Effect of TiO₂ on the Viscosity and Slag Structure in Blast Furnace Type Slags

Hyunsik Park, Jun-Young Park, Gi Hyun Kim, and Il Sohn*

TiO₂ additions up to 10 mass% behaved as a basic oxide and lowered the viscosity in the CaO-SiO₂-17 mass% Al₂O₃-10 mass% MgO-based slags by depolymerizing the silicate network structure. Raman spectroscopy revealed the sum of NBO/Si 1 and 3 decreased while the sum of NBO/Si 2 and 4 increased with TiO₂ content. Unlike the silicate structures, the aluminate structures seems to be relatively unaffected by TiO₂ additions according to the FTIR results. 5 mass% TiO₂ significantly decreased the viscosity compared to the TiO₂ free slags, but beyond 5 mass% TiO₂ meaningful changes in the viscosity was not observed. From the comparison of the viscosity at constant TiO₂ of 5 and 10 mass% and varying CaO/SiO₂ ratio, increasing the CaO/SiO₂ ratio was more effective in decreasing the viscosity than TiO₂ additions.

1. Introduction

Cost issues related to integrated steel mill operations and unavailability of high grade raw materials with high concentrations of iron has sparked interest in the use of other potential sources of iron bearing materials once regarded as uneconomical for the present day integrated steel mill operations. In particular, iron ores consisting of significant TiO₂ such as ilmenite is comparatively abundant in Australia and other parts of the world. These ores due to the high TiO₂ content may result in significant issues such as lower reduction degree of the ore, ^[1–4] variations in the liquidus temperature of the slag, ^[5–7] reduced refining capacity of the slag, ^[8–10] and slag viscosity deviations from optimum processing conditions.^[11–15]

However, potential benefits of TiO_2 in the blast furnace slags have also been realized from work done by Morizane et al.^[9] and others.^[15–18] By forming a protective layer of titanium carbo-nitride on the refractory brick, the premature failure and erosion of the hearth was found to be inhibited. Thus, both the thermophysical and chemical properties of the slag can change with TiO_2 additions and a fundamental

[*] J.-Y. Park, G. Hyun Kim, Prof. I. Sohn Materials Science and Engineering, Yonsei University Seoul 120-749, Korea Email: ilsohn@yonsei.ac.kr

H. Park

Department of Materials Science and Engineering, Formerly Research Assistant at the Research Institute of Iron and Steel Technology Yonsei University, New South Wales, Australia

DOI: 10.1002/srin.201100249

understanding on these topics, in particular the effect of viscosity, is essential to maintain and optimize the overall efficiency of the blast furnace operations.

Handfield and Charette^[12] showed small TiO₂ additions can decrease the slag viscosity, but large TiO₂ additions had the opposite effect. Ohno and Ross^[13] described TiO₂ additions to increase slag viscosity in the CaO-SiO2-Al2O3-TiO₂ slags under reducing conditions. Work done by Shankar et al.^[19] showed the effect of TiO₂ in the CaO-SiO₂-MgO-Al₂O₃ slag system under Ar, where TiO₂ up to 2 mass% decreased the viscosity at various fixed extended Vee ratio $[(CaO + MgO)/(SiO_2 + Al_2O_3)]$ between 0.46 and 0.83. Saito et al.^[14] also studied the effect of TiO_2 in the CaO-SiO₂-MgO-Al₂O₃ slag system at 10 and 20 mass% TiO₂ content. TiO₂ lowered the viscosity of the slag and the corresponding activation energy of viscous flow decreased with TiO₂ content. Thus, slag viscosity can be affected by the amount of TiO2 additions. However, to the knowledge of the authors, the viscosity data between 0 and 10 mass% TiO₂ is not well defined for blast furnace type slags and its correlation with the slag structure has yet to be fully understood.

Therefore, understanding and controlling the effects of TiO_2 on the viscosity of blast furnace type slags, when raw materials' containing significant amounts of TiO_2 such as ilmenite is utilized, would be essential in maintaining stable blast furnace operations. In this work, the influence of TiO_2 on the viscous behavior of calcium-silicate based slags with 17 mass% Al_2O_3 and 10 mass% MgO based slags have been studied using a rotating viscometer. To directly correlate the relationship between slag structure and viscosity, flux samples from the fully liquid region at 1773 K were quenched and analyzed using Fourier transform infra-red (FTIR) and Raman spectroscopy.

2. Experimental Methods

2.1. Materials

Slags were prepared using reagent grade chemicals of CaO, SiO₂, MgO, Al₂O₃, and TiO₂. Using a Pt-10 mass% Rh crucible, slags were premelted under $0.4 \,\mathrm{L\,min^{-1}}$ of Ar to obtain a homogeneous mixture of CaO–SiO₂–17 mass% Al₂O₃–10 mass% MgO. After 3 h, the homogenized samples were quenched and crushed for the primary experiments. Chemical composition of the post-experimental slags was analyzed using X-ray fluorescence (XRF) spectroscopy (S4 Explorer; Bruker AXS GmbH, Karlsruhe, Germany) and no apparent change was observed. Thus, the initial weighed mixture was taken as the slag composition. The experimental chemical composition is given in Table 1.

2.2. Apparatus and Procedure

The viscosity was measured using a rotating spindle connected to a calibrated Brookfield digital rheometer (LVDV-II+; Brookfield Engineering Laboratories, Middleboro, MA). The details of the experimental apparatus have been given elsewhere,^[20,21] but a schematic diagram is shown in **Figure 1**.

Samples weighing 120 g were prepared according to Table 1 and placed in a Pt-10 mass% Rh crucible (H: 60 mm, ID: 40 mm). Furnace temperature was calibrated using a reference B-type thermocouple and controlled within ± 3 K using a PID controller. Slag samples were heated to 1773 K and sufficiently held for more than an hour in an Ar gas atmosphere to achieve thermal equilibrium. Measurements were taken at each target temperature during a 5°C min⁻¹ cooling cycle after 30 min of

soaking and in the fully liquid region of the slag system well above the break temperature $(T_{\rm Br})$ of each slag composition. The break temperature has been described in detail by Kim and Sohn^[21] and Sridhar et al.^[22] Viscosity measurements taken at temperatures higher than the break temperature are assumed to be in the fully liquid region of the slag system, of which the present experimental measurements have been done. The break temperature can easily be identified using the example given in Figure 2 for the CaO-SiO₂-17 mass% Al₂O₃-10 mass% MgO-5 mass% TiO₂ slag at constant CaO/SiO₂ of 1.2. The natural logarithm of viscosity (ln η) as a function of reciprocal temperature (1/T) shows a significant increase below temperatures of 1598 K, which is the starting temperature for the formation of large solid precipitates. Viscosity measurements were also taken during a heating cycle of 5° C min⁻¹ and 30 min of soaking time, but no appreciable difference was found during measurements in the fully liquid region of the slag system and thus subsequent viscosity measurements were done during the cooling cycle.

After completing the viscosity measurements, slag samples were reheated to 1773 K and quenched on a water-cooled copper plate to confirm the slag structure using FTIR (Spectrum 100 Optica; Perkin-Elmer, USA) and Raman spectroscopy (PD-RSM300; Photon Design, Japan) with a 514 nm laser. Non-parametric baseline fitting routine was used and the deconvolution was performed by Peak Fit V4 (Systat Software Inc, USA). Sample removal from the hot zone of the furnace and pouring onto the copper plate took less than 10 s. Preliminary X-ray diffraction (XRD) analysis of the transparent samples resulted in negligible characteristic diffraction peaks indicating the sample to be amorphous and representative of the slags molten structural state. Wang and Cramb^[23] were also able

No.	Composition (mass%)					C/S	Viscosity (Pa s ⁻¹)							
-	CaO	SiO ₂	Al ₂ O ₃	MgO	TiO ₂		1325 (°C)	1350 (°C)	1375 (°C)	1400 ^{a)} (°C)	1425 (°C)	1450 ^{a)} (°C)	1475 (°C)	1500 ^{a)} (°C)
1	33.2	39.8	17	10	0	0.8	-	-	0.98	0.76	0.63	0.51	0.43	0.34
2	30.9	37.1	17	10	5	0.8	-	0.92	0.73	0.56	0.45	0.37	0.30	0.25
3	28.6	34.4	17	10	10	0.8	1.01	0.76	0.61	0.48	0.41	0.33	0.27	0.24
4	36.5	36.5	17	10	0	1.0	-	_	_	0.69	0.54	0.43	0.35	0.28
5	34.0	34.0	17	10	5	1.0	-	-	-	0.52	0.39	0.32	0.28	0.23
6	31.5	31.5	17	10	10	1.0	-	-	-	0.48	0.39	0.28	0.24	0.21
7	40.6	32.4	17	10	0	1.2				0.56	0.42	0.33	0.27	0.22
8	37.8	30.2	17	10	5	1.2	1.04	0.79	0.60	0.46	0.35	0.28	0.22	0.17
9			17	10	10	1.2	1.01	0.75	0.52	0.42	0.31	0.24	0.19	0.14

^{a)}Data provided by the authors in a previous publication for the calculation of the activation energy.^[24]

Table 1. Measured viscosities of CaO-SiO₂-Al₂O₃-MgO-TiO₂ slags.

Figure 1. Experimental apparatus for the slag viscosity measurements.

Figure 2. Break temperature (T_{Br}) for the CaO–SiO₂–17 mass% Al₂O₃–10 mass% MgO–5 mass% TiO₂ slag system at a fixed C/S ratio of 1.2. Break temperature was 1598 K (1325°C).

to obtain a completely amorphous sample on a watercooled copper plate, which was similar to the quenching method applied to the present study.

3. Results and Discussion

3.1. Effect of TiO₂ on the Viscosity

Figure 3 shows the viscosity of the CaO-SiO₂-17 mass% Al₂O₃-10 mass% MgO-based slag with TiO₂ additions and a constant CaO/SiO₂ of 1.0 at various temperatures from 1673 to 1773 K. Similar to previously published work by the authors^[24] at constant CaO/SiO₂ of 0.8, TiO₂ additions at 5 and 10 mass% decreased the viscosity at the temperature range of interest. The initial addition of TiO₂ of 5 mass% lowers the viscosity of the slag and the effect of the initial TiO₂ additions of 5 mass% seems to be more pronounced at lower temperatures and is evident from the linear slope between 0 and 5 mass% TiO₂. Further additions of TiO₂ above 5 mass% has only a slight or negligible effect in lowering the viscosity. According to work done by others,^[13,25] TiO₂ was suggested to be a weak acidic oxide in a basic slag system, which would increase the network structure of the slag by polymerizing the molten slag, and thus increasing the viscosity. However, the present results seem to show that TiO₂ additions decrease the viscosity, which contradicts the behavior of a network forming acidic oxide. Thus, the decrease in the viscosity with TiO₂ additions seems to suggest that TiO2 behaves as a basic oxide contrary to some results^[13,25] and subsequently depolymerizes the slags network structure.

Similar trends were also observed in Figure 4 for the CaO–SiO₂–17 mass% Al_2O_3 –10 mass% MgO–TiO₂ slag system at a fixed CaO/SiO₂ of 1.2. TiO₂ additions decreased

Figure 3. Effect of TiO_2 additions on the viscosity in the CaO– SiO_2 – $17 mass\% Al_2O_3$ –10 mass% MgO– $xTiO_2$ slag system at constant CaO/SiO₂ of 1.0 and various temperatures.

Figure 4. Effect of TiO_2 additions on the viscosity in the CaO– SiO_2 –17 mass% Al_2O_3 –10 mass% MgO– $xTiO_2$ slag system at constant CaO/SiO₂ of 1.2 and various temperatures.

the viscosity, but the initial effect of 5 mass% TiO_2 at higher basicities is not as pronounced as the slag at CaO/SiO₂ of 1.0. This dampened effect of TiO_2 at higher CaO/SiO₂ of 1.2 is likely due to the additional depolymerization caused by higher concentrations of CaO compared to the CaO/SiO₂ of 1.0.

 TiO_2 additions at constant temperatures of 1698 and 1773 K at CaO/SiO₂ ratio of 0.8 and 1.2 decreases the viscosity as observed in **Figure 5**. Similar to the results observed in Figure 3, comparison of the initial slope of 5 mass% TiO_2 additions and the slope between 5 and 10 mass% TiO_2 additions suggest the effect of TiO_2 additions becomes less pronounced after the slag becomes significantly depolymerized.

Figure 5. Effect of TiO_2 additions on the viscosity in the CaO– SiO_2 –17 mass% Al_2O_3 –10 mass% MgO– $xTiO_2$ slag system at various CaO/SiO₂ ratio.

3.2. Effect of CaO/SiO₂ on the Viscosity

The effect of CaO/SiO₂ at TiO₂ of 5 and 10 mass% at 1698 and 1748 K is shown in Figure 6. Regardless of the TiO₂ content and temperature, increased CaO/SiO₂ lowered the slag viscosity. Higher CaO/SiO2 ratio is likely to have depolymerized the slags silicate network structure and lowered the viscosity by providing additional free oxygen ions (O^{2-}) . TiO₂ additions of 5 and 10 mass% had comparatively less effect on lowering the viscosity than increasing the CaO/SiO₂ ratio. Considering the highly basic nature of CaO compared to TiO₂ as suggested by Banya^[26] using the ionoxygen attraction suggested by Ward,^[27] an increase in the CaO content should be more effective in depolymerizing the slag structure and lowering the viscosity compared to TiO2. Shankar et al.^[19] has also showed similar trends with higher CaO/SiO₂ in blast furnace type slags with lower MgO.

3.3. Effect of TiO_2 on the Slag Structure Using FTIR and Raman Spectroscopy

The FTIR results at constant CaO/SiO₂ of 0.8 and 1.2 is shown in **Figure** 7a,b, respectively, which further support the role of TiO₂ as a basic oxide and a network modifier. There are several characteristics of the FTIR results in TiO₂containing CaO–SiO₂–17 mass% Al₂O₃–10 mass% MgO quintenary slag systems. FTIR spectra of silicate slags are typically focused within the wavenumber region between 1200 and 400 cm⁻¹.^[20,28,29] This region represents the symmetric stretching vibration bands of the [SiO₄]tetrahedra, the asymmetric stretching vibrations of the [AlO₄]-tetrahedra, and the symmetric Si–O bending vibration bands, etc.

Figure 6. Effect of CaO/SiO₂ on the viscosity of the CaO–SiO₂– $17 \text{ mass} \text{\% Al}_2\text{O}_3$ –10 mass % MgO–TiO₂ slags at 1773 K.

Figure 7. FTIR result of as-quenched samples from 1773 K with varying TiO₂ concentration in CaO–SiO₂–17 mass% Al₂O₃–10 mass% MgO–TiO₂ slags at CaO/SiO₂ of a) 0.8 and b) 1.2.

The vibration band between the wavenumbers of 1200 and 800 cm^{-1} is the [SiO₄]-tetrahedra symmetric stretching vibration band, which are well known to be the convoluted band of the NBO/Si transmission troughs from NBO/Si of 1-4. This characteristic stretching vibration band for the large silicate network structures becomes less pronounced and the depth of the convoluted band becomes shallower with TiO₂ additions. NBO/Si is the non-bridged oxygen per unit silicon atom, where lower NBO/Si pertains to the more polymerized slag structure. According to Mysen et al.,^[30] NBO/Si assigned values from 1 to 4 are structurally defined as sheets (1100–1050 cm⁻¹), chains (980–950 cm⁻¹), dimers $(920-900 \text{ cm}^{-1})$, and monomers $(880-850 \text{ cm}^{-1})$, respectively. This decrease in the depth of the transmission trough indicates a depolymerization of the slag structure as suggested in previously published literature.^[20,21]

No significant differences could be ascertained from the asymmetric stretching vibration bands for [AlO₄]-tetrahedra. However, the depth of the symmetric Si–O bending

Figure 8. Deconvoluted Raman spectra of as-quenched samples from 1773 K with varying TiO₂ concentration in CaO–SiO₂– $17 \text{ mass} \text{\% Al}_2\text{O}_3$ –10 mass % MgO–TiO₂ slags at CaO/SiO₂=0.8.

vibration band from 600 to 520 cm^{-1} decreased with higher TiO₂ as shown in Figure 7a,b. Since the Si–O bending vibrations typically becomes more pronounced with a higher degree of polymerization, the decreased depth of the FTIR transmittance from 600 to 520 cm^{-1} further suggests that the slags are becoming depolymerized.^[31,32] Therefore, the FTIR analysis seems to suggest that TiO₂ depolymerizes the slag by modifying the silicate structure

of the slags, but has little or no effect on the aluminate structure of the slag for the present slag compositions.

The as-quenched slag structure was also studied using Raman spectroscopy. **Figure 8** shows the raw Raman spectra for the CaO–SiO₂–17 mass% Al₂O₃–10 mass% MgO-based slags containing 0–10 mass% TiO₂. Deconvolution of the Raman spectra qualitatively showed several [SiO₄]-tetrahedra peaks with symmetric stretching vibrations pertaining to NBO/Si of 1,2,3,4 and asymmetric stretching vibrations of NBO/Si 0 near 1040 and 1170 cm⁻¹. Ti–O–Ti stretching vibrations are observed near 830 cm^{-1.[33]} Integration of the deconvoluted spectra provides a semi-quantitative value of the various silicate species as a function of TiO₂ content, which is plotted in **Figure 9**a,b. According to the results of the deconvoluted Raman spectra, the sum of the NBO/Si of 1 and 3 decrease and the sum of the NBO/Si of 2 and 4 increase with TiO₂ additions.

The decrease in the sum of NBO/Si of 1 and 3 is an indication of depolymerization occurring within the silicate structure. The depolymerization mechanism can

Figure 9. Fraction of $[SiO_4]$ -tetrahedra stretching for various NBO/Si (1,2,3,4) species and Ti–O–Ti stretching at constant CaO/SiO₂ of a) 0.8 and b) 1.2.

Figure 10. Temperature dependence for the CaO–SiO₂–17 mass% Al₂O₃–10 mass% MgO–xTiO₂ slag system at CaO/SiO₂ of 1.2 and various TiO₂ content.

be speculated to occur by reaction $^{\left[1\right] }$ proposed by Mysen et al. $^{\left[30\right] }$

$$Q^1 + Q^3 \leftrightarrow 2Q^2 \tag{1}$$

Furthermore, the increment in the fraction of $[SiO_4]$ -tetrahedra species (NBO/Si = 1,2,3,4) was significant with an initial 5 mass% TiO₂ addition, but comparatively less effective in further modifying the fraction of NBO/Si species within the molten slag structure at 10 mass% TiO₂. This corresponds well with the observed viscosity changes observed in Figure 3 and 4.

3.4. Temperature Dependence and Activation Energy

Figure 10 shows the temperature dependence of the viscosity for the CaO–SiO₂–17 mass% Al₂O₃–10 mass% MgO–TiO₂ system at CaO/SiO₂ of 1.2, respectively. The viscosity decreases with increasing temperatures and using the Arrhenius type relationship the apparent activation energies for viscous flow in the various slag compositions were calculated to be between 226 and 262 kJ mol⁻¹.^[24]

4. Conclusion

In this study, the effect of TiO_2 on the viscosity in the fully liquid region of the CaO–SiO₂–17 mass% Al₂O₃–10 mass% MgO–TiO₂ slag system at various CaO/SiO₂ ratios was directly correlated with the slag structure revealed by FTIR and Raman.

 TiO_2 additions lowered the viscosity by affecting the silicate network structure, where the complex silicate sheets were depolymerized into simpler silicate structures,

but the aluminate structures seems to be relatively unaffected by TiO_2 additions. Both the Raman and FTIR analysis clearly indicate the depolymerization of the slag and closely correlates to the measured viscosity values with TiO_2 content. In addition, an increase in the CaO/SiO₂ ratio seems to be more effective in decreasing the viscosity compared to TiO_2 additions. From the temperature dependence at CaO/SiO₂ of 1.2, the activation energy of viscous flow was calculated between 226 and 260 kJ mol⁻¹ depending on the slag composition.

Acknowledgments

This study was partially supported by the Brain Korea 21 (BK21) Project at the Division of the Humantronics Information Materials and the National Science Foundation of Korea Project No.2010-8-2150 and 2011-8-0738.

Received: October 18, 2011

Keywords: TiO₂; viscosity; Raman; FTIR; slag; silicate; depolymerizing

References

- [1] T. Paananen, K. Kinnunen, Steel Res. Int. 2009, 80, 408.
- [2] M. V. C. Sastri, R. P. Viswanath, B. Viswanathan, Int. J. Hydrogen Energy 1982, 7, 951.
- [3] G. Li, J. Ma, H. Ni, Q. Shen, F. Tsukihashi, *ISIJ Int.* 2006, 46, 981.
- [4] T. Nagasaka, M. Hino, S. Ban-ya, *Met. Trans. B* 2000, 31B, 945.
- [5] A. Shankar, M. Görnerup, A. K. Lahiri, S. Seetharaman, *Met. Trans. B* 2006, *37B*, 941.
- [6] L. B. McRae, E. Pothast, P. R. Jochenst, D. D. Howat, J. SAIMM 1969, 69, 577.
- [7] K. Nomura, B. Ozturk, R. J. Fruehan, *Met. Trans. B* **1991**, *37B*, 783.
- [8] J. Tanabe, H. Suito, Steel Res. Int. 1992, 63, 515.
- [9] Y. Morizane, B. Ozturk, R. J. Fruehan, *Met. Trans. B* 1999, 30B, 29.
- [10] M. Chapman, O. Ostrovski, G. Tranell, S. Jahanshahi, *Elektrometallurgiya* 2000, 3, 34.

- [11] M. Kato, S. Minowa, *Trans. Iron Steel Inst. Jpn.* **1969**, 9, 31.
- [12] G. Handfield, G. G. Charette, Can. Metall. Q 1971, 10, 235.
- [13] A. Ohno, H. U. Ross, Can. Metall. Q 1963, 2, 259.
- [14] N. Saito, N. Hori, K. Nakashima, K. Mori, *Met. Trans. B* 2003, 34B, 509.
- [15] K. Datta, P. K. Sen, S. S. Gupta, A. Chatterjee, *Steel Res. Int.* **1993**, 64, 232.
- [16] R. Yamamoto, R. Nakajima, Y. Koyama, K. Niiya, *Ironmaking Conf. Proc, ISS-AIME, Detroit, MI*, 1985, 44, p. 149.
- [17] M. Higuchi, Trans. ISS, I&S 1978, 33.
- [18] L. Zhang, L. Zhang, M. Wang, G. Li, Z. Sui, *ISIJ Int.* 2006, 46, 458.
- [19] A. Shankar, M. Görnerup, A. K. Lahiri, S. Seetharaman, *Met. Trans. B* 2007, 38B, 911.
- [20] H. Kim, W. H. Kim, I. Sohn, D. J. Min, Steel Res. Int. 2010, 81, 261.
- [21] H. Kim, I. Sohn, ISIJ Int. 2011, 51, 1.
- [22] S. Sridhar, K. C. Mills, O. D. C. Afrange, H. P. Lorz, R. Carli, *Ironmaking Steelmaking* 2000, 27, 238.
- [23] W. Wang, A. Cramb, Steel Res. Int. 2008, 79, 271.
- [24] I. Sohn, W. Wang, H. Matsuura, F. Tsukihashi, D. J. Min, ISIJ Int. 2012, 52, 165.
- [25] V. Mikailov, E. Belyakova, Ural Met. 1939, 6, 7.
- [26] S. Banya, 122–123rd Nishiyama Memorial Lecture Series, Iron and Steel Institute of Japan, Tokyo 1988, p. 4.
- [27] R. G. Ward, An Introduction to the Physical Chemistry of Iron and Steelmaking, Edward Arnold, London 1972, p. 120.
- [28] S. M. Han, J. G. Park, I. Sohn, J. Non-Cryst. Solids 2010, 357, 2868.
- [29] S. Agathopoulos, D. U. Tulyaganov, J. M. G. Ventura, S. Kannan, A. Saranti, M. A. Karakassides, J. M. F. Ferreira, *J. Non-Cryst. Solids* **2006**, 352, 322.
- [30] B. O. Mysen, D. Virgo, C. M. Scarfe, Am. Miner. 1980, 65, 690.
- [31] Y. Tsunawaki, N. Iwamoto, T. Hattori, A. Mitsuishi, J. Non-Cryst. Solids 1981, 44, 369.
- [32] Y. Iguchi, K. Yonezawa, Y. Funaoka, S. Banya, Y. Nishina, Proc. 3rd Int. Conf. Molten Slags and Fluxes, Glassgow, 1989, p. 169.
- [33] B. O. Mysen, F. J. Ryerson, D. Virgo, Am. Miner. 1980, 65, 1150.