modeling errors 
(note if 6i (M,8)  is included as a uncertainty, QPAL with 
N = 1 , 2  can yield a reliable result, but the performance of 
the controller degrades). But QPAL with N 2 3 yields good 
reliable performance. Fig. 5 shows that GRIDl produces un- 
reliable results over quite dense grids (up to  N = 20) which 
indicates that GRIDl is very sensitive to  small modeling er- 
rors. A similar trend is also found in the QPALl approach 
(see the result of QPALl with N = 5). The sensitivity of 
the GRIDl technique is thus likely related to  the type of 
PDLFs used in the synthesis (a popular heuristic approach is 
to  select the PDLF for the grid technique so that it emulates 
the parameter-dependency of the nonlinear missile dynam- 
ics). However, our approach (QPAL) reduces the sensitivity 
of the technique by gridding the parameter space prior to  the 
synthesis and using a very general PDLF. 

5 Conclusions 

This paper presents an improved LMI formulation for the 
LCz-gain synthesis for an LPV system and its application to  
a missile autopilot design. The design process demonstrates 
that our technique yields less conservative and more reliable 

results in the missile autopilot design than the published ap- 
proaches. These improvements are attributed to the use of a 
more accurate model and a more general class of PDLFs. 
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