
Vol. l l  No.4 J. of Comput.  Sci. & Technol. July 1996 

Des ign  and I m p l e m e n t a t i o n  of  a Concurrency  
Control  M e c h a n i s m  in an Objec t -Or ien ted  

D a t a b a s e  S y s t e m  

Qu Yunyao ( ~ ~ ) ,  Tian Zengping ( ~ i l ~ ) ,  Wang Yujun ( t - ~ N )  
and Shi Baile (N ~ ~ )  

Department of Computer Science, Fudan University, Shanghai 200433 

Received May 10, 1995; revised January 24, 1996. 

Abstract  

This paper presents a practical concurrency control mechanism ~ Object- 
Locking in OODBMS. Object-Locking can schedule transactions, each of them 
can be considered as a sequence of high level operations defined on classes. By 
the properties of parallelity and commutativity between high level operations, 
proper lock modes for each operation axe designed and the compatibility matrix 
is constructed. With these lock modes, phantoms are kept away from databases 
and a high degree of concurrency is achieved. 

Keywords: Concurrency control, object-oriented database, transaction man- 
agement. 

I n t r o d u c t i o n  

Recent years have seen dramatic research and development progress in the area 
of OODB (e.g., Orion, 02, Iris, Gemstone, etc.[]'2]). Much effort has been devoted to 
models, languages, architecture, and data management [3], but few publishment have 
appeared on designing concurrency control mechanisms. For the next generation 
information system, concurrency control mechanisms are required to handle High  
level o p e r a t i o n s  on complex objects and to meet high throughput demands. For 
example, many applications such as Office Information System, CAD/CAM, Soft- 
ware Engineering, etc., require high performance and support of complex information. 

Traditional concurrency control mechanisms in DBMS where the operations are 
just R e a d  a n d  Wri te ,  do not support these applications well. 

Semantics-based concurrency control techniques have been widely studied [4-7]. 
It could exploit richer semantic information from objects and high level operations 
to get a higher degree of concurrency. Hence, many researchers believe that this 
kind of concurrency control is best suited for the transaction management of OODB 
systems [3-5'7-9,]. Nevertheless a number of semantics-based concurrency control 
schemes proposed for object-oriented systems considered only some special Abstract 
Data Types, e.g., Stack and Queue [4,5'7]. None of them deal with a practical system. 

In this paper, we demonstrate the design and implementation of a semantics- 
based concurrency control mechanism in an OODB system ~ FOODB. FOODB is 



338 J. of Comput. Sci. & Technol. Vol.11 

an OODBMS, which was developed by the Computer Science Department of Fudan 
University. The concurrency control mechanism is designed to schedule transac- 
tions composed of high level operations. There are three kinds of operations in 
FOODB: S c h e m a  opera t ions ,  S ta t i s t i ca l  ope ra t ions ,  and I n s t a n c e  opera -  
t ions.  Schema operations include querying or updating the structure of a class. 
Statistical operations include querying or updating a set of objects (instances) sat- 
isfying some conditions. Instance operations include finding, updating or deleting 
an instance from a class, or inserting an instance to a class. 

2 The  F O O D B  System 

2.1 A r c h i t e c t u r e  

FOODB is an object-oriented database system. It has a client/server archi- 
tecture. Database is stored on the server. All database operations of the clients 
are delivered to the server, where those operations are executed. The unit of data 
transfer between client and server is object. The transaction manager is responsible 
for concurrency control and recovery. The object manager is responsible for man- 
aging objects in buffer, swapping objects between disks and memory, and packing 
or unpacking objects for transfer. Transferring objects between client and server is 
the task of the communication system. GUI(Graphical User Interface) includes an 
interactive interface and a programming interface and a set of system maintenance 
tools. Users may use Object SQL (OSQL) or Extended C + +  to query or update 
database in interactive or programming environment respectively. 

2.2 D a t a  M o d e l  

FOODB supports fundamental object-oriented concepts: class, attribute, method, 
object, object identity (OID), encapsulation, inheritance(single or multiple inheri- 
tance), polymorphism, etc. Complex objects are constructed through OID references 
between objects. Three types of references are used: 

(1) shared reference: the object may be referenced by several objects; 
(2) exclusive reference: the object may be referenced by only one object; 
(3) dependent reference: the reference is exclusive and if X references Y then 

the existence of object Y depends on the existence of object X. 
In FOODB, we also regard a class as an object. Schema operations and statistical 

operations are sent to this kind of objects. Operations in the system are classified 
as follows. 

(1) Schema operations 

�9 Schema query: query the structure of a class; 

�9 Schema evolution: modify the structure of a class, e.g., add or drop a class, change 
the superclass/subclass relationship between a pair of classes, etc. 

We stipulate that the structure of a superclass cannot be modified in its sub- 
classes. 



N o . 4  Concurrency Control Mechanism in an O-O Database System 339 

(2) Statistical operations 
Statistical operations operate on a set of instances satisfying some given condi- 

tions. For example, s e l e c t i n g  e m p l o y e e s  ( f r o m  a class)  aged o v e r  60 is a statistical 
operation. 

(3) Instance operations 
Instance operations include: insert an object to a class, delete an object from a 

class, query or update an object in a class. 

2.3 T r a n s a c t i o n  M o d e l  

A transaction is a sequence of database operations. Users interact with database 
by invoking transactions. A transaction can access an object or modify the state 
of an object only by invoking operations (methods) defined for that object. Opera- 
tions scheduled by the transaction manager are not only simple read or write, but 
also various high level operations of classes. Users' transactions in a system axe a 
succession of method invocations. 

Begin O i d l . M 1 .  . . O i d i . M i  . . . O i d n . M ~  End 

Oid i :  object identifier, Mi: name of a method 

3 Commutat iv i ty  and Parallelity 

Parallelism allowed by a concurrency control mechanism depends to a large 
extent on the properties of parallelity and commutativity between the operations 
defined on objects. Let X be an object that is usable through operations Oi and Oj. 
The pair of operations (O~, Oy) has the property of Pa ra l l e l l t y  if whatever is the 
initiM state of object X, for the concurrent executions of the two operations by two 
different transactions, the effects on object X and the transactions are the same. 
In other words, two parallel operations may be performed concurrently without 
having to be controlled. For example, two query operations are parallel. When 
two operations axe not parallel, C o m m u t a t i v i t y  may be used, which is a weaker 
property. 

The pair of operations (Oi, Oj) has the property of Commutativity if, whatever 
is the state of object X, execution of operation O~ by transaction Ti followed by 
execution of operation Oj by transaction Tj has the same final effects on object X 
and the same results for the transactions as the execution in the reverse order (Oj 
followed by Oi). 

Let S be a database state, O be an operation. State (O, S) is a state that 
is produced by the execution O on state S. Return (O, S) is the return value 
of operation O executed on state S. We assume that every operation will return a 
value, at least a status or condition code (e.g. read operation may return a value read 
by the operation, write operation may return a status indicating success or failure of 
its execution). The above operation O may also be a sequence of operations. Thus, 



340 J. of Comput. Sci. & Technol. Vol.ll 

in this case, state (O, S) is the state produced after the execution of the operations 
in O;.return (O, S) is the return value set of operations in O executed on S. 

Let 01/ /02 mean that  operations O1 and 02 execute in parallel. O102 means 
that  operation 02 is executed following the execution of O1. 

D e f i n i t i o n  1. Two operations 01 and 02 are parallel if 01 and 02 can be 
executed concurrently without any control on the order of execution of their lower 
level operations, and/or all states S, s ta te (01 / /02 ,  S)=state(0102,S), s ta te (01/ /  
02,S)=state(0201,S), return(01////02,S)=return(Ol02, S), return(O1//// O2,S)= 
return(0201,S). 

D e f i n i t i o n  2. Two operations O1 and 02 are commutative if, for all states S, 
state(OlO2,S)=state(0201,S), return(0102, S)=return(0201, S). 

It is obvious that  if two operations are parallel then they are commutative.  In 
this paper, for simplicity, we schedule parallel operations and commutat ive opera- 
tions in the same manner (in fact, we can exploit higher concurrency from parallelity 
than from commutativity).  We call two operations to be C o n d i t i o n a l l y  C o m m u -  
t a t i v e ,  if they must satisfy some conditions to commute. For example, for database 
state S = {x = 1, . - .} ,  there is an integrity constraint: x > 0. Two operations, 
O1: x = x + c ,  02 : x = x - d .  O1 and 02 are commutative if the condition 
1 > d is true, otherwise they do not commute. By conditional commutativity,  the 
concurrency control mechanism can exploit more semantic information for concur- 
rency. In OODBS, there are many such semantic data  in operations and objects [4'51. 
Therefore, how to exploit them is important  for the efficiency of a system. 

D e f i n i t i o n  3. Two operations are conflict iff they are not commutative. 

4 Locking Techniques 

4.1  C l a s s  H i e r a r c h y  L o c k i n g  

From the operational semantics in OODB, we know that  if an operation oper- 
ates on class C, then it may also operate on the subclasses of C. The i n t e n t i o n  
lock mode and simple granularity locking protocol are satisfactory, if only single 
inheritance relationships are permitted. But this does not work for a class hierarchy 
in which a class may have more than one superclass. Fig.1 is a multiple inheritance 
class hierarchy. Class C has two superclasses C1, C2, and one subclass S C. C1 and 
C2 have superclasses SC1 and SC2 respectively. Suppose a t ransaction T1 sets a 
readlock on C1 and an intention lock on SC1, implicitly locking subclasses C and 
SC in readlock mode. Now another transaction T2 sets a writelock on C2 and an 
intention lock on SC2. T2 will also lock class C and SC in writelock mode implicitly. 
The conflict on class C and SC between T1 and T2 is not detected. This means that  
setting intention lock on the superclasses of the class being locked is not sufficient 
to detect all conflicting requests from different transactions. 

To solve the above problems and make locking mechanisms more efficient, for 
every class C, we maintain a list L that  records all C's subclasses tha t  have more 
than one superclass. 



No.4 Concurrency Control Mechanism in an 0-O Database System 341 

We now give the class hierarchy locking protocol. 
(1) Lock class C. 
(2) Lock those of C's superclasses along any one superclass chain in intention 

lock mode. 
(3) Find the set S~ of C's subclasses with more than  one superclass through L, 

for every e 6 Si, lock e. 

Fig.1 Fig.2 

4 .2  C o m p l e x  O b j e c t  L o c k i n g  

In OODB, the unit of access to a database is an object, tha t  is, the smallest units 
of locking are objects. Objects are usually complex, i.e. they can be constructed 
from other objects. Moreover, these objects may also be shared by several different 
objects. So, object locking is a complicated task. The general techniques of complex 
object locking have been studied in [7,10]. In this paper, in order to exploit structural 
semantics of objects, we use referential semantics to improve concurrency in addition 
to using commutat ivi ty property between operations. 

Now let's see the impacts of complex object locking. X, Y, and Z are objects 
constructed from subobjects x, y, z as shown in Fig.2. Object y is shared by X, Y, 
Z. Transactions are 

TI: O1(X)O2(Z) 
Is: O3(V) 
Suppose one schedule S for TI and T2 is 

S: OI(X)O3(Y)O2(Z) 
If we only lock X, Y, and Z, but do not lock their subobjects x, y, z, then it 

seems that  T1 and T2 do not conflict, so, S is permitted.  In fact, the high level 
operations 01(X), O2(Z), and O3(Y) must be converted into suboperations on x, y 
and z: 

o (x) 
o2(z) o2(y)o (z) 
o3(v) o3(y) 
So, the schedule S becomes S t. 
s': 
If both operation pairs (01(y),o3(y)) and (03(y),o2(y)) do not commute,  then S' 

is not serializable. Hence S is not correct. 



342 J. of Comput. Sci. & Technol. Vol.11 

The problem here is that  the conflicts at subobjects are ignored! So, when locking 
complex objects, not only should we consider the objects, but also their subobjects. 
If, in the above example, the referential type of Y to y is exclusive, that  is, y cannot 
be referenced by X and Z, then S must be serializable. 

In order to lock complex objects correctly and efficiently, we may use the refer- 
ential semantics in the locking protocol. We stipulate tha t  if object X references 
object Y exclusively, then, for every object Z referenced by Y, the referential type 
of Y to Z is also exclusive. 

Now we give the complex object locking protocol. 
(1) Lock object X. 
(2) If X references object Y in shared type, then lock Y. 
By this complex object locking protocol, it is unnecessary to lock the subobjects 

that  are referenced exclusively. 

Operat ions  and Lock M o d e s  

Operations in classes are the units of scheduling by concurrency control mecha- 
nism in FOODB.  For every operation, there is a corresponding lock mode. When an 
operation begins to operate on object X,  the concurrency control mechanism should 
lock X in its corresponding lock mode before it is executed. 

All operations in FOODB are classified as three types. 
1) Schema operation 
This type of operations includes querying or updating class hierarchy. 
(1) query the structure of a class 
(2) create or drop a class 
(3) add (drop) an attribute to (from) a class 
(4) add (drop) an inheritance relationship to (from) a class 
(5) add (drop) a method to (from) a class 
2) Statistical operation 
This type of operations includes querying or updat ing a set of instances that  

satisfy some given conditions. 
(1) query a set of instances that satisfy a given condition 
(2) update a set of instances that satisfy a given condition 
(3) delete a set of instances that satisfy a given condition 
3) Instance operation 
(1) find an instance from a class 
(2) update an instance in a class 
(3) insert an instance to a class 
(4) delete an instance from a class 
The lock modes are designed as follows. 
1) Class lock 
(1) c-qh class query lock 
(2) c-uh class update lock 
2) Instance lock 
(1) i-sl: instance set query lock 
(2) i-ql(ob): instance query lock 



No.4 Concurrency Control Mechanism in an O-O Database System 343 

(3) i-ul(ob): instance update lock 
(4) i-il(ob): instance insert lock 
(5) i-dl(ob): instance delete lock 
The i-ql, i-ul, i-il and i-dl have a parameter  ob indicating the Oid of the  object 

being locked. 

Lock Mode Operations 
c-ql schema operation(l) 
c-ul schema operation(2)--(5), statistical operation(2)--(3) 
i-sl statistical operation(l) 
i-ql(ob) instance operation(l) 
i-ul(ob) instance operation(2) 
i-il(ob) instance operation(3) 
i-dl(ob) instance operation(4) 

Fig.3 

c-ql 
c-ql y 
c-ul n 
i-sl y 

"i-ql(ob) y 
i-ul(ob) y 
i-il(ob) y 
i-dl(ob) y 

c-ul i-sl 
n y 
n n 

n y 
n y 

n n 

n n 

n n 

ob=obq 

i-ql(ob') i-ul(ob') i-il(ob') i-dl(ob') 
Y Y Y Y 
n n n n 

y n n n 

y c c c 
C C C C 

c c y c 
C C C C 

c="n", ob # ob': c--", 

Fig.4 

Every operation has a corresponding lock mode. The operations and their  cor- 
responding lock modes are described in Fig.3. 

In order to reduce the number of locks set on objects to one at a time, statistical 
operations (2) and (3) use the same lock mode as schema evolution operations. 
To get a higher degree of concurrency, we design an i-sl lock mode for statistical 
operat ion (1). 

By the  semantics of operations and commutat iv i ty  between them, we summarize 
the compatibil i ty matr ix  of lock modes as Fig.4. 

If two lock modes are compatible, then  their corresponding operations can be ex- 
ecuted concurrently. The "d ~ in matr ix  means that  two lock modes are conditionally 
compatible, tha t  is, their corresponding operations are conditionally commutat ive.  
For example,  if two deletion operations delete two different objects then  they  can 
be executed concurrently. 

If an object,  which is inserted or deleted by one transaction T1, may  also be 
operated by another  transaction T2, then we say that  the object is a P h a n t o m  
for T2, otherwise it is not a phantom object for T2. In Orion, phan tom problems 



344 J. of Comput. Sci. & Technol. Vol.ll 

were not considered, whereas in [3], in order to avoid phantoms,  insert or delete 
operation conflicted with all operations. By our scheme, phantoms are avoided, 
and the operation pairs (insert, insert), (insert, delete) and (delete, delete) can be 
executed in parallel or conditionally parallel. 

6 D e s i g n  and  I m p l e m e n t a t i o n  of  C o n c u r r e n c y  Con tr o l  
M e c h a n i s m  - -  O b j e c t - L o c k i n g  

In this section, we design and implement the concurrency control mechanism 
- -  Object-Locking on the basis of above discussions. 

Fig.5 is the description of Object-Locking. It is a two-phase locking procedure,  
that  is, once a t ransact ion releases a lock, it never obtains locks again. Only when 
transaction's  commit  or abort  operations are received, can the t ransact ion 's  locks be 
released. Since deadlock detecting procedure is used, Object-Locking is deadlockfree. 

Object-Locking 
Input: transaction's operation Oi 
Output: decision of whether Oi can be executed or not 
Method: Do Case 

Case Oi # commi t  and  Oi # a b o r t  
lock the object in a proper lock mode depending on the type of O/ 
if locking succeeds then return(execute O/) 
else 
begin 

put Oi in wait-queue 
call WFG-adjust/*adjust WFG */ 
call deadlock-detect 
if there is a circle in WFG then 
begin 

call transaction abort(Ti) 
call WFG-adjust 
awake some transactions in wait-queue 
return 

end 
end 
suspend Ti until T/is awaked 
Case O i = a b o r t  
call transaction abort(Ti) 
call WFG-adjust 
awake some transactions in wait queue 
Case Oi =conxmi t  
call buffer-write(T/) 
call WFG-adjust 
call lock-release(T/) 
awake some transactions in wait queue 
EndCase  

Fig.5 



N o . 4  Concurrency Control Mechanism in an O-O Database System 345 

An operation Oi on a given object conflicts if it is not commutative with other 
operations executed on this object by still active transactions, i.e. those transac- 
tions that have not been committed or aborted. When an operation conflicts, the 
transaction requests that the operation be blocked, and deadlock detection needs to 
be initiated. 

The process of checking for deadlock is achieved by using a walt-for-graph. When 
a transaction issues a request to execute an operation, the concurrency control mech- 
anism, by using the compatibility matrix and locking process, determines whether 
the operation request conflicts or not. If the request conflicts, the transaction is 
made to wait. The corresponding wait-for edges are added and a circle detection 
algorithm is initiated. If a circle is found, the transaction making the request is 
aborted. When a transaction terminates successfully or unsuccessfully, the node 
that corresponds to the terminating transaction together with the edges associated 
with the node is removed from the WFG. The results of the transaction are written 
back to database or discarded simply. All locks used by the transaction are released. 

7 D i s c u s s i o n  

(1) High level operations as scheduling units 
More and more researchers believe that high level operations as scheduling units 

of concurrency control are preferable in OODB or other engineering environments [4-s]. 
Because rich semantics of the operations can be exploited to improve concurrency, 
the concurrency control mechanism can be made more efficient. In this paper, there 
are three kinds of operations: schema operations, statistical operations, and in- 
stance operations. Using the semantics of these operations, we can schedule them 
in a more appropriate way. For example,  two insert operations can always be exe- 
cuted concurrently, deletion and insertion operations can be executed conditionally 
concurrently, etc. Moreover, the phantoms can be described clearly and avoided 
rationally, whereas the simple lower level operation-based (read, write) transaction 
model cannot achieve this so clearly and conveniently. 

(2) Recovery 
The high level operation- based transaction model necessitates further researches 

in recovery methods[S,9]. Conventional recovery techniques based on log, for exam- 
ple, are not adequate for the new transaction model. When simply installing the 
database, the "before image" of update done by aborted transaction is not correct 
sometimes. In [8], the authors defined the notion of "strictness" for histories con- 
taining high level operations, and gave a recovery rule by simply executing their 
"inverse" operations. In [9], the authors developed a unified transaction model in- 
cluding both data operations and termination operations (commit, abort), which 
allows reasoning about the correctness of concurrency control and recovery within 
the same framework. The future important work is how to embed these techniques 
to real OODB systems. 



346 J. of Comput. Sci. & Technol. Vol.ll 

8 Conc lus ion  

We have developed a practical concurrency control mechanism in OODBMS and 
given the transaction model based on three kinds of high level operations: schema 
operations, statistical operations, instance operations. By the properties of paral- 
lelity and commutat ivi ty  between these operations, the proper lock mode for each 
operation has been designed and the compatibili ty matr ix  is constructed.  Wi th  these 
lock modes, phantoms are prevented and a high degree of concurrency is achieved. 

R e f e r e n c e s  

[1] Bernstein P A, Hazilacos V, Goodman N. Concurrency Control and Recovery in Database 
System. Addison-Wesley, Reading, MA, 1987. 

[2] Won Kim. Introduction to Object-Oriented Database. MIT Press, Cambridge, 1990. 

[3] Cart M, Feeri J. Integrating Concurrency Control. In Building an Object-Oriented 
Database/The Story of OP, Bancilhon F, Claude Delobel, Paris Kanellakis, (eds.), Morgan 
Kauflnann Publishers, San Mateo, California, 1992. 

[4] Panos K Chrysanthis et al. Extracting concurrency from objects: A methodology. ACM. PODS 
1991. 

[5] Badrinath B, Ramamritham K. Semantics-based concurrency control: Beyond commutativity. 
ACM PODS, 1992. 

[6] Badrinath B, Ramamritham K. Performance evaluation of semantics-based multilevel concur- 
rency control protocols. In Proc. of ACM SIGMOD, 1990. 

[7] Weihl W. Commutativity-based concurrency control for abstract data types. IEEE Trans. on 
Computers, Dec. 1988. 

[8] Rajeev Rastogi, Korth H F, Avi Silberschatz. Strict histories in object-based database system. 
ACM PODS, 1993. 

[9] Hans-Jorg Schek, Gerhard Weikum, Haiyan Ye. Towards a unified theory of concurrency control 
and recovery. ACM PODS, 1993. 

[10] Jorge F Garza, Won Kim. Transaction management in object oriented database system. In 
Proc. of ACM SIGMOD, 1988. 

Qu Yunyao is an Associate Professor in Department of Computer Science, Fudan 
University. His current research interests include transaction processing and distributed 
Database. 

T ian  Zengping  is a Ph.D. candidate in Department of Computer Science, Fudan Uni- 
versity. His current research interests include in Multimedium Database. 

Wang  Yujun  is a Ph.D. candidate in Department of Computer Science, Fudan Univer- 
sity. His current research interests are data model and query language. 

Shi Baile is a Professor in Department of Computer Science, Fudan University. His 
current research interests include database theory and application, software engineering. 


