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Abstract

The displacement and deformations of rock mass due to underground mining has often resulted in major disasters throughout the

world, frequently inflicting heavy losses of life and damage to property. And these disasters have motivated the development of rock mass

mechanics. The prediction of displacement of rock mass and their surface effects is an important problem of the rock mass mechanics in

the excavation activities especially the coal and metal mining in mountainous areas. Based on results of the statistical analysis of a large

amount of measured data in mining engineering, the fundamental fuzzy model of displacements and deformations of rock mass is

established by using the theory of fuzzy probability measures. The theories of both two- and three-dimensional problems are developed

and applied to the analysis of engineering problems in excavation and underground mining in mountainous areas. The agreement of the

theoretical results with the field measurements shows that our model is satisfactory and the formulae obtained are valid and thus can be

effectively used for predicting the displacements and deformations and the safety evaluation of the buildings on the ground.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In both the underground and surface mining, if a void is
excavated in a rock continuum, the load formerly applied
on the rock in the opening will be transferred either to the
rock surrounding the opening or to the supports (pillars)
within the opening or both, and finally to the ground
surface, hence resulting in a macroscopically nonuniform
deformation of the surface in the horizontal or vertical
direction. If the uneven deformation or subsidence (i.e.
differential subsidence on the top of the mined-out area)
cannot be effectively controlled then it will cause damage
and even a disaster, such as deformation or even cracking
of buildings, particularly tall buildings. This means that the
failure of a building is to a great extent controlled by the
presence of differential subsidence rather than the absolute
magnitude of subsidence [1–13].
e front matter r 2005 Elsevier Ltd. All rights reserved.
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It is difficult to calculate the accurate displacement of
every point in a body of rock because of the complexity of
the problem. Instead, various approximate methods have
been used for this calculation. In recent years, in mining
engineering in particular, theory of fuzzy mathematics has
been applied to analyze the problems of displacement and
deformations of rock mass due to underground mining
[2–8]. In fact, the movement of each point at a level of
overburden can be regarded as a fuzzy event. In other
words, this displacement will take place at a fuzzy
probability, and so the theory of fuzzy probability
measures can be applied in describing the ground
subsidence and deformation of rock mass [8].
In this paper, the application of the fuzzy probability

measures to the analysis of the rock mass displacements due
to underground mining in mountainous areas is described.

2. Fuzzy mathematical models

We first briefly give several definitions of fuzzy
probability [14,15].

www.elsevier.com/locate/ijrmms
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Definition 1. Suppose a triplet ðRn;B;MÞ is a probability
(non-fuzzy) space, where Rn is a sample space and B is the
fuzzy s-field of Borel sets in Rn and M is a probability
measure over Rn.

Let fuzzy events A1 and A2 be two fuzzy sets in Rn, and
f A1

and f A2
ðf A1

; f A2
: Rn ! ½0; 1�Þ be two membership

functions which are Borel measurable.

Definition 2. If A1 and A2 are two fuzzy sets in Rn, then we
can define fuzzy probability measures of A1 and A2 as
follows:

MðA1Þ ¼

Z
R1

f A1
ðxÞdpðxÞ, (1)

MðA2Þ ¼

Z
R2

f A2
ðyÞdpðyÞ. (2)

Here formulae (1) and (2) are Lebesgue–Stieltjes
integrals.

Because f A1
and f A2

are Borel measurable, there exist the
Lebesgue–Stieltjes.

Definition 3. Let A1 and A2 be two fuzzy sets in the
probability space ðRn;B;MÞ. A1 and A2 are said to be
independent if

MðA1A2Þ ¼MðA1Þ �MðA2Þ (3)

with the above definitions and theories as a basis, now we
shall describe practical engineering problems.

We shall restrict our discussion to the ground subsidence
due to ore mining, although a more general subsidence due
to excavation may be discussed in a similar manner.

When the subsidence of overburden takes place due to
the underground mining, some points in the associated
surface will deviate from their equilibrium positions, and so
displacement will occur. The positions of these points can
be denoted by a fixed rectangular coordinate system, as
shown in Fig. 1.

Because a ground subsidence is controlled by many
factors such as geologic conditions, the presence of ground
Z

R

H

0

dξ

X
ξ

ξ

�

mined-out area

Fig. 1. A rectangular coordinate system of underground mining.
water, the properties of rock mass and mining conditions,
it is difficult to predict the ground subsidence accurately.
Because the theory of fuzzy mathematics is generally taken
to embrace the whole field of imprecisely described
systems, the above theory of fuzzy probability can be used
for this prediction. For this purpose, we first describe the
assignment of the membership function for the plane
problem.
Consider an xoz cross-section of overburden, for the

points x in which plane the expression for the fuzzy
probability of subsidence can be established. The set
(denoted by A1) is called ‘‘associated set’’, whose elements
are the points of the x-axis involved in the subsidence.
Clearly, A1 is a fuzzy subset in the set Rn.
Now the membership function for engineering problems

can be assigned by the membership function of the
subsidence surface to the fuzzy subset A1 (as mentioned
above, A1 is the set of the points in the subsidence surface).
As shown in Fig. 1, we choose a rectangular coordinate
system such that the x-axis is directed to the mined-out
area (we restrict our attention to the points on the top of
the mined-out area), and assign unity to the maximum
degree of membership of x to A1. We assume that following
expression holds:

f A1
ðxÞ ¼ f ðxÞ, (4)

where f(x) is a relation function to be determined by the
field measured data.
The statistical analysis is made by using a large amount

of measured data, and the results obtained show that

f ðxÞ ¼ f ðR;xÞ (5)

is a transcendental function, where R is a parameter, x are
the measured points in the subsidence surface (x ¼ xi;
i ¼ 1,2, y, n). From formula (4) we have the following
expression of the membership function:

f A1
ðxÞ ¼ exp �

ffiffiffi
p
p
ðx� xÞffiffiffi
2
p

R

� �2( )
, (6)

where R is called ‘‘the primary influence radius’’. It is a
parameter determined by such a factor as the mining
conditions of a particular mining district and the occur-
rence of ore deposits:

R ¼
H

tan b
, (7)

where tan b is a fuzzy parameter to be determined by the
field measured data, H is a constant.
The above density distribution function (i.e. the dis-

tribution function for the surface subsidence) can be
established by using the statistical theory of probability.
In the case of the mining of ore, the subsidence of ground
surface depends on many factors. We shall consider the
theory of the plane problems as particular cases of rock
mass movements. In the xoz plane of the rectangular
coordinates system, let dp(x) be the density function of the
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Fig. 2. A rectangular coordinate system of underground mining in

mountainous areas (xoz).
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ground subsidence at point x in the xoz cross section, then
we have

dpðxÞ ¼
1

R
exp �

p
2R2
ðx� xÞ2

� �
, (8)

where R is a fuzzy parameter.
From Definition 3, we obtain the expression of fuzzy

probability for the ground subsidence in the xoz cross-
section:

MðA1Þ ¼

Z
R1

f A1
ðxÞdpðxÞ. (9)

The fuzzy probability of slope,

MtðA1Þ ¼
q
qx

MðA1Þ. (10)

The value calculated from formula (9) is the fuzzy
probability for the ground subsidence. However, the
mining thickness and subsidence factor must be taken into
account for calculating the practical surface subsidence W:

W ðx; zÞ ¼ k1k2MðA1Þ, (11)

where W(x, z) is the practical ground subsidence; k1 and k2
are parameters depending on the mining method and the
rock properties, and can be determined from the measured
data of mining districts. For example, given the fuzzy
probability of surface subsidence in a mining district
MðA1Þ ¼ 0:55, k1 ¼ 0:7555, k2 ¼ 1800mm, then
W ðx; zÞ ¼ 747:9450mm.

When a subsidence takes place in the underground rock
mass, there must exist one subsidence point P(x, y, z) on
the corresponding ground surface, and similarly the fuzzy
probability M(A1A2)of the subsidence can be obtained in
the three-dimensional case.

In the space rectangular coordinates, let M(A1) be a
subsidence fuzzy probability of the fuzzy event A1 on the
xoz plane, and M(A2) a subsidence fuzzy probability of the
fuzzy event A2 on the yoz plane. From Definition 3, we can
find the subsidence fuzzy probability M(A1A2)at the point
P(x, y, z) to be M(A1A2) ¼M(B), and

MðA1A2Þ ¼MðA1ÞMðA2Þ. (12)

In the xoz plane, we have

MðA1Þ ¼

Z
D1

1

R
exp �

ffiffiffi
p
p
ðx� xÞffiffiffi
2
p

R

� �2( )

� exp �
p

2R2
ðx� xÞ2

� �
dx

¼

Z
D1

1

R
exp �

p
R2
ðx� xÞ2

� �
dx,

D1 2 ð�1;þ1Þ. ð13Þ

In the yoz plane, we have

MðA2Þ ¼

Z
D2

1

R
exp �

p
R2
ðy� ZÞ2

� �
dZ,

D2 2 ð�1;þ1Þ ð14Þ
In the case of the underground mining in mountainous
areas (as shown in Fig. 2), the fuzzy measure formula of
ground subsidence in the xoz cross section

MðA1Þ ¼

Z
D1

1

Rz

exp �
p

R2
z

ðx� xÞ2
� �

dx, (15)

where Rz is the primary influence radius in mountainous
area:

Rz ¼
H þ x tan a

tan b
, (16)

where H is the mining depth (as shown in Fig. 2), a is the
angle of natural slope in mountainous areas, b is the
primary influence angle correlate with rock properties.
The fuzzy measure formula of ground subsidence in the

yoz cross–section

MðA2Þ ¼

Z
D2

1

Rz

exp �
p

R2
z

ðy� ZÞ2
� �

dZ. (17)

From formula (16) we have the following expression of
the fuzzy measure of ground subsidence due to under-
ground mining in mountainous areas in the xoz cross
section:

MðA1Þ ¼

Z
D1

tan b
H þ x tan a

f 1ðx; xÞdx, (18)

f 1ðx; xÞ ¼ exp �
p tan2b

ðH þ x tan aÞ2
ðx� xÞ2

� �
. (19)

The fuzzy measure of ground subsidence in the yoz cross-
section

MðA2Þ ¼

Z
D2

tan b
H þ Z tan a

f 2ðx; ZÞdZ, (20)
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f 2ðy; ZÞ ¼ exp �
p tan2b

ðH þ Z tan aÞ2
ðy� ZÞ2

� �
. (21)

In the two-dimensional case, the ground subsidence W
(x, z) can be determined by the following formulae:

W ðx; zÞ ¼ k1k2MðA1Þ, (22)

W ðx; zÞ ¼ k1k2

Z
D1

tan b
H þ x tan a

f 1ðx; xÞdx. (23)

In the three-dimensional case, the ground subsidence
W(x, y, z) can be determined by the following formula:

W ðx; y; zÞ ¼ k1k2MðBÞ, (24)

where k1 and k2 are parameters depending on the mining
method and the rock properties.

The formula of tilt (x-direction),

Txðx; y; zÞ ¼
q
qx

W ðx; y; zÞ

¼

Z l

0

2p tan3bk1k2ðx� xÞ

ðH � x tan aÞ3

�exp
�p tan2b

ðH þ x tan aÞ2
ðx� xÞ2

� �
dx, ð25Þ

where l is the mining length.
In the y-direction,

Tyðx; y; zÞ ¼
q
qy

W ðx; y; zÞ

¼

Z l

0

2p tan3bk1k2ðy� ZÞ

ðH � Z tan aÞ3

�exp
�p tan2b

ðH þ Z tan aÞ2
ðy� ZÞ2

� �
dZ, ð26Þ

where l is the mining length.
The formula of directional slope

Tdðx; y; zÞ ¼ Tx cos dþ Ty sin d, (27)

where d is the directional angle.
The formula of curvature in the x-direction is given by

CUxðx; y; zÞ ¼
q
qx

Txðx; y; zÞ, (28)

and in the y-direction by

CUyðx; y; zÞ ¼
q
qy

Tyðx; y; zÞ. (29)

The formula of directional curvature

CUd ¼ CUx cos dþ 2CUxy sin d cos dþ CUy sin d, (30)

where d is the directional angle, and CUxy is second partial
derivative of W with respect to x and y:

CUxyðx; y; zÞ ¼
q2

qx qy
W ðx; y; zÞ. (31)
The formula of horizontal displacement in the x-
direction is given by

Uxðx; y; zÞ ¼ BS1
q
qx

W ðx; y; zÞ, (32)

in the y-direction by

Uyðx; y; zÞ ¼ BS2
q
qy

W ðx; y; zÞ, (33)

where BS1 and BS2 are engineering parameters
(0.1pBS1p0.4, 0.1pBS2p0.4).
The formula of horizontal strain in the x-direction is

given by

Exðx; y; zÞ ¼
q
qx

Uxðx; y; zÞ, (34)

in the y-direction by

Eyðx; y; zÞ ¼
q
qy

Uyðx; y; zÞ. (35)

The formula of vertical strain is

VSðx; y; zÞ ¼
q
qz

W ðx; y; zÞ. (36)

The similar discussion can be made for the three-
dimensional problems of the multiseam mining.

3. Application of fuzzy models to mining engineering
Example 1. Mou-Mine, Shan-dong Province

The topography in the district is complex, with the
maximum relative difference of height up to 30m. The
mining thickness of the ore is 50m, average dip 401, mining
depth 400m.

3.1. The process of estimating the displacements

In order to demonstrate the application of the formula
for the fuzzy probability measures of rock mass displace-
ments some examples are given of the practical application
of the above theoretical results.
Fig. 3 is a full flow chart of steps in the method of

estimating displacement values.

3.2. The method of determining engineering parameters

The engineering parameters can be determined by the
artificial neural networks (ANNs) method.

3.2.1. The artificial neural networks (ANN)

Recently, ANNs, has begun to be used in rock and soil
mechanics and geotechnical engineering [16–29]. An ANN
is a highly simplified model of the biological structures
found in a human brain. Their layered structure is
composed of a large number of interconnected elementary
processing elements to mimic the biological neurons. The
characteristics of a neural network come from the
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activation function and connection weights. Since the
neural network stores data as patterns in a set of processing
elements by adjusting the connection weights, it is possible
to realize complex mapping through its characteristics of
Start

Input the following formulas 

- Ground subsidence W(x,y,z),  

- Ground tilt T(x,y,z),  

- Ground curvature K(x,y,z), 

- Horizontal displacement U(x,y,z), 

- Horizontal strain E(x,y,z). 

Input Data (Engineering parameters): 

Mining Depth, H; Mining length, l; Tangent of the

primary influence angle, tan�; Average angle of 

natural slope, �; Subsidence factor, k1; Mining 

thickness, k2; Displacement factors, BS1 and BS2. 

Compute the following 

- Ground subsidence W, 

- Ground tilt T, 

- Ground curvature K, 

- Horizontal displacement U, 

- Horizontal strain E. 

Is satisfied for 

the engineering?

Print results 

End 

Correct the 
engineering 
parameters

Fig. 3. The flow chart for estimating the displacement values.
distributed representations. The neural network can auto-
matically find the closest match through its content
addressable property, even if the data are incomplete or
vague (e.g. rock mass displacement parameters k1, k2, BS1,
BS2, tan b in the case examples). Most of the researches to
date show that an ANNs can be applied successfully to
engineering problems without any restriction. It has also
been seen that the capability of an ANN is suitable for
inherent uncertainties and imperfections found in geotech-
nical engineering problems.
Neural networks are nonlinear dynamic systems that

have important features, such as self-learning, adaptive
recognition, nonlinear dynamic processing and associative
memory. They have the ability to learn knowledge from
historical data (e.g. A–E in Fig. 4) and bring forth new
knowledge and generalization. Therefore, neural networks
have been successfully used in geotechnical engineering
areas, for e.g., to predict reliability [27], to evaluate the
permeability of compacted clay liners [28] and to predict
the parameters of rock mass movement [29]. These
applications show that neural network models are superior
at solving problems in which many parameters influence
the process and results, when the process and results are
not fully understood and when there is historical or
experimental data available. The problem involving pre-
diction of rock mass displacement parameters is of this
type.
Neural network models are set up by learning or

training. If a network model is trained with a large number
of input–output pairs, it can produce an appropriate
output for untrained inputs. More than 50 neural network
models have been devised so far, and it is found that the
back-propagation learning algorithm based on the general-
ized delta rule by Rumelhart et al. [30] is the most popular
Prediction 
net of k1

Prediction 
net of � 

Prediction 
net of BS2

Prediction 
net of BS1

Prediction 
net of k2

Output k1

Output k2

Output BS1

Output BS2 

Output tan�

Input 

data 

A, B,

C, D, 

E. 

Fig. 4. Topological structure of back-propagation neural network.
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and efficient learning procedure for multi-layer neural
networks.

3.2.2. Topological structure of the back-propagation neural

network (BPNN)

The BPNN generally consists of many sets of nodes
arranged in layers (e.g. input, hidden and output layers).
The output signals from one layer are transmitted to the
subsequent layer through links that amplify or attenuate or
inhibit the signals using weighting factors. Except for the
nodes in the input layer, the net input to each node is the
sum of the weighted outputs of the nodes in the previous
layer. An activation function such as the sigmoid logistic
function is used to calculate the output of the nodes in the
hidden and output layers. We can divide the BPNN into
five subsidiary nets for the sake of predicting five
parameters (k1, k2, BS1, BS2, tan b). Fig. 4 is the topological
structure of BPNN [29].

In topological structure of BPNN in Fig. 4, different
symbols have different meaning. ((A) historical data, the
measured ground subsidence; (B) historical data, the
measured horizontal displacement; (C) historical data, the
hardness factor of rock mass in mining area; (D) historical
data, the dip of mining seam; (E) historical data, the ratio
of mining depth to the mining thickness).
Table 1

Parameters of rock mass displacements

a (1) k2 (mm) b (1) H (m)

30.00 2000 67.00 400.00

tanb k1 BS1 BS2

2.3559 0.1601 0.20 0.21

0

-1

-2

-3

-4

-5

-6

-7

-70 -60 -50 -40 -30 -20 -10 0 10

w
(m

)

theoretical cure
measured data

x(m)

Fig. 5. Comparison between the data points and the theoretical curve of

the ground subsidence.
3.2.3. The parameters of rock mass displacements

The parameters of rock mass displacements are obtained
using a BPNN method (Table 1).
3.3. The results of estimating displacements

From these data in Table 1, we obtain the predicted
results of ground surface subsidence due to underground
mining (Fig. 5).

Example 2. Wangjiazhai Coal Mine, Shui-cheng Bureau of
Mining, Guizhou Province

The topography in the district is complex, with the
maximum relative difference of height up to 125m,
maximum slope 611, average slope 311. The overlying
strata consist of argillaceous limestone and purple sandy
shale intercalated with siltstone and fine- and medium-
grained sandstone between them. The mining thickness of
the coal seam is 1.80m, strike NE 401, inclination SE 1301,
average dip 131.
The stope face has a strike length 330m, inclination

length 130m, and a mining depth 50–120m. The seam was
mined by longwall retreat mining method. The engineering
parameters can be determined by using BPNN (Table 2).
Table 2

Parameters of rock mass displacements

a (1) k2 (mm) b (1) H (m)

31.00 1800 64.00 92.00

tanb k1 BS1 BS2

2.0503 0.8950 0.23 0.21

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
-100 -50 0 50 100 150

x(m)

u(
x)

(m
)

theoretical curve
measured data

Fig. 6. Comparison between the data points and the theoretical curve of

the horizontal displacement.
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From these data in Table 2, we obtain the formulae of
the ground subsidence due to underground mining in
mountainous areas:

W ðx; zÞ ¼ 0:8950k2

Z
D1

tan 64�

92þ x tan 31�
f 1ðx; xÞdx,

f 1ðx; xÞ ¼ exp �
p tan264�

ð92þ x tan 31�Þ2
ðx� xÞ2

� �
.

From these data in Table 2, we obtain the formulae of
the horizontal displacement due to underground mining in
mountainous areas:

Uxðx; zÞ ¼ 0:23k1k2

Z
D1

tan 64�

92þ x tan 31�
f 1ðx; xÞdx,
0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1.4

-1.6

-1.8

-50 -40 -30 -20 -10 0 10 20 30 40 50 60

theoretical curve
measured data

w
(x

)(
m

)

x(m)

Fig. 7. Comparison between the data points and the theoretical curve of

the ground subsidence.

Table 4

Numerical results of the subsidence due to underground mining in mountaino

x (m) W (m) x (m) W (m)

0 0.89985692 65 1.50639443

2 0.94178230 70 1.48741001

4 0.98343325 75 1.46224364

6 1.02430182 80 1.43130112

8 1.06422137 85 1.39496551

10 1.10303141 90 1.35334920

15 1.19418002 95 1.30716664

20 1.27547003 100 1.25628014

25 1.34507006 110 1.14229051

30 1.40363010 120 1.01512301

35 1.44962461 150 0.60699309

40 1.48381001 180 0.27416241

45 1.50689321 200 0.13542401

50 1.51973022 230 0.03544140

55 1.52332315 250 0.01189062

60 1.51859000 300 0.00037891
f 1ðx; xÞ ¼ exp �
p tan264�

ð92þ x tan 31�Þ2
ðx� xÞ2

� �
,

where k1 ¼ 0.8950, k2 ¼ 1.80m.
The theoretical horizontal displacement curve was

plotted using the above formulas and was compared with
the observed data (Fig. 6).
The theoretical subsidence curve was plotted using the

above formulae and was compared with the observed data
(Fig. 7).
Example 3. Hong-lingwan No.4 Coal Mine
The mining thickness of the coal seam is 1.80m, strike
NE 401, inclination SE 1301, average dip 131.
The topography in the district is complex, with the

maximum relative difference of height up to 100m,
maximum slope 321.
The stope face has a strike length 140m, a mining depth

100m. The engineering parameters can be determined by
BPNN (Table 3).
From these data in Table 3, we obtain the formulae of

the ground subsidence due to underground mining in
mountainous areas:

W ðx; zÞ ¼ k1k2

Z
D1

tan 53�

101þ x tan 32�
f 1ðx; xÞdx,
Table 3

Parameters of rock mass displacements

a (1) k2 (mm) b (1) H (m)

32.00 1800 53.00 101.00

tanb k1 BS1 BS2

1.3271 0.9010 0.26 0.25

us area

�x (m) W (m) �x (m) W (m)

2 0.85688603 70 0.02389424

4 0.81401701 75 0.01556352

6 0.77112701 80 0.00985950

8 0.72840821 85 0.00613986

10 0.68604910 90 0.00317777

15 0.58292163 95 0.00219628

20 0.48579800 100 0.00126624

25 0.39681036 110 0.00039073

30 0.31747903 120 0.00010922

35 0.24865867 130 0.00000000

40 0.19055708 150 0.00000132

45 0.14281991 180 0.00000000

50 0.10464481 200 0.00000000

55 0.07492890 230 0.00000000

60 0.05241710 250 0.00000000

65 0.03584103 300 0.00000000
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Fig. 8. Comparison between the data points and the theoretical curve of

the horizontal displacement.
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f 1ðx; xÞ ¼ exp �
p tan253�

ð101þ x tan 32�Þ2
ðx� xÞ2

� �
,

where k1 ¼ 0.9010, k2 ¼ 1.80m.
The theoretical results are given in Table 4 (subsidence)

and a theoretical horizontal displacement curve was plotted
using the above formulae and was compared with the
observed data (Fig. 8).

The agreement of the theoretical results with the field
measurements shows that the model is satisfactory and the
formulae obtained are valid, and thus can be effectively
used for predicting the displacements and deformations
due to underground mining in mountainous areas.

4. Conclusions

In this paper, by applying the concepts of fuzzy
probability measures to actual cases of excavation, mining,
ground surface movement and subsidence have been
analyzed and the corresponding membership function is
established. The approximate subsidence and horizontal
displacement have been calculated and compared with the
recorded data obtained from monitoring stations. The
comparison shows that the theoretical prediction is in
agreement with the observations.

The formulae derived in this paper have been confirmed
by a large amount of measured data. The fuzzy model,
therefore, is valid for solving the problems of the rock mass
displacement and ground subsidence due to underground
mining, especially the mining of coal and metal in
mountainous areas.
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