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ABSTRACT

We present a novel, exemplar-based method for audio event de-
tection based on non-negative matrix factorisation (NMF). Building
on recent work in noise robust automatic speech recognition, we
model events as a linear combination of dictionary atoms, and mix-
tures as a linear combination of overlapping events. The exemplar-
based dictionary is created by extracting all available training data,
artificially augmented by linear time warping at multiple rates. The
method is evaluated on the Office Live and Office Synthetic devel-
opment datasets released by the AASP Challenge on Detection and
Classification of Acoustic Scenes and Events.

Index Terms— Audio event detection, exemplars, NMF

1. INTRODUCTION

Automatic audio event detection is an application of pattern recog-
nition and machine learning in which an audio signal is mapped to a
symbolic description of the corresponding sound event(s) present in
the auditory scene. Automatic audio event detection is utilized in a
host of applications, including context-based indexing and retrieval
in multimedia such as movies and sports videos, unobtrusive moni-
toring in health care, surveillance, lifeblogging, audio segmentation
and military applications.

Most conventional audio event detection techniques employ
Gaussian Mixture Models (GMMs), operating on Mel-Cepstral Co-
efficients (MFCCs) [1]. In this work, we built on state-of-the-
art noise robust Automatic Speech Recognition (ASR) techniques
[2, 3] and pursue an exemplar-based Non-negative Matrix Fac-
torisation (NMF) approach to audio event detection. NMF has
only recently been considered in the context of audio event de-
tection [4, 5, 6] and our submission offers three contributions: 1)
modelling all training data through exemplars which facilitates the
use of long temporal contexts and large, possibly overcomplete dic-
tionaries, 2) artificially increasing the (limited) amount of training
data through resampling at various rates, and 3) explicit modelling
of background events such as noise. The method is evaluated on the
Office Live and Office Synthetic development datasets released by
the AASP Challenge on Detection and Classification of Acoustic
Scenes and Events [7].
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2. METHOD

2.1. Compositional model

The compositional model for audio event detection is based on rep-
resenting both individual audio events, as well as mixtures of audio
events, as a linear combination of atoms. The collection of audio
event atoms form a dictionary, and in this work atoms are formed
by exemplars, spectrogram segments extracted from a set of training
samples.

The atoms are B x 1" magnitude spectrogram segments, re-
shaped to a £ = B - T dimensional vector, where B is the number
of frequency bands and 7 is the number of consecutive time frames
in an atom. With an observed signal W represented in the form
of overlapping windows of length T, a spectrogram window Y is
reshaped to an E-dimensional vector y and approximated as:

y ~ [A1A2---AD]
X

with D the total number of audio event dictionaries, and x? the
weight of the linear combination of atoms in dictionary A%, 1 <
d < D. Each dictionary A% is a matrix of size F x N, with N the
number of atoms. The total number of atoms in A is M.

The model (1) can be interpreted as an instance of non-negative
matrix factorisation (NMF), with a fixed dictionary A that is de-
termined in advance. For all window spectrograms in a observed
signal, the representation x is obtained by solving a convex opti-
misation problem. The cost function to be minimized is composed
of the Kullback-Leibler divergence between y and Ax augmented
with a sparsity inducing term composed of the sum of x entries
weighted a penalty \. For details on this cost function and its opti-
misation we refer the reader to [3] and the references therein.

2.2. Dictionary creation

In the exemplar-based approach presented in [3], spectrograms un-
derlying dictionary atoms are directly extracted from training sam-
ples pertaining a particular source. Since in that work, the amount
of training data is rather large, random sampling was used. This
abstract, however, details work on the AASP audio event challenge
which has only a limited amount of training data. Therefore, for
each audio event a dictionary is composed by exhaustively sam-
pling all possible, full-length non-overlapping spectrogram win-
dows from each of the samples available for that event. If a sample
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does not even span a single window (its duration is shorter than T’
frames), which happens for some short events such as “switch”, the
spectrogram is zero-padded up to 1" frames.

While the use of atoms that span multiple time frames has
proven to be advantageous in noise robust ASR [3], a disadvan-
tage is that the explicit modelling of time context makes it difficult
to match observations with (local) durations that do not quite match
those in the limited amount of training data. In order to circumvent
this data scarcity issue, we artificially increase the amount of train-
ing data for short (less than 5 seconds) samples by linear temporal
warping of the spectrograms at the rates: 0.75, 1.25 and 1.5.

In this work, we treat background (both non-target events and
ambient noise) as its own audio event: The annotation of the train-
ing samples is used to determine the start and end point of the event
by taking the maximum possible duration (over both annotators).
The event data is used for dictionary extraction as described above
- the non-event data before and after the event is concatenated and
similarly used to extract background dictionary atoms. Addition-
ally, during decoding a small number of atoms are extracted from
the begin and end of the observed signal and added to the back-
ground dictionary on-the-fly [2].

2.3. Audio event detection

In correspondence with earlier work on ASR [8], we introduce a
label-atom mapping L to associate atoms to events. Lisa D x M
dimensional binary matrix, with a non-zero entry in the d-th row
indicating that a certain atom is associated with audio event d. For
each sliding window position in the observed signal we estimate the
(unscaled) presence of events as:

o=Lx 2

with o a D-dimensional vector indicating the activation (‘likeli-
hood’) of events.

The event-likelihood matrix O describing the entire observed
signal ¥ is formed by overlap-adding the sliding window estimates
o, under the assumption that an activated audio event spans the en-
tire duration 7". O was converted to posterior probability estimates
in three steps: First, O was scaled through division by its largest
entry [4, 8]. Second, a small ‘background offset’ s was added to
the likelihoods pertaining the background event. This can be ben-
eficial since in the absence of any sound, the representation x ap-
proaches zero for all atoms and hence o becomes all-zero [8]. In
the final, third step the entries of the posterior probability estimates
were column-wise normalised to sum to one.

For the Office Live dataset, we additionally smoothed the pos-
terior probability estimates using a moving average sliding window
filter, with a event-dependent duration. For foreground events, the
duration was set to a third of the minimum duration of the events
in the training data, averaged over both annotators and all samples,
with a maximum of 100 frames. The background event was not fil-
tered. For the Office Synthetic dataset, filtering was not used due to
the widely varying acoustic densities of the acoustic scenes.

These event probability estimates were then processed using
a Hidden Markov Model (HMM) consisting of a single state per
event. An event could transition to any other event, governed
by the self-transition probability ps, and the foreground-event-to-
background-event transition probability ps, = fb * (1 — pst ), with
fm the fraction of non-self-transition probability allocated to tran-
sitioning to the background state. The remaining transitions were
all equal with the total transition probability summing to one. The
most likely sequence of events was determined using the Viterbi
algorithm. The Viterbi path was constrained to start and end in a
background event.

Table 1: Results on the Office Live dataset for various evaluation
methods and metrics. These are averages over both annotators and
over all three development files.

Evaluation Method
. Class-wise
Metrics Event Based Event Based Frame Based
R 43.1 38.3 56.4
P 51.7 38.3 77.6
F-score 46.8 36.7 65.2
AEER 1.37 1.18 0.75
Offset R 37.5 31.7 -
Offset P 45.6 33.2 -
Offset F-score 41.0 31.2 -
Offset AEER 1.55 1.38 -

3. EXPERIMENTAL SETTINGS

Acoustic feature vectors consisted of Mel-magnitude spectrograms,
spanning B = 56 bands. We used the original sampling frequency
of 44100 Hz, a pre-emphasis of 0.97, and windowed using a ham-
ming window with a frame length of 25 ms and a frame shift of
10 ms. Stereo data was converted to mono by averaging in the fea-
ture domain.

We used exemplars spanning 200 ms, 7' = 20 frames. A sliding
window approach was used with windows shifted by a single frame
(i.e. 10 ms). The total dictionary size is M = 10621, which in-
cludes 100 ‘background’ atoms extracted from the first and last 50
frames of the observed signal. Dictionary rows were normalised to
equal L-2 norm and dictionary columns were normalised to unit L-2
norm. Optimisation was carried out using 200 iterations of multi-
plicative updates [3], in single precision. We refer the reader to
[3, 2, 8] for algorithmic implementation details.

The parameters that were tuned were A, s, pst and fr,. The pa-
rameters used in this work were tuned on the Office Live dataset by
maximizing the average F-score over all metrics, all development
files and both annotators. Although we also carried out tuning on
the Office Synthetic dataset and for individual metrics and annota-
tors, we found that the (absolute) differences were rather small, in
the order of 2-3%. For convenience, and to prevent overfitting, we
opted for a single choice of parameter settings for both datasets and
for all metrics. We also explored the use of convolutive decoding
[4] rather than sliding window based coding, which seemed to im-
prove the results on the Office Synthetic dataset by 2-4%. Again,
however, we opted to use a single, sliding window based approach
for both datasets.

The sparsity weight was set to A = 0.3 for all events.
This weight was obtained by a grid search over the range A €
{0,0.1,0.25,0.3,0.4,0.45,0.5,0.75, 1}, allowing a different spar-
sity weight for the foreground and background events during tuning.
The background offset was set to s = 0.008, after a search over s €
{0, 0.0001, 0.0005, 0.001, 0.005, 0.008,0.01,0.02}. The HMM
self-transition probability was set to pss = 0.99999 after a search
over pst € {0.8,0.9,0.99,0.999,0.9999,0.99999}. Finally, the
silence fraction was determined to be fr, = 0.001 after a search
over fi, € {0.001,0.005,0.01,0.05,0.1,0.2,0.4}. All parame-
ters were jointly tuned in a five dimensional grid search.

4. EXPERIMENTS ON DEVELOPMENT DATA

4.1. Results

The results on the development data of the Office Live dataset, av-
eraged over the three development files and over both annotators,
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Table 2: F-score results on the Office Synthetic Dataset for various
evaluation methods. The dataset consists of nine files: three SNRs
(-6,0 and 6 dB) at three acoustic ‘densities’ (low, medium and high).

Density B SNRO[dB]
low 16.7 | 10.0 | 8.7
Event Based medium 5.3 17.0 | 28.0
high 4.0 15.5 | 22.0

) Tow 6.7 [ 100 | 6.1
Class-wise medium || 44 | 142 | 222
Event Based high 38 | 121 | 187
Tow 220 | 240 | 159
medium 374 | 327 | 42.7
high 210 | 334 | 327

Evaluation
Method

Frame Based

are shown in Table 1. The results on the development data of the
Office Synthetic dataset are shown in Table 2. For brevity, only
the F-scores are shown. The average F-scores over all conditions
are 14.1%, 12.0% and 29.2% for the event based, class-wise event
based and frame based metrics, respectively.

5. DISCUSSION

5.1. Office live dataset

When comparing the results of the proposed framework on the
Office Live dataset (c.f. Table 1) with the baseline results re-
ported in [9], we obtain substantially higher F-scores for all met-
rics. For example, the baseline system achieves a F-score of 20.6%
on the frame-based metric, whereas our exemplar-based framework
achieves 65.2%. Since the baseline system also employs an NMF-
based framework, it will be interesting to study the commonalities
and differences in future work.

A brief study of the underlying confusions showed that most er-
rors were due to brief events such as ‘switch’. Also, in the composi-
tional framework some of the events were erroneously modelled by
other events with a more parts-based nature: an event with a more or
less uniform energy distribution in time energy, would be modelled
by (parts of) an event which span only part of the time-frequency
spectrum. A possible method to alleviate this would be to use group
sparsity [10], which penalizes cross-event atom activations.

The fact that the use of an additional moving average filtering
step yields a large improvement in results (in the order of 10% abso-
lute F-score for the frame based metric) serves as indirect evidence
that taking typical (minimum) durations of events into account is
important. This, and the fact that the self-transition probabilities are
tuned to a very high value, indicates that there is substantial room
for improvement in modelling the long-term temporal structure in
the backend.

5.2. Office synthetic dataset

Overall, we can observe that the performance on the Office Syn-
thetic dataset are much lower than for the Office Live dataset, pre-
sumably due to the effect of added noise and overlapping events. Ta-
ble 2 allows us to study the performance of the proposed framework
on the Office Synthetic dataset as a function of SNR and acous-
tic density. While it should be noted that each reported F-score is
solely based on a single recording, we can observe that the highest
F-scores for the medium and high density condition are obtained at
an SNR of 6 dB. Although the compositional framework can inher-
ently handle the overlap between noise and other events, only a very
small set (100) of noise atoms are available, while noise is typically
less structured and thus harder to model.

Perhaps surprisingly, the most difficult condition is the ‘low’
density setting, for which the best results are obtained at the lowest
SNR. However, in this condition the acoustic events are so rare that
it is likely that these results are not fully representative. Closer in-
spection revealed that the temporal location of acoustic events was
more or less correctly determined, even in high noise conditions,
but that the events themselves were incorrectly recognized. A more
detailed analysis in future work will have to reveal whether this is
an effect of the corrupting noise or due to some other test-train mis-
match.

In the ‘high’ density setting, the results also drop w.r.t the
‘medium’ density settings. Although the compositional framework
can handle overlapping events, the use of a HMM-based decoder
as a smoothing step precludes overlapping events. We briefly ex-
perimented with multiple Viterbi passes (at each pass zeroing out
all event activations of the previous passes), as used in [1], but this
did not yield satisfactory results since it led to a large number of
insertion errors.

6. CONCLUSIONS AND FUTURE WORK

We presented an exemplar-based NMF framework, which yielded
promising results on the Office Synthetic dataset and substantially
outperformed the baseline system on the Office Live dataset. Future
work will focus on the use of group sparsity to improve acoustic
modelling, and the use of more robust back-end models to replace or
augment the HMM-based smoothing. Some possibilities are the use
of explicit-duration HMMs to model the typical lengths of acoustic
events, and the use of more fine-grained state-based models such as
those explored in [3].
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