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Currently, only one drug, sorafenib, is FDA approved for the treatment of advanced hepato-
cellular carcinoma (HCC), achieving modest objective response rates while still conferring an
overall survival benefit. Unlike other solid tumors, no oncogenic addiction loops have been
validated as clinically actionable targets in HCC. Outcomes of HCC could potentially be
improved if critical molecular subclasses with distinct therapeutic vulnerabilities can be
identified, biomarkers that predict recurrence or progression early can be determined and key
epigenetic, genetic or microenvironment drivers that determine best response to a specific
targeting treatment can be uncovered.
Our group and others have examined the molecular heterogeneity of hepatocellular
carcinoma. We have developed a panel of patient derived xenograft models to enable focused
pre-clinical drug development of rationally designed therapies in specific molecular sub-
groups. We observed unique patterns, including synergies, of drug activity across our mole-
cularly diverse HCC xenografts, pointing to specific therapeutic vulnerabilities for individual
tumors. These efforts inform clinical trial designs and catalyze therapeutic development. It also
argues for efficient strategic allocation of patients into appropriate enriched clinical trials.
Here, we will discuss some of the recent important therapeutic studies in advanced HCC and
also some of the potential strategies to optimize clinical therapeutic development moving
forward.

© 2013 Published by Elsevier Inc.
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1. Introduction

Hepatocellular carcinoma (HCC) remains a major global
health problem [1]. It is the fifth most common cancer in
men, seventh in women and the third most common cause of
cancer deaths worldwide [2]. In 2008, approximately 749,000
new cases of HCC were diagnosed and 695,000 deaths were
attributed to HCC. There is distinct geographical variation
with the majority of the cases (85%) occurring in developing
countries in East Asia and sub-Saharan Africa and lower
incidence rates in Australia, Northern Europe and America
[3,4].
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The pathogenesis of HCC is composed of a multistep
progression involving chronic inflammation, hyperplasia,
dysplasia and finally malignant transformation. Cirrhosis is
present in 80% to 90% of patients with HCC. The main risk
factors for development of HCC are therefore related to the
formation and progression of cirrhosis. Chronic hepatitis B
(HBV) infection is the predominant etiological agent ac-
counting for approximately half of all cases of HCC. HBV is
endemic in high incidence regions across China and Africa.
HBV also accounts for a large proportion of HCC cases among
Asian Americans. Hepatitis C infection (HCV) confers a 15–20
fold increased risk of HCC and accounts for the majority of
cases in Japan, United States and parts of Europe. HCC related
to HCV has become the fastest-rising cause of cancer-related
death in the United States. Metabolic causes leading to
non-alcoholic fatty liver disease are also an increasing con-
cern. The other risk factors for HCC can be classified as toxins
f therapeutic drug development for hepatocellular carcinoma,
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(aflatoxin B1, alcohol), metabolic diseases (non-alcoholic
fatty liver disease, diabetes), hereditary diseases (hemochro-
matosis) and immune related diseases (autoimmune hepa-
titis and primary biliary cirrhosis) [5,6].

Despite decades of research in HCC, prognosis still re-
mains poor. Only 20% of the patients with HCC are amenable
to curative strategies such as resection, transplantation or
local therapy with radiofrequency ablation [7]. Another 20%
have multifocal lesions for which locoregional modalities
such as transarterial chemoembolization (TACE) [8,9] or
selective internal radiotherapy (SIRT) [10–12] can be em-
ployed. The majority of patients are not candidates for cura-
tive treatment or loco-regional approaches and will receive
systemic therapy if they have adequate hepatic reserves and
good functional status [7,13]. Due to the underlying liver
dysfunction, many patients do not receive any anti-cancer
therapy and are palliated with symptom control and best
supportive care.

Substantial efforts have been made to molecularly charac-
terize HCC and rationally develop targeted therapeutics in HCC.
Unlike other solid tumors, there are no oncogenic addiction
loops that have successfully completed the journey from
bench to bedside as validated therapeutic targets in HCC [14].
Despite that, only one drug, sorafenib, is FDA approved for
the treatment of advanced HCC, achieving modest objective
response rates while still conferring an overall survival benefit.
In this review, we describe the current landscape of drug
development in HCC in light of its molecular heterogeneity,
present the available evidence in support of stratified therapy
for HCC and discuss potential strategies to accelerate this
process by optimizing clinical trials design.

2. Current therapeutic landscape in advanced HCC

2.1. Chemotherapy in HCC

The impact of systemic chemotherapy is limited in HCC
patients because of cirrhotic livers and potentially poor
hepatic reserves. Specific complications of cirrhosis such
as thrombocytopenia also compromise effective delivery of
systemic chemotherapy. Several phase II trials with various
chemotherapy agents such as doxorubicin, gemcitabine and
capecitabine have reported modest results. Among these
agents, anthracyclines such as doxorubicin appear to have
the most activity, with response rate of 20% and a median
survival of 4 months [15–20].

2.2. Combination chemotherapy in HCC

Combination chemotherapy is employed in HCC to obtain
a radiological response and can still be employed for quicker
palliation. A retrospective multi-center series of 210 patients
reported that gemcitabine with oxaliplatin led to an objective
response rate of 21% (WHO criteria) and disease control rate
of 62%. In addition, 10% of patients had responses that made
secondary “curative-intent” surgical therapies possible.

The phase 3 EACH study randomized 371 Asian patients
with advanced HCC to open-label FOLFOX4 regimen (5-
fluorouracil and leucovorin plus oxaliplatin) or single-agent
doxorubicin, crossover was not permitted [21]. Objective
response rate (8.2% vs. 2.7%) and disease control rate (52% vs.
Please cite this article as: Chong DQ, et al, The evolving landscape o
Contemp Clin Trials (2013), http://dx.doi.org/10.1016/j.cct.2013.03
32%) were superior with FOLFOX4. The study's pre-specified
final analysis, conducted after 266 deaths in the intent-to-
treat population, showed a trend toward better median
overall survival (the primary end point) among patients
treated with FOLFOX4, compared with doxorubicin (6.40 vs.
4.97 months; hazard ratio (HR) 0.79; p = 0.07 using a
stratified log-rank test). Statistical significance (p = 0.0425)
was achieved at the post hoc analysis conducted after
additional follow-up of 7 months and 305 deaths (HR, 0.79;
p = 0.04). However, there have been statistical concerns
raised regarding the validity of this post-hoc analysis.

The combination of chemotherapy with immunotherapy
has also been evaluated. The only randomized phase III study
by Yeo et al. reported a response rate of 21% with PIAF
(cisplatin, doxorubicin, interferon, and fluorouracil) and a
median overall survival of 8.7 months in patients with unre-
sectable HCC. However, PIAF did not result in a significant
survival benefit compared to doxorubicin and had signifi-
cantly more toxicities [22].
2.3. Sorafenib

Sorafenib is the first and only FDA approved drug for use in
advanced HCC. It inhibits multiple receptors, namely VEGFR
1–3, PDGFR-B, c-KIT and Fms-related tyrosine kinase-3(FLT-3)
[23,24]. Sorafenib has been shown to inhibit angiogenesis,
induce apoptosis and inhibit the mTOR pathway in preclinical
studies [25]. FDA approval was based on the pivotal phase III
Sorafenib Hepatocellular Carcinoma Assessment Randomised
Protocol (SHARP) trial. Llovet et al. randomized 602 patients
(mainly from Europe) with unresectable advanced HCC with
Child-Pugh “A” score without prior systemic therapy to
sorafenib 400 mg BD (n = 299) or placebo (n = 303) [26].
Compared to placebo, sorafenib significantly prolonged time
to progression (TTP) from a median of 2.8 months to
5.5 months (HR 0.58) and overall survival (OS) from a median
of 7.9 months to 10.7 months (HR 0.69; 95% CI 0.55–0.87;
p b 0.001). This randomized trial clearly established the
survival benefit of sorafenib in advanced HCC. Notably, there
was no difference in the median time to symptomatic pro-
gression (TTSP), a co-primary end-point. A parallel study was
performed in 271 Asian patients with advanced HCC by Cheng
et al. which also showed a statistically significant improvement
of overall survival (HR 0.68; 95% CI 0.50–0.93; p = 0.014).
However, outcomes in both arms were poorer with a median
overall survival of 4.2 months in the placebo arm and
6.5 months with sorafenib therapy respectively. Median time
to progression (TTP) was 2.8 months in the sorafenib arm
compared to 1.4 months in the placebo arm. Akin to the SHARP
study, there was no significant difference in the time to
symptomatic progression [27]. The shorter time to progression
andmedian overall survival in the Asian study were postulated
to be due to the presence of more unfavorable prognostic
factors including higher incidence of hepatitis B infections (73%
vs. 12%) and more advanced disease with a higher proportion
of extra-hepatic metastasis.

Of note, both trials required Child-Pugh class A score as an
inclusion criteria. There are no randomized data regarding
efficacy of sorafenib in Child-Pugh B patients. A phase II study
by Abou-Alfa that included patients with Child-Pugh B status
f therapeutic drug development for hepatocellular carcinoma,
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suggests similar drug exposures (as measured by AUC of
sorafenib) [28,29]. Child-Pugh B status patients tend to have
greater risk of encephalopathy or ascites, although these
might be related to the underlying liver disease or be drug
related. The GIDEON expanded access program also provides
information regarding sorafenib in Child-Pugh B status
patients [29].
2.4. Combining sorafenib with chemotherapy

Sorafenib was combined with doxorubicin in a random-
ized phase II trial by Abou-Alfa et al. [30]. Ninety-six patients
with advanced HCC and Child-Pugh A disease were random-
ized to receive intravenous doxorubicin 60 mg/m2 every
21 days and sorafenib or placebo 400 mg BD per day. Out-
comes favored the combination arm (sorafenib and Doxoru-
bicin) with an overall survival of 13.7 months compared to
6.5 months in the Doxorubicin group, and progression free
survival (PFS) 6 months in the combination arm versus
2.7 months in the doxorubicin arm. Toxicity profiles ap-
peared manageable. This study suggests possible synergy
of doxorubicin and sorafenib. An ongoing phase 3 trial is
evaluating sorafenib and doxorubicin versus sorafenib alone
(NCT01015833).

A single arm phase II study (SECOX) by Yau et al. eval-
uated the efficacy of sorafenib combined with capecitabine
and oxaliplatin [31]. The investigators reported an objective
response rate of 16% and median overall survival of
11.8 months. A phase III trial underway comparing this
SECOX combination with sorafenib monotherapy is currently
ongoing.
2.5. Moving beyond sorafenib

Drug development in HCC seeks to capitalize on molecular
studies which point to several key signaling pathways in
HCC. These include the epidermal growth factor (EGF)/EGF
receptor (EGFR), vascular endothelial growth factor (VEGF)/
VEGF receptor (VEGFR), platelet-derived growth factor (PDGF)/
PDGF receptor (PDGFR), fibroblast growth factor (FGF)-2,
insulin-like growth factor (IGF)/IGF receptor (IGFR), and the
Ras/Raf/mitogen-extracellular activated protein kinase (MEK)/
extracellular signal-regulated kinase (ERK), Wnt/β-catenin, and
phosphatidylinositol-3- kinase (PI3K)/phosphatase and tensin
homolog deleted on chromosome ten (PTEN)/Akt/mammalian
target of rapamycin (mTOR) signaling pathways [32]. Beyond
tumor factors, HCC is a vascular angiogenic tumor. Targeting
angiogenesis in HCC focuses on several key mediators including
vascular endothelial growth factor (VEGF), platelet derived
growth factor (PDGF), angiopoietin (ANG) and fibroblast growth
factor (FGF).

To translate molecular studies towards therapeutic ad-
vances beyond sorafenib, drug development in HCC has taken
2 parallel tracks. In the first line setting, novel treatment
options are developed either as monotherapy for head to
head comparison with sorafenib or as combination therapy
together with sorafenib. In the second line setting, novel
therapeutics are being developed as monotherapy usually
with placebo as the control arm.
Please cite this article as: Chong DQ, et al, The evolving landscape o
Contemp Clin Trials (2013), http://dx.doi.org/10.1016/j.cct.2013.03
2.6. Targeting angiogenesis (VEGFR, PDGFR, FDGFR)

VEGF, PDGF and FGF are paramount mediators of neo-
vascularization and invasiveness in HCC [33–35]. Upregu-
lation of VEGF expression has been demonstrated in
oncogenesis and activation of VEGFR, in particular VEGFR-2
drives angiogenesis [36]. The overexpression of PDGF has
also been shown to promote angiogenesis and increase the
potential for metastasis [37,38]. FGF is highly expressed in
HCC. It promotes cell proliferation via an autocrine mecha-
nism [39,40] and has been shown to augment the angiogenic
effect of VEGF [40].

Although originally identified as a Raf kinase inhibitor,
sorafenib's activity in HCC is believed to be due to inhibition
of VEGFR [41].Other inhibitors of VEGFR have also been
developed in HCC including sunitinib, linifanib, brivanib and
ramucirumab. We have summarized HCC studies using these
agents in Table 1.

Sunitinib is an oral multi-kinase inhibitor of VEGFR,
PDGFR and the stem cell factor receptor (KIT) approved for
treatment of advanced renal cell carcinoma (RCC) and
gastrointestinal tumor (GIST) [42,43]. Preclinical studies by
our group confirmed its angiogenic activity with suppression
of five HCC xenografts [44]. Modest activity was reported in
several phase 2 trials but when tested in a randomized phase
III trial (SUN 11700) by Cheng A et al., sunitinib at 37.5 mg
daily had a more adverse events and inferior survival com-
pared to sorafenib alone [45]. Thus, this study was terminat-
ed early. Of note, the median overall survival outcomes
observed with sorafenib were replicated once again in this
large global phase 3 trial.

Linifanib (ABT-689) is another potent and selective muti-
kinase inhibitor that targets both VEGFR and PDGFR [46]. We
reported a phase II open label multicenter study of ABT-689
in 44 patients with advanced HCC [47]. Linifanib dosed at
0.25 mg/kg daily in patients with Child Pugh A disease and
every other day in patients with Child Pugh B disease
resulted in a response rate of 8.7% and OS of 295 days for
CP A patients. A phase III study comparing linifanib versus
sorafenib in advanced HCC has shown equivalence in overall
survival between the two drugs although linifanib fared
better in ORR and TTP (ASCO GI 2013).

Bevacizumab, a recombinant humanized monoclonal
antibody against all isoforms of VEGF disrupts the autocrine
and paracrine signaling mediated by VEGFR by blocking
the binding of VEGF to its receptors [48]. Bevacizumab has
been shown to decrease vessel density and prolong time to
progression in HCC xenografts [49]. A phase 2 trial of
bevacizumab monotherapy dosed at 5 mg/kg or 10 mg/kg
once every 2 weeks in 46 patients reported a response rate of
13%, median progression free survival (PFS) of 6.9 months
and median OS of 12.4 months [50]. There are currently no
phase III trials evaluating Bevacizumab as monotherapy but it
has been combined with chemotherapy in several phase 2
trials. These are summarized in Table 2.

Ramucirumab (IMC-1121B) is a recombinant human
monoclonal antibody against VEGFR 2. A phase II trial by
Zhu et al. dosed ramucirumab at 8 mg/kg every 2 weeks as
first-line monotherapy in 42 patients with advanced HCC,
reporting response rates of 10% with a median PFS of
4 months and median OS of 12 months [51]. An ongoing
f therapeutic drug development for hepatocellular carcinoma,
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Table 1
Summary of VEGFR inhibitors.

Agent Study Phase Comparator Response PFS (months) OS (months) Ad se events

Sorafenib SHARP
Llovet et al. [26]

III
(n = 602)

Placebo 2% PR
No CR

5.5 vs. 2.8 (TTP) 10.7 vs. 7.9 Dia ea (39%), HFS (21%)

Cheng et al. [27] III (n = 271) Placebo – 2.8 vs. 1.4 (TTP) 6.5 vs. 4.2 HF 5%), diarrhea (26%), rash (20%), fatigue (20%)
Abou Alfa et al. [28] II

(n = 137)
– 8% PR/MR

34% SD
4.2 (TTP) 9.2 G3 HFS (5.1%), diarrhea (8%), fatigue (9.5%)

Sorafenib +
Doxorubicin

Abou Alfa et al. [30] II
(n = 96)

Placebo +
Doxorubicin

– 6.4 vs. 2.8 (TTP) 13.7 vs. 6.5 –

Sorafenib +
Erlotinib

SEARCH [85] III
(n = 720)

Sorafenib +
Placebo

DCR 44% vs. 52.5% 3.2 vs. 4.0 (TTP) 9.5 vs. 8.5 Sim r toxicity profiles compared to single agents

Sunitinib Cheng et al. [45] III
(n = 1074)

Sorafenib – 3.6 vs. 2.9 8.1 vs. 10 G3
Su nib: thrombocytopenia (19%), neutropenia (16%)
Sor nib: skin disorders (21%)

Zhu et al. [138] II
(n = 34)

– 2.9% PR 38.5% SD 3.9 9.8 De ged LFT (18%), lymphopenia (15%), neutropenia,
thr bocytopenia, fatigue (12%), HFS (6%)

Faivre et al. [139] II
(n = 37)

– 2.7% PR 35% SD 3.7 8 G3 Thrombocytopenia (37.8%), neutropenia (24.3%),
ast ia (13.5%), anemia (10%),
HF 0%)

Linifanib
(ABT-869)

Toh et al. [47] II
(n = 44)

– 9.1% RR 3.7 (TTP) 9.7 G3 hypertension (25%), fatigue (14%)

Brivanib Park et al. [55] II
(n = 55)

– 1.8% CR
5.5% PR
40% SD

2.7 10 G3 fatigue (16%), AST elevation (19%), hyponatremia (41%)

Cediranib
(AZD2171)

Alberts et al. [140] II
(n = 28)

– 0% RR 2.8 (TTP) 5.8 G3 fatigue (46%), anorexia (25%), hypertension (21%),
ele ed AST (18%)

TSU-68 Kanai et al. [141] II
(n = 35)

– 5.7% PR
42.8% SD

2.1 (TTP) 13.1 Dia ea, anorexia, abdominal pain, malaise, edema, transaminitis

Pazopanib Yau et al. [142] I
(n = 28)

– 73% PR/SD – – Dia ea, skin hypopigmentation, AST elevation

Lenalidomide Safran et al. [143] II
(n = 13)

– 15% PR/CR – – –

Ramucirumab Zhu et al. [51] II
(n = 43)

– 10% RR
60% SD
70% DCR

4 12 G3 fatigue (10%), GI bleed (7%), hypertension (12%),
inf on-related (5%), headache (2%)

Axitinib NCT01210495 II – – – – –

Valatinib+
Doxorubicin

Yau et al. [144] I/II
(n = 27)

26% PR – 5.4 7.3 –

Dovitinib NCT01232296 II Sorafenib – – –

RR: overall response rate, MR: minor response, PR: partial response, SD: stable disease, CR: complete response, DCR: disease control rate, PFS: progression ee survival, TTP: time to progression, OS: overall survival, AEs:
adverse events, HFS: hand–foot syndrome, BGIT: bleeding gastrointestinal tract, G3/4: grade 3 and 4.
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Table 2
Summary of bevacizumab studies.

Agent Study Phase Comparator Response PFS
(months)

OS (months) Adverse events

Bevacizumab Siegel et al. [50] II
(n = 46)

– 13% RR 6.9 1 year OS: 53%
2 years OS: 28%
3 years OS: 23%

G3/4 hypertension (15%),
thrombosis (6%),
hemorrhage (11%)

Bevacizumab +
gemcitabine +
oxaliplatin

Zhu et al. [145] II
(n = 33)

– 20% RR
27% SD

5.3 9.6 Neutropenia, leukopenia,
transaminitis,
hypertension, fatigue

Bevacizumab +
Capecitabine

Hsu et al. [146] II
(n = 45)

– 9% RR
52% DCR

2.7 5.9 G3/4: diarrhea (4%),
BGIT (9%), HFS (9%)

Bevacizumab +
Capecitabine +
Oxaliplatin

Sun et al. [147] II
(n = 40)

– 20% PR
78% DCR

6.8 9.8 Neurotoxicity, fatigue

Bevacizumab +
Erlotinib

Thom-as et al.
[84]

II
(n = 40)

– 25% RR 9.8 17 Fatigue (20%), BGIT (13%),
hypertension (15%)

RR: overall response rate, MR: minor response, PR: partial response, SD: stable disease, CR: complete response, DCR: disease control rate, PFS: progression-free
survival, TTP: time to progression, OS: overall survival, AEs: adverse events, HFS: hand–foot syndrome, BGIT: bleeding gastrointestinal tract, G3/4: grade 3 and 4.
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phase III trial (REACH) is investigating the efficacy of ramu-
cirumab in sorafenib refractory patients (NCT01140347).

2.7. Inhibitors that also target the FGF pathway

Emerging data from pre-clinical murine models and
correlative studies in HCC patients suggest that resistance to
angiogenic agents is attributable to upregulation of FGF
induced by VEGFR inhibition driven hypoxia [33,34,52,53].
Several novel tyrosine kinase inhibitors (TKIs) that inhibit
the FGF pathway such as brivanib, dovitinib and TSU-68 are
being evaluated in HCC.

Our group evaluated the antineoplastic role of brivanib, a
selective dual inhibitor of VEGFR and FGFR in six HCC
xenograft models [54]. The use of brivanib has led to
decreased phosphorylated VEGFR-2 at Tyr (1054/1059),
inhibition of cell proliferation and tumor growth and
increased apoptosis. In the first line setting, a phase 2 trial
evaluated brivanib at 800 mg daily in 55 patients, reporting
an objective response rate of 25% by mRECIST for HCC,
median PFS of 2.7 months (95% CI: 1.4–3 months) and
median OS of 10 months (95% CI: 6.8–15.2 months) [55]. In
the second line setting after failure of one prior angiogenic
inhibitor, a phase 2 trial reported median PFS of 2.7 months
and OS of 9.8 months [56]. However, in both settings,
subsequent phase III trials were negative. The BRISK-FL trial
comparing brivanib against sorafenib in the first line setting
failed to meet its primary overall survival end-point.
Similarly, brivanib did not improve OS as 2nd-line therapy
compared with placebo in the BRISK-PS trial.

2.8. C-met inhibition

C-met is a receptor tyrosine kinase [57] with hepatocyte
growth factor (HGF), also known as scatter factor (SF), as the
natural ligand [58]. C-met activation leads to activation of
downstream effector pathways (PI3K/AKT/MTOR, RAF/MEK/
ERK) promoting cell survival, invasion and proliferation
[59–61]. Overexpression of c-met has been demonstrated in
20%–48% of human HCC samples in various clinical trials and
is associated with higher proliferation and worse prognosis
[62].
Please cite this article as: Chong DQ, et al, The evolving landscape o
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Much excitement regarding c-met inhibition emerged
from the 2012 American Society of Clinical Oncology
meeting when 2 trials of c-met inhibitors reported promising
results. Tivantinib (ARQ 197) is a selective non-adenosine
triphosphate-competitive c-met inhibitor. In a randomized
phase 2 trial of tivantinib vs. placebo is 2nd line HCC,
time-to-tumor progression was increased from 6 weeks to
6.9 weeks (HR 0.64; p = 0.04) in the ITT population but OS
was unchanged [62]. However, in the pre-defined c-met
high subgroup analysis, median OS was 7.2 months in the
tivantinib arm (n = 22) and 3.8 months (n = 15) in the
placebo arm to (HR 0.38; p = 0.01), median TTP was
2.9 months in the tivantinib arm and 1.5 months in the
placebo arm (HR 0.43; p = 0.03). With the caveat that the
observations were based on small numbers, these results are
highly encouraging. In the next trial, cabozantinib (XL184), a
dual c-MET and VEGFR inhibitor was evaluated in a
randomized discontinuation study [63]. Out of 41 patients,
3 had PR and overall disease control rate was 71%. The
median PFS was 4.2 months. A phase II trial comparing this
agent to placebo in the second line setting is currently
ongoing (NCT00988741). Our group has also demonstrated
significant anti-tumor and anti-angiogenic activities of
foretinib, a VEGFR-2 and c-met inhibitor in patient derived
HCC xenograft models. Foretinib induces G2/M cell cycle
arrest, inhibits HGF, induces cell migration and proliferation
and induces apoptosis in both orthotopic and ectopic HCC
models. Mouse survival was also significantly prolonged in
the orthotopic model [64]. A phase 1/2 open label, multicen-
ter trial is ongoing (NCT00920192). Based on these results,
c-met inhibition appears to be the most promising target
currently in advanced HCC.

2.9. Targeting the PI3K/AKT/MTOR pathway

The PI3K/AKT/MTOR pathway plays an important role in
HCC etiology [65]. Dysregulation of the PI3K/AKT/MTOR
pathway has been reported in 40%–60% of human HCC
[65–69]. Activation occurs primarily through PIK3CA muta-
tions and PTEN loss and is associated with a poor prognosis
[66,70,71]. Downregulation of PTEN expression occurs in
20%–30% of HCC patients and is frequently due to the loss of
f therapeutic drug development for hepatocellular carcinoma,
.013
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heterozygosity of PTEN [72,73] or PTEN promoter methyla-
tion [74]. Activation of this pathway regulates phosphorylat-
ed p70S6 serine–threonine kinase (S6K1) and translational
repressor protein PHAS-1/4E-BP which in turn regulates
expression of VEGF, c-myc, and cyclin D1. In addition, 4E-BP1
and S6K1 have been associated with higher tumor grade. This
led to the advent of developing drugs that can target this
pathway at different levels. The most promising of which are
MTOR inhibitors. Zhu AX et al. reported a phase 2 trial of
everolimus in 28 patients with advanced HCC. The disease
control rate was 44% and median overall survival was
8.4 months with the use of everolimus [75]. A phase III
study EVOLVE-1 is underway investigating the efficacy of
everolimus versus placebo in patients who have either
progressed or are intolerant of sorafenib (NCT01035229).
Several studies have suggested increased efficacy with com-
bination therapy, rapamycin plus sorafenib [76], rapamycin
plus AZD6244 [77] and rapamycin plus bevacizumab [78].
The above encouraging results form the future landscape for
further clinical investigation.

2.10. Targeting EGFR

EGFR belongs to the ERB family of tyrosine kinase re-
ceptors. Ligand binding by TGF-α and EGF leads to dimeriza-
tion and activation of downstream signaling pathways (PI3K/
AKT/MTOR, RAS/RAF/MEK/ERK) [79–81]. EGFR is commonly
upregulated in HCC and has been demonstrated to play an
important role in oncogenesis in preclinical studies via
activation of the Ras/RAF/MEK/ERK and PI3K/AKT/MTOR
pathways. Targeting EGFR can be achieved with extracellular
neutralizing monoclonal antibodies such as cetuximab or
panitumumab or intracellulary via receptor tyrosine kinase
inhibitors such as gefitinib and erlotinib. These agents, as
monotherapy reported dismal results with regards to re-
sponse rates and survival [82]. The studies evaluating these
agents in HCC are summarized in Table 3.

In the phase II study by Phillip et al. of 38 patients treated
with erlotinib at 150 mg daily, 3 (9%) had PR and 59% had
disease control. The median OS was 13 months [83]. Another
phase II study by Thomas et al. evaluated the efficacy and
Table 3
Summary of EGFR tyrosine kinase inhibitors.

Agent Study Phase Comparator Response PF

Erlotinib Philip
et al. [83]

II
(n = 38)

– 8% PR
59% DCR

32
(6

Thomas
et al. [84]

II
(n = 40)

– 0% PR/CR
43% DCR

43

Gefitinib O’Dwyer
[148]

II
(n = 31)

– 3% PR
22% SD

2.

Lapatinib Ramanathan
et al. [87]

II
(n = 40)

– 5% RR 2.

Bekaii et al.
[88]

II
(n = 26)

– 0% RR
40% SD

1.

Cetuximab Zhu et al.
[149]

II
(n = 30)

– 0% CR/PR
17% SD

1.

Gruenwald
et al. [150]

II
(n = 32, 27 evaluable)

– 0% CR/PR
44.4% SD

2

RR: overall response rate, MR: minor response, PR: partial response, SD: stable dise
survival, TTP: time to progression, OS: overall survival, AEs: adverse events, HFS: ha
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safety of erlotinib in 40 patients. There were no complete or
partial responses but 17 (42.5%) achieved stable disease. PFS
at 16 weeks was 43% with a median OS of 10.75 months [84].
The randomized, double-blind, placebo-controlled phase III
trial of sorafenib plus erlotinib (SEARCH) as upfront treat-
ment of HCC was reported at the European Society for
Medical Oncology meeting in 2012. The addition of erlotinib
did not improve OS (the primary end point) or PFS [85].

Erlortinib was also combined with bevacizumab in
advanced HCC in a phase 2 trial by Thomas et al. [86]. The
objective response rate was 25% with an impressive median
PFS of 9.8 months and OS of 17 months. There is an ongoing
phase 2 trial evaluating the efficacy of this combination
compared to sorafenib in the first line treatment of patients
with advanced HCC (NCT00881751).

Lapatinib is a dual inhibitor of EGFR and HER-2/NEU
tyrosine kinase. In 2 single arm trials, lapatinib in advanced
HCC achieved not more than 5% responses and median OS of
6.2 months [87] and 12.6 months [88].

2.11. Targeting the RAF/MEK/ERK pathway

The mitogenic Ras/Raf/MEK/ERK signaling pathway plays
a crucial role in cell proliferation, survival and apoptosis [89].
Proteins encoded by HBV and HCV genome have been dem-
onstrated to activate the Ras/Raf/MEK/ERK pathway [90–93].
Repression of the pathway by overexpression of negative
regulators such as Ras inhibitors Sprouty and its related
proteins and Raf kinase inhibitor protein (RKIP) have also
been reported [94–98]. Fifty percent of the biopsies of HCC
demonstrated overexpression of the Raf-1 and 100% had
increased Raf-1 protein activation [99]. Pathway activity as
evaluated by ERK activation is a poor prognostic factor in HCC
[90]. We have reported the activity of a selective MEK1/2
inhibitor AZD6244 (selumetinib) on human HCC xenografts
with induction of apoptosis and reduction in tumor progres-
sion in vitro [100]. In a multicenter, single arm phase II study
by O Neil et al. Selumetinib was administered orally at a dose
of 100 mg twice a day. Median PFS of 1.4 months andmedian
OS of 4.2 months in patients with advanced HCC were
observed but no radiologic responses were reported with
S (months) OS
(months)

Adverse events

%
months PFS)

13 Diarrhea (13%), skin toxicity (8%)

% (16 weeks PFS) 10.8 Well tolerated

8 6.5 G3/4 neutropenia (10%), G3 rash (6%),
G3 diarrhea (1%)

3 6.2 Well tolerated

9 12.6 Diarrhea (73%), nausea (54%), rash (42%)

4 9.6 G3 AST elevation (3%), hypomagnesaemia
(3%), fever without neutropenia (3%)

(TTP) – Well tolerated

ase, CR: complete response, DCR: disease control rate, PFS: progression-free
nd–foot syndrome, BGIT: bleeding gastrointestinal tract, G3/4: grade 3 and 4
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the use of selumetinib [101]. There are currently two phase
1/2 studies evaluating combination therapy with MEK
inhibitors, AZD6244 and sorafenib (NCT01029418) and
RDEA119 and sorafenib (NCT00785226).

2.12. Targeting the Jak/Stat pathway

Multiple cytokines and growth factors participate in the
activation of this pathway which in turn leads to cell
proliferation and apoptosis [102]. HCC cells expressed phos-
phorylated Jak and Tyk2 tyrosine kinases and had increased
activation of Stat [94]. Thus, inhibitors of Jak/Stat signaling
are promising therapeutic agents in the treatment of HCC and
this requires further validation studies.

2.13. Targeting epigenetic regulation of HCC

2.13.1. Targeting epigenetic dysregulation
Epigenetic dysregulation of the HCC genome via cytosine-

guanine dinucleotide (GpG) hypermethylation or histone
deacetylation repression of gene expression downregulates
tumor suppressor genes [103,104]. Preclinical studies suggest
apoptotic activity of histone deacetylase inhibitors (HDAC
inhibitors) in HCC [105–107]. Belinostat is a novel histone
deacetylase inhibitor. A phase I/II study by Yeo W et al.
investigating belinostat in patients with advanced HCC re-
ported a disease control rate of 47.6%, median PFS of
2.6 months (95% CI: 1.55–3.17 months) and a median overall
survival of 6.6 months (95% CI: 4.53–11.60 months) [108].

2.13.2. Other pathways under investigation
A subset of HCC is characterized by activation of the

IGF-signaling pathway which contributes to invasiveness and
cell proliferation [109–111]. Of the HCC, 16%–40% overexpress
IGF-II and 30% overexpress IGF-R [112,113]. Activation of the
IGF pathway results in the activation of downstream signaling
pathways including Ras/Raf/MEK/ERK, PI3K/Akt/mTOR and
Jak/Stat [114]. They thus serve as attractive targets for multi-
blockade regimens. MK-0646, a monoclonal antibody against
IGFR has been shown to decrease downstream effector pro-
teins (phosphorylated AKT and S6 kinase) and tumor prolifer-
ation [115]. In a phase 2 study, the use of another monoclonal
antibody IMC-A12 in a patient with refractory HCC resulted in
stabilization of disease for 9 months [116]. This pathway can
potentially serve as a target for personalized treatment of HCC.

The WNT/β-catenin signaling cascade is another pathway
that plays a role in hepatocarcinogenesis. β-catenin gene
mutation has been demonstrated in 20%–40% of HCC samples
[117–119] and is associated with nuclear translocation and
activation of target genes that regulate proliferation and
apoptosis. Inhibition of this pathway in HCC with either
CTNNB1 or AXIN mutations with antibodies against WNT or
with inhibitors of upstream events such as the Fzd-Dvl com-
plex formation and B-catenin/Lef/Tcf transcriptional complex
remains a viable therapeutic option [120].

HCC is thought to be auxotrophic for arginine due to lack
of expression of argininosuccinate synthetase (ASS) [121].
This dependence on exogenous arginine makes them sus-
ceptible to arginine depleting agents [121–123]. A phase 2
study has reported the antitumor activity of pegylated
recombinant human arginase in vivo and in vitro [124].
Please cite this article as: Chong DQ, et al, The evolving landscape o
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Early preclinical studies have also demonstrated that
hedgehog pathway signaling is involved in the pathogenesis
of HCC [125–127].

Some studies have shown specific CD8(+) T-cell re-
sponses against tumor associated antigens (TAA) in patients
with HCC and a clinical benefit with infiltration of T cells,
suggesting a possible role for immunotherapy [128]. Toll-like
receptor 3 (TLR3) activation has been shown to increase cell
death, promote NK activation and cytotoxicity in vitro and in
vivo. TLR3 expression also correlates with improved survival
of HCC patients (hazard ratio of survival 2.1; p = 0.002)
and serves as a potential target for immunotherapy [129].
Ongoing immunocompetent HCC mouse studies are encour-
aging for single agent TLR3 agonist efficacy against HCC
(unpublished data).

Recent studies have also demonstrated that a subpopula-
tion of cancer cells possess stem cell properties, called cancer
stem cells (CSCs) and these are responsible for growth and
metastasis of HCC [130–133]. Therapeutic targeting of CSCs
may provide a novel strategy that is more effective than the
current drugs targeting the bulk mature cancer cells in
treatment of HCC.

Collectively, molecular characterization of HCC and its
microenvironment offers a host of potential targets for
rational therapeutic intervention to halt tumor progression.

2.13.3. Combining targeted therapies with sorafenib
The next step beyond sorafenib monotherapy involves

exploring the synergism of combining it with other targeted
agents. Martell et al. reported the results of a phase 1 study of
tivantinib, an oral, selective MET inhibitor with sorafenib
with an overall response rate of 10% and PFS of 3.5 months
[134]. Another phase 2 study by Lim et al. evaluated the role
of combining a MEK inhibitor (BAY 86-9766) with sorafenib
in unresectable HCC [135]. Disease control rate was 43%
and median PFS was 4.1 months. In another study, Kelley
et al. reported the results of the combination treatment of
temsirolimus with sorafenib in treatment naive HCC patients
and in this study, 10% had partial response and 52% stable
disease [136].

3. Common themes

Two major themes have emerged from intense investiga-
tions in HCC over the last decade. First, large phase 3 trials
in unselected populations commenced on marginal early
phase data, were uniformly negative. Second, given its vast
molecular heterogeneity, it is unlikely that targeted therapy
will benefit all patients with HCC. Thus, a strategy of stratified
medicine is advocated in HCC. This approach requires
segmenting the population by identifying predictive bio-
markers and evaluating therapy in subgroups of patients
predicted to benefit from specific therapy.

4. Strategies/Methodology

4.1. Novel trial designs

This new paradigm of stratified medicine poses substan-
tial statistical challenges. In the past, drug approval was
based on the rejection of a single null hypothesis evaluated in
f therapeutic drug development for hepatocellular carcinoma,
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all eligible patients with a particular cancer. For targeted
therapy in a heterogeneous tumor like HCC, this will be
inefficient or completely ineffective. When based on prelim-
inary data, treatment effect is anticipated to be strongest in a
marker defined subgroup; several novel trial designs have
been proposed.

4.1.1. Sequential testing strategies
A sequential testing approach evaluates the primary

hypothesis in the overall population first and then in a
prospectively planned subset, or in the marker-defined
subgroup first, and subsequently in the entire population
[137]. Both sequences can appropriately control for the type I
error rates provided the marker has sufficiently large pre-
valence to allow adequate power to test the treatment effect
in the subgroups.

4.1.2. Marker by treatment interaction design
In this design, only patients with a valid marker result are

randomized with the randomization stratified by marker
status. Sample size is prospectively specified separately
within each marker-based subgroup, allowing conclusions
to be drawn in each subgroup. Accrual to the more prevalent
subgroup will be completed prior to the less common
subgroup.

4.1.3. Adaptive accrual design
Similar to the previous design, the trial begins with

accrual to marker positive and marker negative subgroups.
However, an interim futility threshold is prespecified. At
interim analysis, if the treatment effect in either subgroup
fails to exceed a futility boundary, accrual to that subgroup is
terminated. Accrual to the remaining subgroup continues but
now also including the planned number of patients that were
initially intended to be included from the terminated
subgroup such that the planned total sample size remains
the same. While this strategy terminates accrual of patients
unlikely to benefit from treatment early, it could lead to
substantial increase in the number of patients that have to be
screened and the accrual duration particularly if the selected
subgroup is of low prevalence.

4.1.4. Adaptive allocation design
This is a very complex design which uses a Bayesian

hierarchical framework that integrates outcome from accu-
mulated data from the trial to adaptively assign subsequent
patients to experimental treatments based on the biomarker
status. It is workable for any number of distinct drug
treatments under an umbrella protocol although more
treatment arms will exponentially increase its complexity.

The employment of the adaptive accrual and adaptive
allocation designs in HCC is challenging because they require a
rapid and reliable end point. Objective response rates are
sporadic even in efficacious treatment like sorafenib and
progression free survival correlates poorly with overall sur-
vival. Almost all ongoing HCC trials have a significant com-
ponent of biomarker studies incorporated into them. Until
now, finding a reliable biomarker that can predict treatment
response and thus, treatment choice for the individual patient
in HCC remains elusive. Beyond the substantial statistical and
Please cite this article as: Chong DQ, et al, The evolving landscape o
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endpoint issues, logistics and timeliness of data flow are also
challenging.

5. Conclusions

There is clearly an unmet need in HCC beyond sorafenib.
The development of targeted therapeutics for HCC remains
an uphill task. Over the past decades, only sorafenib proved
to have modest clinical benefit. The underlying mechanisms
of the pathogenesis of HCC remain complex and elusive and
this is further complicated by the heterogeneity of HCC
tumors and its stroma. Currently, there are many ongoing
studies that seek to leverage on molecular profiling of HCC to
develop potential predictive biomarkers of HCC that inform
personalized targeted treatment. The optimal choice of a trial
design takes into context known characteristics of the
predictive biomarker.
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