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Case History

Moisture estimation within a mine heap: An application
of cokriging with assay data and electrical resistivity

Dale Rucker’

ABSTRACT

Cokriging has been applied to estimate the distribution of
moisture within a rock pile of low-grade gold ore, or heap. Along
with the primary data set of gravimetric moisture content ob-
tained from drilling, electrical resistivity was used to supplement
the estimation procedure by supplying a secondary data set. The
effectiveness of the cokriging method was determined by com-
paring the results to kriging the moisture data alone and through
least-squares regression (LSR) modeling of colocated resistivity
and moisture. In general, the wells from which moisture data
were derived were separated by distances far greater than the hor-
izontal correlation scale. The kriging results showed that regions
generally undersampled by drilling reverted to the mean of the
moisture data. The LSR technique, which provides a simple

transformation of resistivity to moisture, converted the low resis-
tivity to highmoisture, and vice versa. The sparse well locations
created a high degree of uncertainty in the transformed data set.
Extreme resistivity values produced nonphysical moisture val-
ues, either negative for the linear model or values greater than
one for the power model. The cokriging application, which con-
siders the correlation scale and secondary data, produced the best
results, as indicated through the cross validation. The mean and
variance of the cokriged moisture were closer to the measured
moisture, and the bias in the residuals was the lowest. The appli-
cation likely could be improved through optimal well placement,
whereby the resistivity results guide the drilling program through
gross target characterization, and the moisture estimation could
be updated iteratively.

INTRODUCTION

Modern mining relies on the heap leaching process to extract met-
al from rock (e.g., Burkin, 2001; Han, 2002). Heap leaching is a
method of applying a dilute aqueous ionic solution to the surface of a
pile of prepared ore (Juvonen and Kontas, 1999). Ore preparation
can include crushing, agglomeration, or run-of-mine (ROM), de-
pending on the geology and amount of fine-grained material. The
leachate is allowed to percolate through the pile to solubilize and
mobilize the metal (Crundwell and Godorr, 1997; De Andrade Lima
and Hodouin, 2005; Bouffard and Dixon, 2007), and the leaching so-
lution is either acidic or basic, depending on the metal. A basic sodi-
um cyanide solution, for example, is used to extract gold by forming
aurocyanide (Habashi, 1966; Marsden and House, 1992). Gold ex-
traction can be enhanced also by pretreatment with biological agents
or through roasting (Iglesias and Carranza, 1994). Beneath the heap,

a liner and drainage pipe network collects the pregnant leach solu-
tion (PLS) for final processing, including solvent extraction and
electrowinning.

The application rate of leaching solution to the surface of a heap is
approximately 5 to 15 L/h per square meter of surface area, and ef-
fective leaching of the ore is impacted greatly by the types of geolog-
ic materials used in the construction, how they were placed, and the
degree of fines. In general, heaps are large heterogeneous rock piles
of differing geologic media taken from various parts of an open pit
(see Kennedy, 1990). The heap at the Round Mountain Mine in cen-
tral Nevada, for example, spans approximately 1600 m by 800 m
and is more than 150 m tall, with gold occurring in tuff, limestone,
and quaternary alluvium (Mills, 1985). These different types of de-
posits have their own grain-size distribution and controlling factors
for lixiviant flow.
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B12 Rucker

Ineffective leaching within the heap typically is the result of fac-
tors that can include the tendency of finer-grained material to com-
pact into confining zones, wetting front instability, and channeling
along “fractures” of well-sorted, coarse-grained material (Kunkel
and Arnold, 2008). The creation of confining zones, for example,
causes pooling and shading. The pooling of lixiviant occurs when
solution accumulates above the confining zone, where the hydraulic
conductivity of the zone is sufficiently low that percolation through
the zone occurs at very large time scales. The pooling then causes ad-
ditional water to cascade around the confining zone and create a
shading effect immediately below. The shaded region remains rela-
tively dry, reducing the total volume of leached ore. Large confining
zones therefore reduce the total effectiveness of the heap and leave
large metal inventories in place.

Targeting the dry zones with a secondary leaching application,
such as Hydro-Jex (Seal, 2004, 2007), increases the yield and effi-
ciency of a heap. The secondary leaching process consists of drilling
and casing holes within a heap, perforating the casing at specific
depth intervals, and injecting leachate at high pressures within each
depth interval using a straddle packer. The challenge then becomes
the characterization of the heap and effective well siting. Given the
cost of well drilling and assaying, indiscriminate well placement
could absorb the additional profit gained through secondary recov-
ery.

Heap characterization can be conducted through direct and indi-
rect means. Direct characterization includes hard information ob-
tained from assay results during drilling. Indirect characterization
can include inexpensive geophysical surveys, and the mining indus-
try has relied traditionally on geophysics, primarily for the initial ex-
ploration of mineral resources. Geophysics, however, can be applied
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Figure 1. Site location of the North Area Leach (NAL) pad, north of
Carlin, Nevada, U.S.A. Coordinates are in Nevada State Plane,
meters, North American datum of 1927.

to near-surface problems to understand more fully the distribution of
resources and moisture in an engineered earth. Examples of geo-
physics applied to engineered structures include levees (Asch et al.,
2008), dams (Osazuwa and Chinedu, 2008), and foundations (Dong
et al., 2008). The geophysical data usually are considered soft, as
unique relationships between the geophysical property and the de-
sired heap property (water content, gold concentration, and so on)
are rare. Many competing factors can give rise to similar values of
the measured geophysical property, and it is necessary to combine
the hard and soft data to form a complete conceptual model of the
subsurface.

In this study, we present a method of combining hard assay data
and soft geophysical data for characterizing an active heap using
geostatistics. The assay data include gravimetric water content
(mass-based moisture content as defined in Topp and Ferré, 2002),
and the geophysical data include electrical resistivity, acquired
along transects on the surface of the heap and inverse modeled using
a 3D resistivity code. This study follows an approach similar to
Parks and Bentley (1996), whereby several geostatistical methods
are tested and compared, including kriging of the assay data alone,
least-squares regression (LSR) of the assay and resistivity data, and
cokriging of the assay and resistivity data. Although geophysical
characterization of waste rock piles is shown in the literature (e.g.,
Campos et al., 2003; Gloaguen et al., 2007; Poisson et al., 2009), this
study explores an active heap to help increase gold production by
providing the means for better well siting for secondary recovery
methods.

SITE DESCRIPTION

Figure 1 shows the site location of the North Area Leach (NAL)
pad at Newmont Mining Corporation’s Carlin, Nevada, operations.
The mine is 20 miles north of Carlin, Nevada, U.S.A. The NAL pad
was constructed in 1987 to process low-grade oxide gold ores mined
from multiple open pits on the Carlin Trend. It was constructed as a
fully lined facility in a series of phased expansions.

The heap under investigation was underlaid with synthetic liners
placed directly on a prepared native soil base. An underdrain solu-
tion collection system, composed of four-inch perforated polyvinyl
chloride (PVC) pipe, lies on top of the synthetic liner. The ore con-
sisted of ROM and crushed rock. Since 2004, however, only ROM
ore has been placed. Lime is added directly to the ore and to the lix-
iviant to increase the pH for effective gold removal. The ore is placed
by end dumping from 250-ton trucks in nominal 10-meter lifts with
an ultimate heap height of 100 meters.

Gold is leached from the ore with a dilute sodium cyanide solu-
tion, which is applied to the surface of the heap using drip emitters.
Typical solution application rates of 12.2 L/h/m? are used with a
primary leach cycle lasting 90 to 120 days. Total barren solution
flows from the heap at a rate of approximately 1.82 X 10° L/h. Gold
isrecovered from the pregnant solution by means of a carbon-in-col-
umn (CIC) plant. As of December 2008, more than 208 million tons
have been placed, from which three million ounces of gold have
been recovered. The heap construction and leaching process is simi-
lar to that of pads on adjacent properties (see Bhakta and Arthur,
2002).

It is suspected that a significant quantity of gold remains in the
heap, prompting Newmont to consider secondary recovery using

Downloaded 20 Jan 2010 to 150.135.239.97. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Moisture estimation within a mine heap B13

pressurized injections (Rucker et al., 2009b). The injections are used
to push lixiviant into unleached or minimally leached zones through
perforated wells. To site the wells better for secondary recovery,
drilling and assaying along with electrical resistivity imaging were
conducted on the pad. Twenty-nine wells were placed as low as a
depth of 60 m below the pad surface (BPS), and samples were ex-
tracted and characterized every 1.5 m for gravimetric moisture con-
tent, gold, pH, and other information.

Actotal of 983 samples were used to characterize the pad with hard
data. The moisture content ranged from very dry (0.005 g/g) to
moist (0.28 g/g). The aurocyanide concentration ranged from 1
X 10~* ounces per ton of ore (OPT) to 6.21 X 10~2 OPT. Economi-
cally, aurocyanide concentrations greater than 6 X 10~2 OPT are of
interest at NAL, which accounted for 186 samples. The pH generally
was between 7 and 10 with a few values falling below 7 and a few
near 11. The average pH was 8.15. Figure 2 shows the assay data for
wells 13 and 24 at NAL. The data appear rather heterogeneous, with
moisture in particular changing dramatically over very short dis-
tances.

For this work, we chose the geostatistical method of ordinary
kriging to estimate the distribution of moisture in the heap. Kriging
uses a weighted linear combination of neighboring values to esti-
mate the value at the unsampled location. The following section de-
scribes the theory and results of kriging moisture data over the heap.

We are at an advantage, however, because we also have a 3D rep-
resentation of electrical resistivity over a portion of the pad, which
can be used for cokriging the hard and soft data together, assuming
that the two data sets have some spatial correlation. Figure 1 shows
the outline of the resistivity area in the center of the pad. Cokriging is
similar to kriging, whereby a weighted linear combination of hard
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and soft data is used to calculate the value at the unsampled location.
The cokriging method also can accommodate either type of data that
do not necessarily coexist at the same location, allowing for the high-
ly resolved resistivity to be incorporated with low-resolution assays.

THEORY

Geostatistics

Geostatistics offers a way of describing the spatial continuity of
natural phenomena and providing a means of interpolation (or ex-
trapolation) at an unsampled location u, (Isaaks and Srivastava,
1989). For the kriging and cokriging methods, the variogram or co-
variance functions are used to estimate the spatial continuity of the
sample population. These functions aim to measure the average de-
gree of dissimilarity between an unsampled value z(u) and a nearby
data value z(u + h) (Deutsch and Journel, 1992), where £ is the lag
between the two data points. Typically, larger lags equate to greater
dissimilarity between data values.

The covariance is defined for a set of paired data at a given lag as

Cov(z(u),z(u + h))
= C%(h)

_ (1) S (elu); — 20) G+ h); — Za+ ), (1)

i=1

where 7 is the total number of data pairs and the bar notation refers to
the mean. In general, the covariance relates how each data value dif-
fers from its mean, and a large positive covariance value equates to
the paired data responding similarly to their mean (both increasing
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Figure 2. Example data distribution of moisture, leachable gold (as aurocyanide), and pH within two wells, 13 and 24. A moisture content of

0.005 is dry, whereas 0.28 is moist ore.
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or decreasing at the same rate). The covariance at 7 = 0 is the vari-
ance.

Equation 1 can be applied at many different lags to produce an ex-
perimental covariance function, which commonly is plotted as
C*(0) — C*(h). The experimental covariance function can be repre-
sented by a mathematical covariance model, and for this work we
primarily used the spherical model,

C(0) — C=(h)
(cf — 68)[

ch+ ¢

3h 1(h
2a° 2

3
7) ] +¢f, ifh<a
&

k]

if h=a

(2)

where ¢, is the nugget for the covariance model of z, ¢, is the sill,
and a¢ is the range. The nugget describes the discontinuity at the ori-
gin of the covariance function resulting from short scale variability.
The sill is the plateau of the covariance function, and the range is the
distance to which the covariance function reaches the sill. The spher-
ical model in general is the most popular model (Isaaks and Srivas-
tava, 1989), but it was chosen here because of its linear behavior near
the origin.

The ordinary kriging method uses the covariance model to formu-
late the weights used in the estimation procedure. The unknown
sample z, is calculated by

0= 2 Wi (3)

i=1

where w represents the vector of weights for all known samples. The
weights are calculated so that

Ewi:L (4)

i=1

to ensure an unbiased estimator. The covariance model of equation 2
then is used with equation 4 to formulate a set of linear equations of
the form (Isaaks and Srivastava, 1989)

Cu Cy, 1 wi Cio
or = , (5)
Cnl Crm 1 Wy Cn()
1 -~ 1 0 M 1

where C;; is the covariance for data z; and z; at a separation of /;; and
w is the Lagrange parameter (Isaaks and Srivastava, 1989). The
right-hand side of equation 5 is the covariance between z; and un-
sampled z.

To demonstrate, the moisture data from all wells at NAL were
kriged over the domain encompassing the resistivity measurements.
The spherical covariance function was used:

aZ aZ
C=(0) — C=(h) = ¢§ + sph(1 . ) + s.ph<2 Z)
1€1 2C]

40
i _ (= — . -3
C¥(0) — C<(h) = 0.4-10 +Sph(0.4'10_3>

100 ) ©)
0.03-1073)°

+ Sph(
where Sph indicates the spherical form of the covariance model.
Multiple models can be compounded, where, for example, the first
spherical covariance model operates in the range (,a°) of 0 to 40 m,
and the second spherical covariance model operates in the range of
40 to 100 m (,a°); ,¢,* is the sill for the first range of ,a%, and ,¢,* is
the sill for the second range. Beyond 100 m, the covariance flattens
toavalueof¢cy® + ¢,° + ,¢ /%

Figure 3 shows the results of the kriging as a slice through the heap
at a constant elevation of 1790 m above mean sea level (approxi-
mately 15 m BPS). Figure 3a is the covariance function and the
model fit to the covariance function as described in equation 6. The
experimental covariance function is smoothly varying out to about
40 m, which is the average depth for the wells. Beyond 40 m, the co-
variance function is quite noisy, and the range and sill for the larger
lags were estimated by judgment. The initial 40-m range of the first
spherical model coincides with the average length of the wells, sug-
gesting that there is more consistency in the vertical than in the later-
al direction.

Figure 3b shows the kriging results for a horizontal slice through
the heap at a constant elevation of 1790 m. The MATLAB program
COKRI (Marcotte, 1991, 1993) was used to krige the data at 1680 lo-
cations on the planar surface (coincident with electrode locations de-
scribed in geophysical surveying methodology). For the isolated
wells in the western and northern regions, the moisture content
shows rings around the wells that extend about 40 m. Greater than
40 m, the moisture is roughly the mean of all moisture measure-
ments. For the cluster of wells in the eastern region, greater variabili-
ty is seen immediately around and between the wells. Away from the
well cluster, the moisture returns to a mean value, suggesting that an
accurate assay-based characterization of this heap likely would re-
quire wells placed every 30 to 40 m.

Cross validation is a means of testing the covariance model and
kriging method by serially estimating the unknown value at an al-
ready sampled location. The sampled value is removed from the
population, and the estimated result is compared to the true value.
Figure 3c shows the results of the cross validation by removing a sin-
gle measurement point for reestimation. The scatter plot shows arel-
atively good fit considering the heterogeneous nature of the parame-
ter. However, because the point measurements are separated by only
1.5 m along the length of the well, measurements above and below
the removed sample strongly influence the outcome. Furthermore,
the point-based cross validation says nothing about regions that gen-
erally are underrepresented. The methodology presented in Figure
3d helps to overcome this by removing measured values from an en-
tire well. All values within the well then are reestimated, and Table 1
lists the statistics for the outcome of this procedure. Clearly, the
modeled moisture from kriging reverts to values near the mean, but
the variance of the modeled moisture is quite low. There also is a
slight bias in the residuals.
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Cokriging

Moisture estimation within a mine heap

Cokriging is similar to kriging, whereby the weighting of primary
and secondary (or hard and soft) data remains a linear process:
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where v represents the soft data, m is the total number of soft data
available for cokriging, and A is the weighting factor on the soft data.
The weights are formulated through covariance models, and cokrig-
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Figure 3. Kriging of moisture data, (a) experimental covariance function and covariance model for moisture, (b) modeled moisture contours at
an elevation of 1790 m, (c) cross-validation results from a point-based removal procedure, (d) cross-validation results from a well-based remov-
al procedure. The term lag refers to the distance between data pairs; C(0) — C(h) is the variance minus the covariance of the data pairs separated
by alag of . Coordinates are in Nevada State Plane, meters, North American datum of 1927.

Table 1. Cross-validated moisture statistics.

Variance
Mean of of

Data Mean Variance residuals residuals rms
Measured 0.068 0.00064

Kriged (well based) 0.057 0.000011 —0.010 0.00061 0.0266
LSR: Linear fit 0.106 0.0055 0.037 0.0053 1.43
LSR: Power fit 0.089 0.0064 0.022 0.0062 1.58
Cokriged (well based) 0.061 0.000065 —0.0072 0.00063 0.0261
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ing with two variables requires three models to be generated: one co-
variance model for the primary, one for the secondary, and a cross-
covariance model describing the relationship between the primary
and secondary variables. The cross-covariance is described by

Cov(z(u),v(u + h)) = C*(h)

= (%) > (z(w); — 7)) (w(u + h),;

i=1
—0(u+h) (8)

For the cokriging method to be valid and avoid negative varianc-
es, the linear model of coregionalization must be used (Ahmed and
de Marsily, 1993). The linear model of coregionalization places re-
strictions on the covariance model (all models must be of the same
type), as well as the values for the sill, nugget, and range that can be
used in the cross-covariance model,

cy = (cpep)
ci’ =(cic}),
a’=(a‘a’), 9)

where the superscript zv indicates the cross-covariance model pa-
rameter, z indicates the primary model parameter, and v indicates the
secondary model parameter. One way to help overcome the restric-
tions of the linear model of coregionalization is to scale the second-
ary data by the mean of the primary data (Parks and Bentley, 1996).
An example of the cokriging method is presented after introducing
the electrical resistivity data.

Electrical resistivity

The resistivity method uses electric current (/) that is injected into
the earth through one pair of electrodes (transmitting dipole) and
measures the resultant voltage potential (V) across another pair of
electrodes (receiving dipole). The scalar spatial voltage distribution
can be modeled with Poisson’s equation (Dey and Morrison, 1979):

d 19V a1V Jd(1aVv
== === === =1 (0
dx\p dx dy\p dy dz\p dz

where p is the spatially heterogeneous resistivity. The electric cur-

rent is generated by battery-driven or motor-generator-driven equip-
ment. Field data are acquired using a multielectrode array along lin-

Table 2. Array comparisons for the AGI SuperSting R8 with 56 electrodes,

80-ms time window, and two repeat cycles.

ear transects. A multielectrode array enables rapid data acquisition
over a large area with minimal reconfiguration of equipment. Com-
mon array configurations include Wenner, Schlumberger, and di-
pole-dipole arrays.

The Advanced Geosciences Inc. (AGI) system, the SuperSting
R8, offers another option, which AGI refers to as the gradient array
(AGI, 2008). The gradient array is similar to the Wenner and
Schlumberger arrays because the current electrode pair is placed on
the two outer electrodes of the basic four-electrode setup, and the
voltage is measured on the inner pair. The progression of measure-
ments occurs by moving one current electrode forward along the ar-
ray and then measuring all adjacent voltage pairs inside the current
pair. When the roving current electrode reaches the end of the
transect, the other current electrode at the beginning of the line
moves forward incrementally and voltage is measured again on all
adjacent electrode pairs. The advantages of the gradient array are the
large number of measurements and its effective use of the number of
available channels on a multichanneled resistivity meter.

Table 2 lists the acquisition statistics for some different array
types, with parameters specific to the resistivity meter. For each ar-
ray comparison, 56 electrodes were used with a measure time of
800 ms using two cycles for repeat error estimation. Acquisition
with the gradient array almost doubles the amount of data while us-
ing, on average, 7.04 channels (of a total of 8) per reading. The disad-
vantages of the gradient array are the long acquisition time and the
difficulty in conducting a roll along.

After acquisition, the data are preprocessed to remove obvious
bad measurements (negative voltages, extremely high voltages, data
with high repeat errors, and so on) resulting from random machine
error, bad electrode placement, or poor electrode contact with the
surrounding material. Unlike the other array types that can be plotted
in alogical pseudosection of apparent resistivities, the gradient array
does not have an intuitive plotting strategy of apparent resistivity. It
is difficult, therefore, to do a preassessment of the spatial arrange-
ment of gradient data prior to inverse modeling. Typically, these data
are inverse modeled to find outliers, outliers are removed, and the
subset of remaining data is remodeled. The process is repeated until
adesired goodness of fit is achieved.

The objective of the inversion is to minimize the difference S be-
tween the modeled and measured apparent resistivities, usually in a
least-squares sense. The general form of the objective function for
the resistivity inversion is based primarily on weighted least
squares:

S(m) = (dcalc - dmeas)TWd(dcalc - dmeas)’ (1 1)

where d_,, is the calculated voltage data from the numerical model-
ing at coincident locations with d,..s, Which rep-
resents the measured voltage. The expression W,
represents a weighted function based on the mea-

surement errors and is equal to the inverse of the

Number Number error covariance matrix. The objective function

Number of command of effective Acquisition time has been updated many times to include other

Array of data lines channels (h:mm) terms, such as smooth model constraints (i.e., a

. smooth model based on minimizing the second
Gradient 2809 399 7.04 0:57 spatial derivative of the resistivity).

Pole-pole 1540 217 7.1 0:31 For the inverse models completed on the New-

Pole-dipole 1485 210 7.07 0:30 mont Carlin NAL data, the smooth model criteri-

Dipole-dipole 1542 272 5.67 0:38 on was invoked, and the final objective function

Wenner-Schlumberger 1315 500 263 111 to be minimized for smooth model inversion is

represented by
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S(m) = (dcalc - dmeas)de(dcalc - dmeas)
+ A(m — my)’K(m — my), (12)

where the second term represents model smoothness, A is the damp-
ening factor, m is the model parameter of resistivity at every cell, m,
is the a priori information and/or initial starting guess, and K is the
difference operator for estimating model smoothness. Changes to
the previous model of resistivity distribution Am occur by

[JTWdJ + )‘K]Am = JTWd(dcalc - dmeas) - /\K(m - mO)
(13)

and

m;_ =ml+Am (14)

The (N X M)J matrix contains the derivative of the simulated data
measurements (n) with respect to the model parameters (m)
(Gunther et al., 2006).

In general, the automated inversion routine for inverse modeling
proceeds as follows:

1. The earth’s voltage data have been measured and are dis-
cretized into grid nodes using a finite-difference or finite-ele-
ment mesh. The meshing parameters depend on electrode spac-
ing. The inversion sets out to estimate the true resistivity at ev-
ery grid node.

2. Aninitial estimate of the subsurface properties is made based
on the literal translation of the pseudosection to a true resistivi-
ty, a constant value, or some other distribution from a priori in-
formation. The forward model runs with this initial estimate to
obtain the distribution of voltages in the subsurface. The root-
mean-square (rms) error is calculated between the measured
voltage and the calculated voltage.

3. Based on the degree of match between simulated and measured
voltages, the initial estimate of resistivity is changed and the
forward model is rerun. The iterative method is linearizing a
highly nonlinear problem using Newton’s method. Essentially,
the program solves the linearized problem to obtain the change
in modeled resistivity (Am) for the next iteration.

4. The resistivity model is updated using the general formula
m;,; = m; + Am, where m;, , is the resistivity in a model cell
at the next iteration, and m, is the current value.

5. Steps 3 and 4 are repeated until the rms error changes between
successive iterations are less than 10%.

The iterative nature of resistivity inversion is necessary because
equation 10 is nonlinear. A more complete discussion of resistivity
inversion and the methods by which the true resistivity is calculated
can be found in several sources, including Li and Oldenburg (1994),
LaBrecque et al. (1996), and Loke and Barker (1996).

GEOPHYSICAL SURVEY METHOD AND RESULTS

The electrical resistivity method was conducted with a multicon-
ductor cable and stainless steel electrodes. The acquisition was con-
ducted one line at a time to create a series of profiles of 2D data. Each
line was composed of 140 electrodes, with an electrode spacing of
3 m. Data were acquired using the gradient array for the 12 lines,
with a line spacing of 15 m. A total of 1680 electrode locations and

105,840 data values were collected on the heap over a period of six
days. After initial noise removal and filtering of substandard data,
the net data count was 81,242.

Although the electrical resistivity data were acquired along 2D
lines, the data can be combined into a 3D data set given proper geo-
referencing of the electrodes. For our study, the inversion code
EarthImager3DCL (or EI3DCL) by AGI was used to invert the NAL
pad resistivity data. The code uses the finite-element numerical
method and can incorporate topography. The meshing consisted of
tetrahedral elements with 108,976 core nodes (139 rows, 56 col-
umns, 14 layers) on which the electrical resistivity was calculated.
For this application, the processing computer system comprised a
Dell PowerEdge 6800 running Microsoft Windows Server 2003 64
-bit with four dual core Intel Xeon 7120 M processors (3 Ghz) and
32 GB of RAM. To reduce memory requirements, the data were ro-
tated 15.85° counterclockwise, which in effect reduced the number
of unique rows and columns in the model domain.

The inverse modeling occurred in two steps. The first step was an
initial inversion run with all data after preprocessing. This step re-
quired eight iterations to complete in approximately 32.5 hours. The
first iteration finished with an rms of 40.55; the last iteration finished
with an rms of 20.97. The results of the last iteration then were used
for final filtering to remove spurious data that did not fit the overall
trend of modeled versus measured voltage. The second step included
inverse modeling of a subset of data from the first step, whereby
measured voltage data with a difference greater than 20% from the
modeled data were removed. The final data count for step two was
65,501. Upon close inspection of the filtered data set used in the in-
version, the filtering removed 77 electrodes from the domain likely
caused by poor contact and high error, an additional 82 transmitter
electrodes (that still were used as receivers), and 37 receiver elec-
trodes (but still used as transmitters). There did not appear to be a
pattern or a specific region for the removal of data. The inversion of
the reduced data set resulted in the model completing in five itera-
tions to a final rms of 5.77.

Figure 4 shows the 3D distribution of electrical resistivity within
the heap. The modeled resistivity values of the heap range from
7.8 to 800 ohm-m, demonstrating that the heap is highly heteroge-
neous. The inversion model creates a solid block of cells, with each
cell having a resistivity value and hence a color associated to it. To
provide a means to look within the model, the solid block was sliced
horizontally at a depth of 1790 m in Figure 4a. The slice is color con-
toured with warm colors (red and yellow) representing high resistiv-
ity values and cool colors (blue and purple) representing low values.
An alternative view of the spatial distribution is to remove all data
above (or below) a set resistivity value and show the remaining pop-
ulation as a solid rendered body. Figure 4b shows a solid body of val-
ues less than 50 ohm-m, and Figure 4c shows a solid body of values
greater than 75 ohm-m. These opaque bodies are presented from
overhead and from the south side. Black lines represent the location
of electrodes from lines 1 through 12, which are draped over the sur-
face of the heap to give a perspective to the topography.

The distribution of resistivity within the heap shows high values
near the surface and in the center of the measurement area. The near
surface having high resistivity can be explained through evapotrans-
piration. High resistivity values can be seen also at breaks in slope on
the heap, which are labeled in Figure 4c. It can be reasoned further
that the bypassing of leachate along the toe of the heap is caused by a
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capillary barrier created by a dipping, fine-grained rock layer over-
lain on a coarse-grained rock (Rucker et al., 2009a). Low resistivity
values, on the other hand, are more common for rock with higher
moisture content. The distribution of low resistivity material is ob-
served to be along segregated portions of the measured area and ex-
tend as low as the depth of investigation (about 70 m below the heap
surface). The depth of investigation is based on the sensitivity of the
model cells, and cells below 70 m contributed practically nothing to
the inversion procedure. The nature of the resistivity distribution in
Figure 4 could suggest preferential flow, whereby gravity drainage
along high-permeability zones allows the leachate to shortcut to the
drainage system and liner. Most low resistivity regions appear to
have a complete connection from top to bottom of the survey area.

MODELING OF ASSAY AND
RESISTIVITY DATA

Least-squares regression

Empirical relationships have been developed to describe the ob-
served bulk resistivity of rock cores to water saturation. For sand-
stones or other high resistivity rock with little to no surface-conduc-
tion effects, the Archie relationship can be used:

pr=ap,$ "S,", (15)

where p; is the resistivity of the rock with fractional saturation, n is
the saturation index, ¢ is the porosity, a and m are parameters to de-
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Figure 4. Electrical resistivity distribution within the NAL pad, showing (a) a horizontal slice at an elevation of 1790 m and solid model render-
ings of (b) low resistivity and (c) high resistivity material. Black lines draped across the surface in (b) and (c) represent electrode locations and
give an indication of topography. Coordinates are in Nevada State Plane, meters, North American datum of 1927.
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scribe the formation, and p,, is the resistivity of the water. Keller
(1988) suggests n =2 for sand, and many use this value for their
work (see Edwards, 1997; Dannovski and Yaramanci, 1999; Garam-
bois et al., 2002; Descloitres et al., 2008), whereas others observe
values less than n =2 (Taylor and Barker, 2006). Grellier et al.
(2008) use n = 2.5 for a landfill application, and Sen (1997) discuss-
es some reasons for n deviating from its “normal” value of n = 2.
Regardless, if m = n, then equation 15 can be reduced to

pi=ap,b," (16)

or

pt:apw(Dbag)inv (17)

where the substitution of ¢~"S, " is made for the volumetric water
content (#,). In equation 17, another substitution of gravimetric wa-
ter content is made for volumetric water content by incorporating the
bulk density (D;) in g/ m?. Guzman et al. (2008) describe several re-
lationships of dry bulk density as a function of heap height, where
the bulk density was observed to increase as much as 30% at 80 m
BPS.

Other popular petrophysical relationships that account for a con-
ductive matrix include the Waxman Smits (W-S) shaly sandstone
model (Waxman and Smits, 1968) and the Hanai-Bruggeman (H-B)
effective medium theory (Bussian, 1983), which are presented be-
low (in order) with a partial saturation term:

1 s"(1 B
_:i<_+&>’ (18)
p:  Fl\p, S,
R O e A
P = puS, "o <—d> ; (19)
1= pidpg

where in the W-S model of equation 18, F is the formation factor, Q,
is the cation exchange capacity per-unit pore volume, and B is the
equivalent ionic conductance of clay exchange ions. The remaining
term of equation 19 is p,, representing the dispersed-phase resistivi-
ty, and Taylor and Barker (2006) describe these equations in more
detail.

Although the petrophysical relationships were derived on core
samples, whereby all of the parameters that compose the relation-
ships are measured at the same scale, many have adopted them to
convert field-based resistivity back to a saturation (or water-content)
value. Singha and Gorelick (2006) summarize the complications
from this approach, including the mismatch in scale between mea-
surements and the decreased sensitivity of the method away from the
electrodes. They conclude that the field-scale relations between
electrical resistivity and the hydrogeologic parameter must be site,
survey, and inversion specific.

To accommodate these issues, further work summarized in
Singha et al. (2007) proposes two new approaches for field-based
petrophysics: the full inverse statistical calibration (FISt) and the
random field averaging (RFA) methods. Both methods appear to
provide a better calibration of the resistivity data by removing the
bias typically observed when applying equations 16—19. The FISt
method relies on geophysical modeling of hundreds of synthetic re-
alizations of the random distribution of the water content to create
petrophysical relationships at every location in space. The realiza-
tions and FISt method could be developed for the NAL pad because
the basic covariance model has been defined. However, inverse

modeling every realization would be too time-consuming, consider-
ing the 32.5 hours necessary to invert a single realization.

The RFA method is less time-consuming and requires only one re-
alization to be inverse modeled. In addition, the RFA method has the
same general restrictions necessary for cokriging (Gaussian distri-
bution of both parameters, stationarity, and the same basic covari-
ance model), making the application of RFA to the NAL data set ap-
pear doable and preferred. However, the method requires access to
internal matrices during the inversion process, namely, the model
resolution matrix R calculated through

R=[J'W,J+ aK] 'JTW,]. (20)

For commercial codes, access to the parameters necessary for cal-
culating R is either limited or nonexistent. For EI3DCL, there is no
access and hence we are stuck with reverting back to fitting relation-
ships to colocated measurements of the hard and soft data regardless
of their mismatch in scale. Figure 5a shows the 431 colocated resis-
tivity measurements for moisture and aurocyanide concentration.
The high sampling rate of 1.5 m within the borehole meant that sev-
eral moisture data values fell within a resistivity model cell. For this
exercise, each of these data was considered independently; that is,
several moisture values were compared to a single resistivity value.
Averaging all moisture values that fell within each resistivity block
was considered also, but that would have smoothed the moisture
data unnecessarily.

Figure 5 shows the results of least-squares regression (LSR) for
moisture and resistivity (presented here as electrical conductivity
[EC]). Figure 5a is the scatter of colocated EC versus moisture,
whereby two regression models have been developed: a linear and a
power function. The scatter generally shows a direct relationship be-
tween the two data, although weak. The power function model is an
obvious choice for a fit to the data, based on the form of equation 17.
The linear fitis based on a common methodology in science to relate
two variables; it is not based on a physical model. A high degree of
scatter appears to exist between the two variables, with a low corre-
lation coefficient for both models. In addition to the reasons given in
Singha and Gorelick (2006), other contributors of high scatter might
be the use of a univariate correlation and moisture sampling in non-
optimal locations. From equations 15, 18, and 19, the saturation pa-
rameter is used to describe the bulk resistivity relationship, which in-
corporates saturated water content (or porosity), residual water con-
tent, and tortuosity. Furthermore, the bulk density is a spatially vari-
able parameter. Therefore, Figure 5a might be a collapsed 1D view
of amultivariate relationship.

The second issue of nonoptimal sampling stems from the basics of
geophysics as a target recognition tool. For this problem, the targets
are high and low resistivity regions that might be indicative of pref-
erential flow into high-permeability and around low-permeability
zones. Figures 4 and 5b and d show the location of characterization/
stimulation wells into regions that mostly straddle the high and low
resistivity. The wells were placed prior to the geophysics, with the
result of an oversampling of the middle of the resistivity distribution.
The lowest 3.5% of the resistivity values (below 36 ohm-m), for ex-
ample, is not represented in the assay sampling, nor are values above
270 ohm-m found within the colocated data sets. Sampling the ex-
tremes could improve the relationship.

Figure 5b and d shows the conversion of resistivity to moisture for
the linear fit and power fit, respectively. Figure 5c and e shows the
equivalent of a cross validation, whereby the modeled moisture was
compared to the measured moisture for colocated values. The con-
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tours of modeled moisture within Figure 5b and d generally show the
same shape of high and low moisture. For the linear fit, the underrep-
resentation of high resistivity values caused the conversion to calcu-
late physically impossible negative moisture values. These were
truncated to a value of zero. For the power fit, the underrepresenta-
tion of the low resistivity caused physically impossible moisture val-
ues above 1, and these values were truncated to 0.5. The scatter plots
of Figure 5c and e focus on the physically reasonable moisture val-
ues between 0 and 0.3 g/ g, accounting for 78% of the data.

The plots show the typical bias observed in other studies (Day-
Lewis et al., 2005; Singha and Moysey, 2006), and Table 1 lists the
statistics for the conversion. Both models overestimate the mean and
variance of the moisture, and the residuals (modeled moisture-mea-
sured moisture) support the overestimation. The power model per-
forms marginally better than the linear model, with a lower bias as
demonstrated in the mean of the residuals.

Cokriging of moisture with resistivity

The spatial correlation of the moisture and resistivity data can be
estimated with the covariance function. Figure 6a shows the experi-

mental covariance function and covariance model for the EC, and
Figure 6b shows the cross-covariance information for the moisture
and EC. The EC data were rescaled to the mean of the moisture data.
The experimental covariance function for EC is smooth, and similar
covariance models for geophysical data are shown by Parks and
Bentley (1996). The spherical model was chosen to represent the co-
variance structure. The experimental cross-covariance function of
Figure 6b also is generally less noisy than the moisture covariance
function. There appears to be a reduction in C*(0) — C®(h) at lags
greater than 100 m, which likely is picking up on the sizable resistiv-
ity features that appear with a periodicity of about 100 m. At first
glance, the cross-covariance model appears to be a poor fit to the
shorter lags. The linear model of coregionalization forces the use of
particular parameters for the model, as described in equation 9.
Again, Parks and Bentley (1996) observe that the cross-covariance
model is not the best visual fit to the experimental data.

Using the covariance and cross-covariance models of Figures 3
and 6, the data were cokriged with the program COKRI, using the or-
dinary cokriging option. The program is run with several parameters
that control the number and distance of data to use in estimating the

moisture at unsampled locations. Two crucial pa-
rameters are the formulation of the “model” and
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Figure 5. (a) Scatter plot and models for colocated moisture and resistivity measure-
ments, (b) moisture distribution from resistivity transformation using the linear model at
an elevation of 1790 m, (c) validation of measured moisture versus modeled moisture for
the linear model, (d) moisture distribution from resistivity transformation using the pow-
er model at an elevation of 1790 m, (e) validation of measured moisture versus modeled
moisture for the power model. Coordinates are in Nevada State Plane, meters, North

American datum of 1927.

Northing (m)

second column consists of the ranges. Marcotte
(1991) describes in more detail how the matrices
are formulated.

Figure 6¢ shows the results of cokriging for
moisture over the heap. Again, the 1680 electrode
positions were used to establish the locations of
the unsampled moisture at an elevation of
1790 m. The results look markedly different from
the original kriged version of Figure 3 away from
the wells, and show some similarities to the re-
sults of Figure 5. The region near the cluster of
wells in the east shows the highest moisture, even

88900
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though this was not the site of the lowest resistivity. The north-south
banded nature of the resistivity in the western half of the survey area
is retained also in the cokriging results but generally shows lower
moisture. The region is undersampled relative to the east, likely con-
tributing to the estimated moisture being lower.

The cross-validation test results in Figure 6d and e show how well
the cokriging performed. For the point-based cross validation, the
results are quite similar to those of the kriging. There appears to be
sufficient support from the remaining moisture data within individu-

B21

al boreholes to reconstruct the missing data point. The resistivity
data add nothing for this interpolation. However, the real strength of
the cokriging method is seen in Figure 6e, in which the well-based
cross validation shows a much better performance than kriging and
LSR. Where kriging produced a flatline response with almost no
variability in unsampled data 40 m away from the measurement lo-
cation, and LSR produced nonphysical estimations with very high
variability, the cokriging method appears to be a hybrid of these two
methods. Cokriging produces higher variability than kriging with

physically meaningful moisture values. The sta-

tistics of Table 1 also show that the cokriging of
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measurements was shorter than the average well
spacing, making the kriged moisture appear rath-

Figure 6. Cokriging of moisture data using 3D electrical resistivity, (a) experimental co-
variance function and covariance model for a scaled electrical resistivity (as conductivi-
ty), (b) cross-covariance modeling of moisture and scaled electrical conductivity, (c)
moisture distribution from cokriging with moisture and conductivity at an elevation of
1790 m, (d) cross-validation results from a point-based removal procedure, (e) cross-val-
idation results from a well-based removal procedure. Coordinates are in Nevada State
Plane, meters, North American datum of 1927.

er homogeneous away from the sampling point.
At approximately 40 m away from the well, the
estimated moisture reverted to the average value
of the sampled data. This gave the kriged mois-
ture a bull’s-eye appearance around the well. The
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cokriging method provided a means for interwell interpolation. The
moisture from the LSR method mimics the resistivity distribution
because the method is conducted by simple transformation of the re-
sistivity. For this example, the LSR moisture produced physically
unrealistic values 20% of the time, and the ordinary cokriging meth-
od ensured that the estimated moisture falls within the bounds of the
measured moisture. The cross-validation results also revealed that
the cokriging method reproduced the mean and variance of the sam-
pled data much better than kriging or LSR, while also having the
lowest bias in the residuals. However, the general indirect relation-
ship between resistivity and moisture would allow the LSR method
to be a starting point for initial characterization of rock piles by guid-
ing the drilling program.

It is recommended that the cokriging with resistivity and assay
data be conducted iteratively by introducing the assay data as it be-
comes available. In this way, the moisture distribution can be updat-
ed to site new wells better. Even if the cokriging method cannot re-
produce with exact fidelity the moisture distribution of the pile, it
likely would locate the driest portions of the heap indicative of re-
gions bypassed during primary leaching. It is anticipated that the
savings in drilling through proper well siting would more than offset
the cost of geophysics.
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