
Now that we have seen some basic applications of both binary and continu-
ous GAs and discussed some of the fine points of their implementation, it will
be fun to look at what can be accomplished with a GA and a bit of imagina-
tion. The examples in this chapter make use of some of the advanced topics
discussed in Chapter 5 and add variety to the examples presented in Chapter
4. They cover a wide range of areas and include technical as well as nontech-
nical examples. The first example is the infamous traveling salesperson prob-
lem where the GA must order the cities visited by the salesperson.The second
example revisits the locating-an-emergency-response unit from Chapter 4 but
this time uses a Gray code. Next comes a search for an alphabet that decodes
a secret message. The next examples come from engineering design and
include robot trajectory planning and introductory stealth design.We end with
several examples from science and mathematics that demonstrate some of the
ways in which GAs are being used in research: two use data to build inverse
models, one couples a simulation with a GA to identify allocations of sources
to an air pollution monitor, one combines the GA with another artificial intel-
ligence technique—the neural network—and the final one finds solutions to a
nonlinear fifth-order differential equation.

1.TRAVELING SALESPERSON PROBLEM

Chapter 5 presented several methods to modify the crossover and mutation
operators in order for a GA to tackle reordering or permutation problems.
It’s time to try this brand of GA on the famous traveling salesperson problem,
which represents a classic optimization problem that cannot be solved using
traditional techniques (although it has been successfully attacked with simu-
lated annealing; Kirkpatrick et al., 1983). The goal is to find the shortest route
for a salesperson to take in visiting N cities. This type of problem appears in
many forms, with some engineering applications that include the optimal

Abstract

 T. Begina,?, B.Baynata, F.Sourda, A.Brandwajnb
bUniversity ofCaliforniaSantaCruz,JackBaskinSchoolofEngineering,1156HighStreet,SantaCruz,CA95064,USA

Robot trajectory planning and introductory stealth design

(2012)

layout of a gas pipeline, design of an antenna feed system, configuration of
transistors on a very large-scale integration (VLSI) circuit, or sorting objects
to match a particular configuration. Euler introduced a form of the traveling
salesperson problem in 1759, and it was formally named and introduced by
the Rand Corporation in 1948 (Michalewicz, 1992).

The cost function for the simplest form of the problem is just the distance
traveled by the salesperson for the given ordering (xn, yn), n = 1, . . . , N given
by

(6.1)

where (xn, yn) are the coordinates of the nth city visited. For our example, let’s
put the starting and ending point at the origin, so (x0, y0) = (xN+1, yN+1) = (0, 0)
= starting and ending point. This requirement ties the hands starting of the
algorithm somewhat. Letting the starting city float provides more possibilities
of optimal solutions.

The crossover operator is a variation of the cycle crossover (CX) described
in Chapter 5. Here, however, we randomly select a location in the chromo-
some where the integers are exchanged between the two parents. Unless the
exchanged integers are the same, each offspring has a duplicate integer. Next
the repeated integer in offspring1 is switched with the integer at that site in
offspring2. Now a different integer is duplicated, so the process iterates until
we return to the first exchanged site. At this point each offspring contains
exactly one copy of each integer from 1 to N.The mutation operator randomly
chooses a string, selecting two random sites within that string, and exchanges
the integers at those sites.

We’ll initially look at this problem with N = 13 cities. Given the fixed
starting and ending points, there are a total of 13!/2 = 3.1135 ¥ 109 possible
combinations to check. To test the algorithm, we will start with a configura-
tion where all the cities lie in a rectangle as shown in Figure 6.1. We know that
the minimum distance is 14. The GA parameters for this case are Npop = 400,
Nkeep = 200, and m = 0.04. The algorithm found the solution in 35 generations
as shown in Figure 6.2.

Now let’s try a more difficult configuration. Randomly placing the 25 cities
in a 1 ¥ 1 square doesn’t have an obvious minimum path. How do we know
that the GA has arrived at the solution? The optimal solution will have no
crossing paths. So we’ll plot the solution and check. The algorithm had Npop =
100, Nkeep = 50, and m = 0.04. This algorithm found the minimum in 130 gener-
ations. Figure 6.3 shows the convergence of the algorithm, and Figure 6.4 is
the optimal solution. We found that low population sizes and high mutation
rates do not work as well for the permutation problems. For more details, see
Whitley et al. (1991).

cos t x x y yn n n n
n

N

= -() + -()+ +
=
Â 1

2
1

2

0

152 ADVANCED APPLICATIONS

www.MatlabSite.com

6.2 LOCATING AN EMERGENCY RESPONSE UNIT REVISITED

Finding the location of an emergency response unit described in Chapter 4
had a cost surface with two minima. Running the continuous and binary GAs
revealed that the continuous GA was superior. One of the problems with the
binary GA is the use of binary numbers to represent variable values. In this

LOCATING AN EMERGENCY RESPONSE UNIT REVISITED 153

Figure 6.1 Graph of 13 cities arranged in a rectangle. The salesperson starts at the
origin and visits all 13 cities once and returns to the starting point. The obvious solu-
tion is to trace the rectangle, which has a distance of 14.

5 10 15 20 25 30 35

14

16

18

20

22

24

26

28

30

generation

co
st

minimum cost

mean cost

Figure 6.2 Convergence of the genetic algorithm when there are 13 cities on a
rectangle as shown in Figure 6.1.

www.MatlabSite.com

chapter we solve the same problem with a binary GA but use a Gray code to
represent the variables.

Gray codes don’t always improve the convergence of a GA. The conver-
gence graph in Figure 6.5 shows that the Gray code did improve performance
in this instance. However, implementing the Gray code in the GA slows down
the algorithm because the translation of the binary code into binary numbers
is time-consuming. We’re somewhat skeptical of adding the Gray code trans-
lation to our GAs, so we usually don’t. However, the result here shows that a
small improvement is possible with the Gray code.

154 ADVANCED APPLICATIONS

0 50 100 150
4

5

6

7

8

9

10

11

12

generation

co
st mean cost

minimum cost

Figure 6.3 Convergence of the GA for the 25 city traveling salesperson problem.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 6.4 GA solution to 25 city traveling salesperson problem.

www.MatlabSite.com

6.3 DECODING A SECRET MESSAGE

This example uses a continuous GA to break a secret code. A message
consisting of letters and spaces is encoded by randomly changing one letter to
another letter. For instance, all d’s may be changed to c’s and spaces changed
to q’s. If the message uses every letter in the alphabet plus a space, then there
are a total of 27! possible codes, with only one being correct. If the message
uses S symbols, then there are 27! - S! possible encodings that work.

A chromosome consists of 27 genes with unique values from 1 to 27. A 1
corresponds to a space and 2 through 27 correspond to the letters of the alpha-
bet. Letters and spaces in the message receive the appropriate numeric values.
The cost is calculated by subtracting the guess of the message from the known
message, taking the absolute value, and summing:

(6.2)

We know the message when the cost is zero.
As an example, let’s see how long it takes the GA to find the encoding

for the message “bonny and amy are our children.” This message has 30 total
symbols, of which 15 are distinct. Thus 15 of the letters must be in the proper
order, while the remaining 12 letters can be in any order. The GA used the
following constants: Npop = 400, Nkeep = 40, and m = 0.02. It found the message
in 68 generations as shown in Figure 6.6. Progress on the decoding is shown
in Table 6.1.

cos t message n guess n
n

N

= () - ()
=
Â

1

DECODING A SECRET MESSAGE 155

5 10 15 20 25
3000

3200

3400

3600

3800

4000

generation

co
st

minimum cost

mean cost

Figure 6.5 Convergence graph for the emergency response unit problem from
Chapter 4 when a Gray code is used.

www.MatlabSite.com

156 ADVANCED APPLICATIONS

10 20 30 40 50 60
0

20

40

60

80

100

120

generation

co
st

minimum cost

mean cost

Figure 6.6 Genetic algorithm that decodes the message “bonny and amy are our
children” in 68 generations.

A more difficult message is “jake can go out with my beautiful pets and
quickly drive to see you.” This message lacks only x and z. It has 25 distinct
symbols and a total of 65 total symbols. Figure 6.7 shows the convergence
in this case with Npop = 500, Ngood = 40, and m = 0.02. The algorithm found the
solution in 86 generations. Progress on the decoding is shown in Table 6.2.

6.4 ROBOT TRAJECTORY PLANNING

Robots imitate biological movement, and GAs imitate biological survival. The
two topics seem to be a perfect match, and many researchers have made that
connection. Several studies have investigated the use of GAs for robot tra-

TABLE 6.1 Progress of the GA as It Decodes the
Secret Message

Generation Message

1 amiizbditbdxzbdqfbmvqbeoystqfi
10 krooy aoe any aqf rwq gbpseqfo
20 crooy aoe any aqf rwq gdiheqfo
30 dpooy aoe any arf pwr ghikerfo
40 bqmmz amd anz are qur cfildrem
50 bonnz and amz are osr cghldren
60 bonny and ajy are our children
68 bonny and amy are our children

www.MatlabSite.com

jectory planning (Davidor, 1991; Davis, 1991; Pack et al., 1996). For example,
the goal is to move a robot arm in an efficient manner while avoiding obsta-
cles and impossible motions. The even more complicated scenario of moving
the robot arm when obstacles are in motion has been implemented with a
parallel version of a GA (Chambers, 1995).Another application simulated two
robots fighting. A GA was used to evolve a robot’s strategy to defeat its oppo-
nent (Yao, 1995).

A robot trajectory describes the position, orientation, velocity, and accel-
eration of each robot component as a function of time. In this example, the
robot is a two-link arm having two degrees of freedom in a plane called the
robot workspace (Figure 6.8) (Pack et al., 1996). For calculation purposes this

ROBOT TRAJECTORY PLANNING 157

10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

generation

co
st

minimum cost

mean cost

Figure 6.7 Genetic algorithm that decodes the message “jake can go out with my
beautiful pets and quickly drive to see you” in 86 generations.

TABLE 6.2 Progress of the GA as It Decodes the Secret Message

Generation Message

1 vhte fhb po olq zjqk ds mehlqjxlu neqr hbg wljftus gcjae qo ree sol
10 cahd bas np pxt iqtf kz edaxtqwxj vdtl asg oxqbhjz grqud tp ldd zpx
20 jakh dar go out wftb mx nhautfcui phty are sufdkix ezfqh to yhh xou
30 faje can gp pvs yish mx reavsikvl ueso and qvicjlx dwize sp oee xpv
40 kaje can dp pvt yitg mx reavtifvl oets anb qvicjlx bwize tp see xpv
50 jake can dp pvt xitg my heavtifvl oets anb qvickly bwize tp see ypv
60 jake can gp put xith my deautiful oets anb quickly bvize tp see ypu
70 jake can go out xith my beautiful pets and quickly dwize to see you
80 jake can go out xith my beautiful pets and quickly dwive to see you
86 jake can go out with my beautiful pets and quickly drive to see you

www.MatlabSite.com

arm is approximated by two line segments in Cartesian coordinates as shown
in Figure 6.9. Each joint has its own local coordinate system that can be related
to the base x0, y0 coordinate system (located at the shoulder joint). The end-
effector or tip of the robot arm is of most interest and has a local coordinate
system defined by x2, y2. An intermediate coordinate system at the elbow joint
is defined by x1, y1. Using the Donauit-Hartenberg parameters, one can trans-
form an end-effector position in terms of the x0, y0 coordinates by

158 ADVANCED APPLICATIONS

end-effector

y2

y1

y0

x1

x0

x2

l2

q2

q1

l1

end-effector

y2

y1

y0

x1

x0

x2

l2

q2

q1

l1

Figure 6.8 Diagram of a two-dimensional robot arm with two links. Link 1 pivots
about coordinate system 0 and link 2 pivots about coordinate system 1. Coordinate
system 3 has an origin at the end-effector.

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20
Workspace

X-axis (in)

Y
-a

xi
s

(in
)

Theta 1

Theta 2

Figure 6.9 Robot arm in Figure 6.6 when more simply described by two line segments.

www.MatlabSite.com

(6.3)

where

x2, y2, z2 = position of end-effector with respect to coordinate system 2
(end-effector based coordinate system)

x0, y0, z0 = position of end-effector with respect to the base coordinate
system

cosu12 = cosu1 cosu2 - sinu1 sinu2

sinu12 = sinu1 cosu2 + cosu1 sinu2

�1 = length of link 1
�2 = length of link 1
u1 = angle between x0-axis and link 1

u2 = angle between x1-axis and link 1

Thus knowing the length of the links and the angles allows us to transform
any points on the robot arm from the x2, y2 coordinate system to the x0, y0 coor-
dinate system. Our goal is to find the optimal path for the robot to move
through its environment without colliding with any obstacles in the robot
workspace.

Although following the end-effector path through Cartesian space (x0- and
y0-axes) is easiest to visualize, it is not of the most practical value for opti-
mization. First, the calculation of joint angles at each point along the path is
difficult. Second, the calculations can encounter singularities that are difficult
to avoid. An alternative approach is to formulate the trajectory problem in
the configuration space (u1- and u2-axes) that governs the position of the end-
effector. Although numerically easier, it can result in complicated end-
effector paths. We will go with the numerically easier version and let the
GA optimize in configuration space for this example.

Obstacles in the form of impossible robot joint angle combinations must be
taken into account when designing the cost function. It can be shown that point
obstacles are contained within an elliptical region in configuration space (Pack
et al., 1996). As an example, a point obstacle in the world space transforms
into a curved line in configuration space (Figure 6.10) (Pack et al., 1996). This
line is nicely contained within an ellipse, and an ellipse is much easier to model
as an obstacle.

The cost function is merely the length of the line needed to get from the
starting point to the ending point in the configuration space. Rather than
attempt to find a continuous path between the start and destination points,
piecewise line segments are used. This example establishes a set number of
line segments before the GA begins. Consequently the length of all the chro-

cos sin cos cos
sin cos sin sin

q q q q
q q q q

12 12 1 1 2 12

12 12 1 1 2 12

2

2

2

0

0

0

0
0

0 0 1 0
0 0 0 1 1 1

- +
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

l l
l l

x
y
z

x
y
z

ROBOT TRAJECTORY PLANNING 159

www.MatlabSite.com

mosomes are the same. Others have used variable length chromosomes to find
the optimum path. (The reader interested in this approach is referred to
Davidor, 1991.)

The first example has four obstacles in the configuration space with start
and stop points in obscure parts of the space. Only three intermediate points
or four line segments are permitted to complete the shortest path from the
start to the finish. The binary GA had Npop = 80 members in the population
and ran for 10 generations. The first generation had an optimal path length
of 11.06 units, as shown in Figure 6.11. After 10 generations the minimum
cost reduced to 9.656 units, and its path in configuration space is shown in
Figure 6.12. Adding more intermediate points would give the algorithm more
freedom to find a better solution.

A second example begins with a real world problem with five-point obsta-
cles in world space that transformed into an ellipse in the configuration space.
Again, the binary GA had Npop = 80 members in the population and ran for
10 generations. The path after the first generation is shown in Figure 6.13 and

160 ADVANCED APPLICATIONS

-400 -300 -200 -100 0 100 200 300 400
-200

-100

0

100

200

300

theta_one (deg)

th
et

a_
tw

o
(d

eg
)

Configuration Space

-20 -15 -10 -5 0 5 10 15 20
-20

-10

0

10

20
Workspace

X-axis (in)

Y
-a

xi
s

(in
)

Figure 6.10 Point obstacle in the lower graph transformed into curved line in config-
uration space in upper graph. This curved line is contained within an elliptical region
denoted by the dashed line. In configuration space this ellipse forms a boundary that
the robot arm cannot pass through.

www.MatlabSite.com

STEALTH DESIGN 161

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Start

Stop

Solution path for generation 1 with fitness 11.06
1

2 3

Figure 6.11 The best path between the obstacles after generation 1 is 11.06 units long.

has a cost of 7.321 units. After 10 generations the minimum cost reduced to
6.43 units, and its path in configuration space is shown in Figure 6.14. This
optimal solution translates back to world space, as shown in Figure 6.15, where
the symbols * and • denote the starting and ending robot end-effector
positions, respectively. The elliptical obstacle shapes in Figure 6.13 and 6.14
translate into points (denoted by + signs) in Figure 6.15.

6.5 STEALTH DESIGN

A stealth airplane is difficult to detect with conventional radar. Engineers
use a combination of materials, size, orientation, and shaping to reduce the
radar cross section of an airplane. The radar cross section of a simple
two-dimensional reflector can be modified by the placement of absorbing
materials next to it. This type of reflector design is also of interest to satellite
antenna manufacturers to lower sidelobe levels and reduce the possibility of
interference with the desired signal.

This example demonstrates how to use GAs to find resistive loads that
produce the lowest maximum backscatter relative sidelobe level from a per-

www.MatlabSite.com

162 ADVANCED APPLICATIONS

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Start

Stop

Solution path for generation 10 with fitness 9.656
1

2

3

Figure 6.12 The best path between the obstacles after generation 10 is 9.656 units
long.

fectly conducting strip. The radar cross section of a 6l strip appears in Figure
6.16, and its highest relative sidelobe level is about 13.33dB below the peak
of the main beam. The radar cross section is given in terms of dBlambda or
decibels above one wavelength. The wavelength is associated with the center
frequency of the electromagnetic wave incident on the strip. A model of the
loaded strip is shown in Figure 6.17.Assuming the incident electric field is par-
allel to the edge of the strip, the physical optics backscattering radar cross
section is given by Haupt (1995):

(6.4)

where

s = sinf
u = cosf
2a = width of perfectly conducting strip

s f
h

() = () +
+

Ê
Ë

ˆ
¯ () + +Ê

ËÁ
ˆ
¯̃

È
ÎÍ

˘
˚̇+ +

-

Â Âk
asSa kau

b s
s

Sa kb u k a b
b

un

nn

N

n m
n

m

n

4
4 2

2
0 5

2
21 1

1 2

.
cos

www.MatlabSite.com

STEALTH DESIGN 163

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Start

Stop

Solution path for generation 1 with fitness 7.321

1

2

Figure 6.13 The best path between the obstacles after generation 1 has a length of
7.32 units.

bn = width of load

hn = resistivity of load

Sa = (sinx)/x
Bw, Br = number of bits representing the strip width and resistivity
bw, br = array of binary digits that encode the values for the strip widths

and resistivities.
W, R = width and resistivity of the largest quantization bit

Eight resistive loads are placed on each side of a perfectly conducting strip
that is 6l wide. The widths and resistivities of these loads are optimized to
reduce the maximum relative sidelobe level of the radar cross section. Both
the width and resistivity of each load are represented by 5 quantization bits,
and W = 1 and R = 5. The optimized values arrived at by the GA are

h

l

n

nw

=

=

0 16 0 31 0 78 1 41 1 88 3 13 4 53 4 22

1 31 1 56 1 94 0 88 0 81 0 69 1 00 0 63

. , . , . , . , . , . , . , .

. , . , . , . , . , . , . , .

n b m Rm
B

r
mr= []=

-Â 1
12

n b m Wm
B

w
mw= []=

-Â 1
12

www.MatlabSite.com

164 ADVANCED APPLICATIONS

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Start

Stop

Solution path for generation 10 with fitness 6.43

1

2

Figure 6.14 The best path between the obstacles after generation 10 has a length of
6.43 units.

These values result in a maximum relative radar cross section sidelobe level
of -33.98dB. Figure 6.18 shows the optimized radar cross section. The peak of
the mainbeam is about 6dB higher than the peak of the mainbeam of the 6l
perfectly conducting strip radar cross section in Figure 6.16. In exchange for
the increase in the mainbeam, the peak sidelobe level is 15dB less than
the peak sidelobe level in Figure 6.16. In other words, compared to the
6l perfectly conducting strip, this object is easier to detect by a radar looking
at it from the broadside, but it is more difficult to detect looking off
broadside.

The resistive loads attached to the perfectly conducting strip were
also optimized using a quasi-Newtonian method that updates the
Hessian matrix using the Broyden–Fletcher–Goldgarb–Shanno (BFGS)
formula. A true gradient search was not used because the derivative
of (6.4) is difficult to calculate. The quasi-Newtonian algorithm per-
formed better than the GA for 10 or less loads. Using the quasi-
Newtonian method in the previous example resulted in a maximum relative
sidelobe level of -36.86dB. When 15 loads were optimized, GAs were clearly
superior.

www.MatlabSite.com

6.6 BUILDING DYNAMIC INVERSE MODELS—THE LINEAR CASE

Inverse models are becoming increasingly common in science and engineer-
ing. Sometimes we have collected large amounts of data but have not devel-
oped adequate theories to explain the data. Other times the theoretical models
are so complex that it is extremely computer intensive to use them.Whichever
the circumstance, it is often useful to begin with available data and fit a
stochastic model that minimizes some mathematical normed quantity, that is,
a cost. Our motivation here lies in trying to predict environmental variables.
In recent years many scientists have been using the theory of Markov
processes combined with a least squares minimization technique to build sto-
chastic models of environmental variables in atmospheric and oceanic science
(Hasselmann, 1976; Penland, 1989; Penland and Ghil, 1993). One example is
predicting the time evolution of sea surface temperatures in the western
Pacific Ocean as a model of the rises and falls of the El Niño/Southern Oscil-
lation (ENSO) cycle. This problem proved challenging. However, stochastic

BUILDING DYNAMIC INVERSE MODELS—THE LINEAR CASE 165

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

X-axis (in)

Y
-a

xi
s(

in
)

Workspace

Figure 6.15 Actual movement of the robot arm through the obstacles in world space
(denoted by + signs). The plus signs transform into the elliptical regions shown in con-
figuration space (Figures 6.13 and 6.14).

www.MatlabSite.com

models have performed as well as the dynamical ones in predicting future
ENSO cycles (Penland and Magorian 1993; Penland, 1996). Another applica-
tion involves predicting climate. We now build very complex climate models
that require huge amounts of computer time to run. There are occasions when
it would be useful to predict the stochastic behavior of just a few of the key
variables in a large atmospheric model without concern for the details of day-
to-day weather. One such application is when an atmospheric climate model
is coupled to an ocean model. Since the time scale of change of the atmos-
phere is so much faster than that of the ocean, its scale dictates the Courant-
Friedichs-Levy criteria, which limits the size of the allowable time step. For
some problems it would be convenient to have a simple stochastic model of

166 ADVANCED APPLICATIONS

0 0.2 0.4 0.6 0.8 1

-25

-20

-15

-10

-5

0

5

10

15

20

u

R
C

S
 in

 d
B

la
m

bd
a

R
C

S
in

dB
la

m
bd

a

max rel sll =max rel sll = --13.33 dB13.33 dB

Figure 6.16 Radar cross section of a 6l wide perfectly conducting strip.

2a b1 b2

incident and
scattered fields

fh1 h2

Figure 6.17 Diagram of a perfectly conducting strip with symmetric resistive loads
placed at its edges.

www.MatlabSite.com

the atmosphere to use in forcing an ocean model. Recent attempts have shown
that such models are possible and perhaps useful for computing responses to
forcing (Branstator and Haupt, 1998). However, the least squares techniques
typically used to build these models assume a Markov process. This assump-
tion is not valid for most environmental time series. Would a different method
of minimizing the function produce a better match to the environmental time
series? This is an interesting question without a clear answer. Before answer-
ing it using large climate models, it is convenient to begin with simple low-
dimensional models of analytical curves.

We use a GA to compute parameters of a model of a simple curve that is
parametric in time. In particular, we wish to fit a model

(6.5)

to a time series of data. Here x is an N-dimensional vector, dx/dt = xt is its time
tendency, and A is an N ¥ N matrix relating the two. Note that most first-order

dx
dt

= Ax

BUILDING DYNAMIC INVERSE MODELS—THE LINEAR CASE 167

0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

5

10

15

20

25

30

u

R
C

S
 in

 d
B

la
m

bd
a

max rel sll = -33.98 dB

Figure 6.18 Radar cross section of the 6l wide strip with 8 resistive loads placed at
its edges. The level between the maximum sidelobe and the peak of the mainbeam is
-33.98 dB, which is a 20.78 dB reduction.

www.MatlabSite.com

time-dependent differential equations can be discretized to this form. Our goal
is to find the matrix A that minimizes the cost

(6.6)

where P is any appropriate power norm that we choose. The least squares
methods use P = 2, or an L2 norm. The angular brackets denote a sum over all
of the data in the time series.

An example time series is a spiral curve generated by (X, Y, Z) = (sin(t),
cos(t), t), with t = [0, 10p] in increments of p/50.The time evolution of this curve
appears in Figure 6.19. Note that for this problem, computation of the cost
function requires a summation over 500 time increments. However, even with
the reasonably large population size and number of generations (70) that we
computed, the computer time required was not excessive. (Note that for a
bigger problem with a longer averaging period, this would no longer be true.)
A continuous GA is applied to this curve with a population size of Npop = 100,
and a mutation rate of m = 0.2. Since the GA is oblivious to which value of P
we choose, we experimented a bit and found the best results for moderate P.
The solution displayed here uses P = 4. Evolution of the minimum cost appears
in Figure 6.20. We notice that the cost decreases several orders of magnitude
over the 70 generations. The result appears in Figure 6.21. We see that the
general shape of the spiral curve is captured rather well. The bounds in X and
Y are approximately correct, but the evolution in Z = t is too slow. We found

cos t
p= -()x Axt

168 ADVANCED APPLICATIONS

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

5

10

15

20

25

30

35

XY

t

Figure 6.19 Spiral curve specified by (X, Y, Z) = [cos(t), sin(t), t] for t = [1, 10p].

www.MatlabSite.com

BUILDING DYNAMIC INVERSE MODELS—THE LINEAR CASE 169

0 10 20 30 40 50 60 70
10

1

10
2

10
3

10
4

10
5

iteration

m
in

im
um

 c
os

t

Figure 6.20 Evolution of the mimimum cost of the genetic algorithm, which produces
a dynamical inverse model of the spiral curve in Figure 6.19.

-1
-0.5

0
0.5

1
1.5

-1

-0.5

0

0.5

1
-0.4

-0.3

-0.2

-0.1

0

0.1

XY

t

Figure 6.21 Genetic algorithm’s dynamical fit of a model based on the time series of
the spiral curve in Figure 6.19.

www.MatlabSite.com

170 ADVANCED APPLICATIONS

-1

-0.5

0

-0.5

0

0.5

1
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

XY

t

Figure 6.22 A linear least square dynamical fit of a model based on the time series
of the spiral curve in Figure 6.19.

that this aspect of our model was rather difficult to capture. In terms of dynam-
ical systems, we were able to find the attractor but not able to exactly model
the evolution along it. For comparison a standard least squares technique is
used to solve the same problem. The result appears as Figure 6.22. We can see
that the least squares method could not even come close to capturing the shape
of the attractor. Of course, we can fine-tune the least squares method by adding
a noise term in the cost function.We can do that for the GA as well.The advan-
tage of the GA is that it is easy to add complexity to the cost function. Feeding
this simple model more variables adds nothing to the solution of the problem,
since it can be completely specified with the nine degrees of freedom in the
matrix.

6.7 BUILDING DYNAMIC INVERSE MODELS—THE
NONLINEAR CASE

An enhancement to the application of the previous section on empirical mod-
eling is including higher order terms in the calculation. Many dynamical
problems are not linear in nature, so we cannot expect them to reproduce

www.MatlabSite.com

the shape of the data using linear stochastic models. We saw this in the
traditional least square fit to the spiral model in the preceding section (see
Figure 6.22). The spiral model was sinusoidal and that behavior could not be
captured with the linear fit. In this section we expand the inverse model to
include quadratically nonlinear terms, often the form that appears in fluid
dynamics problems.

The example problem that we consider is predator-prey model (also known
as the Lotka-Volterra equations), namely

(6.7)

where x is the number of prey and y the number of predators.The prey growth
rate is a while the predator death rate is c. Variables b and d characterize the
interactions. Equations (6.7) were integrated using a fourth order Runge Kutta
with a time step of 0.01 and variables a = 1.2, b = 0.6, c = 0.8, and d = 0.3. The
time series showing the interaction between the two appears in Figure 6.23.
This time series serves as the data for computing the inverse models.The phase
space plot is shown in Figure 6.24 where we see the limit cycle between the
predators and the prey.

dx
dt

ax bxy

dy
dt

cy dxy

= -

= - +

BUILDING DYNAMIC INVERSE MODELS—THE NONLINEAR CASE 171

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5
0 5 10 15 20 3025

time

nu
m

be
r

of
 in

di
vi

du
al

s

prey
predators

Figure 6.23 Time series showing predator and prey variations over time according to
(6.7).

www.MatlabSite.com

172 ADVANCED APPLICATIONS

4

3.5

3

2.5

2

1.5

1

0.5

prey

pr
ed

at
or

s

1 21.5 2.5 3 3.5 4 4.5 5 5.5

Figure 6.24 State space showing predator-prey interactions.

To fit a linear model, we would use (6.5). The least squares fit to the linear
model produces the time series of Figure 6.25. We note that the agreement is
quite poor, as one would expect given that the system (6.7) is highly nonlin-
ear. With no nonlinear interaction available, the number of prey grows while
the number of predators remains stationary.

To obtain a more appropriate nonlinear fit, we now choose to model the
data with a nonlinear model:

(6.8)

We allow nonlinear interaction through the nonlinear third-order tensor oper-
ator, N, and include a constant, C. Although one can still find a closed form
solution for this nonlinear problem, it involves inverting a fourth-order tensor.
For problems larger than this simple two-dimensional one, such an inversion
is not trivial. Therefore we choose to use a GA to find variables that minimize
the least square error between the model and the data. The cost function is

(6.9)

The GA used a population size of 100, and a mutation rate of 0.2.A time series
of the solution as computed by the GA appears in Figure 6.26. Note that
although the time series does not exactly reproduce the data, the oscillations

cost = - + +()x Nx x Ax Ct
T p

x Nx x Ax Ct
T= + +

www.MatlabSite.com

BUILDING DYNAMIC INVERSE MODELS—THE NONLINEAR CASE 173

3.5

3

2.5

2

1.5

1

0.5

0
0 5 10 15 20 3025

time

nu
m

be
r

of
 in

di
vi

du
al

s

prey
predators

Figure 6.25 Least squares time series fit to predator-prey model.

3

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5
0 5 10 15 20 3025

nu
m

be
r

of
 in

di
vi

du
al

s

prey
predators

Figure 6.26 Time series of predator-prey interactions as computed by the genetic
algorithm.

www.MatlabSite.com

174 ADVANCED APPLICATIONS

-1.5 -1 -0.5 0.50 1 1.5 2 32.5
prey

pr
ed

at
or

2

1.5

1

0.5

0

-0.5

-1

-1.5

Figure 6.27 The predator-prey relation in state space as computed by the nonlinear
model with parameters fit by the GA.

are reproduced including the phase shift of roughly a quarter period. The
wavelength is not exact and the amplitudes grow in time, indicating an insta-
bility. This instability is likely inherent in the way that the model is matched.
However, the reproduction of such a difficult nonlinear system is amazing
given the comparison to traditional linear models.

The state space plot appears in Figure 6.27. The limit cycle is not exactly
reproduced. The nonlinear model instead appears unstable and slowly grows.
For comparison, however, the linear least squares model resulted in a single
slowly growing curve (Figure 6.25) that was a much worse match.The GA non-
linear model was able to capture the cyclical nature of the oscillations, a huge
improvement.

Finally Figure 6.28 shows the convergence of the GA for a typical run of
fitting the nonlinear model (6.8) to the data. Due to their random nature, the
results of a GA are never exactly the same. In particular, the convergence plots
will differ each time. However, the results are quite reliable. For this simple
two-dimensional nonlinear system describing predator-prey relations, the GA
fit the variables of a nonlinear model so that the attractor was much better
produced than by a traditional linear least squares fit. Although the match is
not perfect, the nonlinear GA model captures the essence of the dynamics.

www.MatlabSite.com

6.8 COMBINING GAs WITH SIMULATIONS—AIR POLLUTION
RECEPTOR MODELING

Now we move into problems that require running some sort of simulation as
part of the cost function. In both design and in fitting some inverse models,
we often know something about the physics of the problem that can be for-
mulated into a numerical simulation. That simulation is often necessary to
evaluate the quality of the chosen design or fitting model. For instance, several
engineers have designed airplanes wings and airfoils by optimizing the shape
through testing with a full fluid dynamics model (e.g., Karr, 2003; Obayashi
et al., 2000).

The problem demonstrated here begins with air pollution data monitored
at a receptor. Given general information about the regional source character-
istics and meteorology during the period of interest, we wish to apportion the
weighted average percentage of collected pollutant to the appropriate sources.
This problem is known as air pollution receptor modeling. More specifically,
our example problem is to apportion the contribution of local sources of air
pollution in Cache Valley, Utah, to the measured pollutants received at a mon-
itoring station owned by the Utah Department of Air Quality. This demon-
stration problem uses sixteen sources surrounding the receptor as seen in
Figure 6.29. Of course, the spread and direction of pollutant plumes are highly
dependent on wind speed and direction in addition to other meteorological

COMBINING GAS WITH SIMULATIONS—AIR POLLUTION RECEPTOR MODELING 175

104

103

102

101
0 5 10 15 20 3025 4035 5045

iteration

m
in

im
um

 c
os

t

Figure 6.28 Evolution of the minimum cost for the GA fit to the nonlinear model
parameters.

www.MatlabSite.com

variables. Cartwright and Harris (1993) used a GA to apportion sources to
pollutant data at receptors. They began with a chemical mass balance model
of the form

(6.10)M S R∑ =

176 ADVANCED APPLICATIONS

#

#

Cache County Corporation - Road Dept.

U
S

91

Christensen Construction & Gravel Inc.

Allen Gravel LLC
Pepperidge Farm Incorporated

S
R

 23 SR 142

Jack B. Parsons Company
$

$ Jack B. Parsons Comapny

LeGrand Johnson Construction Company

LeGrand Johnson Construction Company

LeGrand Johnson Construction Company

Christensen Construction & Gravel Inc.

Cache County Corporation - Road Dept.

SR 101

S
R

 165

US
89

Logan City Light and Power Department

Lloyd H. Facer Trucking Inc.

1999 Emissions
2001 Emissions
Cache County

Major Roads

Cache County Corporation - Road Dept.

SR 30

S
R

 30

Logan Coach Incorporated

U
S

 8
9

Utah State University

$

#

Figure 6.29 Air pollution sources in Cache Valley, Utah. The receptor is marked with
an #.

www.MatlabSite.com

where M is the source profile matrix, which denotes the effective strength of
pollutant from a given source at the receptor; S is the fraction of the source
that contributes to the concentration at the receptor, the unknown appor-
tionments; and R is the concentration of each pollutant measured at a given
receptor. In theory, these matrices are whatever size can incorporate as many
sources, receptors, and pollutants as necessary. Here we demonstrate the tech-
nique with a single pollutant at a single receptor. Cartwright and Harris (1993)
chose to use uniform dispersion in all directions, with a decrease of concen-
tration with distance according to a r-2.5 power law, where r is the distance from
the source to the receptor. Here we, instead, choose to use the more refined
dispersion law as found in Beychok (1994), together with actual wind data for
the time period modeled:

(6.11)

where

C = concentration of emissions at a receptor
(x, y, zr) = Cartesian coordinates of the receptor in the downwind direction

from the source
Q = source emission rate
u = wind speed
He = effective height of the plume centerline above ground

sy, sz = standard deviations of the emission distribution in the y and z
directions

Note that there are a myriad of assumptions hidden behind the problem.
First, we assume that the wind speed and direction are constant over the entire
time period. Although we know a priori that this assumption is poor, it is bal-
anced by the assumption of Gaussian dispersion in a single direction.Although
a plume of pollutants may meander throughout the time period, we only care
about the weighted average statistical distribution of the concentrations. Next
we are forced to assume a constant emission rate, in this case an average
annual rate. The hourly rate is much different. Another major difficulty is in
estimating reasonable average values for the dispersion coefficients, sy and sz.
Again, we must assume a weighted average over time and use dispersion
coefficients computed by

(6.12)

where x is the downwind distance (in km) and I, J, and K are empirical co-
efficients dependent on the Pasquill stability class (documented in a lookup
table; Beychok, 1994). The Pasquill stability class depends on wind speed,

s = + () + ()()([]exp ln lnI J x K x
2

C
Q

u
y z H z H

z y y

r e

x

r e

z

=
-Ê

Ë
ˆ
¯

- -()Ê
ËÁ

ˆ
¯̃
+

- +()Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙s s p s s s2 2 2 2

2

2

2

2

2

2
exp exp exp

COMBINING GAS WITH SIMULATIONS—AIR POLLUTION RECEPTOR MODELING 177

www.MatlabSite.com

direction, and insolation. For this demonstration problem, we assumed neutral
stability (class D).

Equations (6.10) and (6.11) together with two lookup tables and (6.12)
convert the source emission rates into the elements of the source matrix, M,
which indicates an expected average concentration due to each source for a
constant emission rate and actual hourly average wind data. This process is
repeated for each source at each time. The measured concentrations are also
time averaged (in this case over a three-day period) and go into the matrix,
R. The goal is to solve for the fractions, S, that apportion the pollution to each
source. That is where the GA comes in. If R and S were constant
one-dimensional vectors, one could easily solve for S. However, the need
to sum the matrix times the factors hourly for differing meteorological
conditions precludes a simple matrix inversion. The chromosomes of the GA
in this case represent the unknown elements of matrix S. The cost function is
the difference between the pollutant values at the receptor and the
summation of the hourly concentrations predicted for each source as
computed from the dispersion model (6.11) times the apportionment factors
supplied by the GA:

(6.13)

where with the Ch computed from (6.11).

The receptor model was run using actual meteorological data for three-
day periods in 2002 and comparing predicted weighted average con-
centrations of PM10 (particulate matter less than 10 micrometers in
diameter) measured at the receptor. The dispersion coefficients were
computed assuming a Pasquill stability class D. Three to four runs of
the GA were done for each time period using a population size of 12
and mutation rate of 0.2. The fractions in the unknown vector, S, were
normalized to sum to 1. Runs were made for 1000 generations. Four
different runs were made for each of five different days and results appear
in Table 6.3 for the run with the best convergence for each day. Those
days were chosen to represent different concentrations and meteorology
conditions, although we were careful to choose days where the assumption
of stability D appeared to be good. For many of the runs the factors
converged on the heaviest weighting of source 13, the Utah State University
heating plant. Note that this does not necessarily imply that it contributed
the most pollutant but rather that its average emission rate, when dis-
persed according to (6.11) using actual wind data, must have a heavier
weighting to account for the monitored PM10. The second highest
weighted source was number 9, a local construction company.

The point of this exercise is to demonstrate that the GA is a useful tool
for problems that require including another model, in this case a dis-

M Ch
h

H

=
=
Â

1

cost = - ∑R M S

178 ADVANCED APPLICATIONS

www.MatlabSite.com

persion model, to evaluate the cost of a function. Despite the large number
of times that (6.13) was evaluated, it still not prohibitive in terms of
CPU time required. Coupling GAs with simulations is becoming a more
popular way to do searches. The work of Loughlin et al. (2000) coupled a
full air quality model with a GA to design better control strategies to meet
attainment of the ozone standard while minimizing total cost of controls at
over 1000 sources. Such problems are requiring significant amounts of time on
computers.

6.9 OPTIMIZING ARTIFICIAL NEURAL NETS WITH GAs

An increasingly popular use of GAs combines their ability to optimize with
the strengths of other artificial intelligence methods. One of these methods is
the neural network. Artificial neural networks (ANN) have found wide use in
fields areas as signal processing, pattern recognition, medical diagnosis, speech
production, speech recognition, identification of geophysical features, and
mortgage evaluation.

ANNs model biological neurons in order to do numerical interpolation.
Figure 6.30 provides a sketch of a biological neuron and a human-made
neuron. The biological neuron acts as a processing element that receives many
signals. These signals may be modified by a weight at the receiving synapse.

OPTIMIZING ARTIFICIAL NEURAL NETS WITH GAs 179

TABLE 6.3 Factors Computed to Apportion Sources
to Received PM10 Measurements

Received 22–Apr 21–Jun 27–Jul 11–Aug 21–Nov

(mg/m3) 8 27 39 36 33

Source
1 0.000 0.002 0.001 0.003 0.002
2 0.000 0.017 0.043 0.000 0.000
3 0.184 0.124 0.063 0.001 0.001
4 0.128 0.023 0.002 0.024 0.001
5 0.101 0.004 0.143 0.041 0.001
6 0.022 0.022 0.013 0.000 0.231
7 0.012 0.011 0.037 0.000 0.001
8 0.005 0.014 0.005 0.045 0.000
9 0.001 0.295 0.033 0.257 0.159

10 0.001 0.114 0.005 0.039 0.005
11 0.281 0.027 0.026 0.037 0.119
12 0.055 0.022 0.000 0.004 0.013
13 0.180 0.206 0.571 0.193 0.248
14 0.014 0.026 0.002 0.063 0.005
15 0.000 0.001 0.004 0.273 0.120
16 0.016 0.093 0.053 0.063 0.094

www.MatlabSite.com

180 ADVANCED APPLICATIONS

apical
dendrites

cell body

basal
dendrites

axon

human
neuron

computer
neuron

synaptic
terminal

transfer
functionweight

bias

f

b1

W1 S

Figure 6.30 Diagram of a biological neuron (top) and schematic of the artificial neural
network.

Then the processing element sums the weighted inputs. When the input
becomes sufficiently large, the neuron transmits a single output that goes off
to other neurons.The human-made neuron works by analogy. It takes an input,
multiplies it by a weight, adds a bias, and then passes the result through a trans-
fer function. Several neurons in parallel are known as a layer. Adding these
layers together produces the neural network. The weights and bias values
are optimized to produce the desired output. Although there are many ways
to train the ANN, we are interested in coupling it with a GA to compute
the optimum weights and biases. There are many good books on neural net-
works (e.g., Hagan et al., 1995; Fausett, 1994), so we will make no attempt to
fully describe ANN. Instead, we just briefly explain how we use a GA to
train one.

We wish to approximate the function

(6.14)

To do this, we used the two-layer neural network shown in Figure 6.31
with log-sigmoid transfer functions. The transfer function determines
the threshold and amount of signal being sent from a neuron. Although
various transfer functions were tried, the log-sigmoid worked best for this
problem. It has the form 1/(1 + e-n) and maps the input to the interval [0, 1].

The goal is to compute the optimum weights and biases of the ANN using

f for 1 x 5x
x x x

() = () +
£ £

12
12 cos /

www.MatlabSite.com

a GA. The GA chromosome is made up of potential weights and biases. The
GA cost function computes the mean square difference between the current
guess of the function and the exact function evaluated at specific points in x.
The function was sampled at intervals of 0.1 for training. We used a hybrid
GA having Npop = 8 and m = 0.1. The local optimizer was a Nelder-Mead algo-
rithm. The resulting approximation to (6.14) is shown in Figure 6.32. Note that
the function computed from the neural network with GA hybrid training
matches the known curve quite well.

OPTIMIZING ARTIFICIAL NEURAL NETS WITH GAs 181

W1

W2

W3

W4

W5

b1

b3

b4

b5

b2

W6

W7

W9

W10

W8

fS

fS

fS

b6

fS

fS

fS

Figure 6.31 Two-layer neural network used to compute fit to (6.14).

0
1 2 3 4 5

x

0.2

0.4

0.6

f(
x)

f(x)

0.8

1
NN approximation

Figure 6.32 Comparison of the exact function of (6.14) with the ANN/hybrid GA
approximation.

www.MatlabSite.com

6.10 SOLVING HIGH-ORDER NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS

Two mathematical tools of scientists and engineers are ordinary and partial
differential equations (ODEs and PDEs). Normally we don’t think of these
equations as minimization problems. However, if we want to find values where
a differential equation is zero (a form in which we can always cast the system),
we can look for the minimum of its absolute value. Koza (1992) demonstrated
that a GA could solve a simple differential equation by minimizing the value
of the solution at 200 points. To do this, he numerically differentiated at each
point and fit the appropriate solution using a GA. Karr et al. (2001) used GAs
to solve inverse initial boundary value problems and found a large improve-
ment in matching measured values.That technique was demonstrated on ellip-
tic, parabolic, and hyperbolic PDEs.

We demonstrate here that a GA can be a useful technique for solving a
highly nonlinear differential equation that is formally nonintegrable. For com-
parison, we do know its solitary wave approximate solution. Solitary waves, or
solitons,are permanent-form waves for which the nonlinearity balances the dis-
persion to produce a coherent structure. We examine the super Korteweg-de
Vries equation (SKDV), a fifth-order nonlinear partial differential equation:

(6.15)

The functional form is denoted by u; time derivative by the t subscript; spatial
derivative by the x subscript; and a, m, and n are variables of the problem. We
wish to solve for waves that are steadily translating, so we write the t varia-
tion using a Galilean tranformation, X = x - ct, where c is the phase speed of
the wave. Thus our SKDV becomes a fifth-order, nonlinear ordinary differen-
tial equation:

(6.16)

Boyd (1986) extensively studied methods of solving this equation. He
expanded the solution in terms of Fourier series to find periodic cnoidal wave
solutions (solitons that are repeated periodically). Among the methods used
are the analytical Stokes’s expansion, which intrinsically assumes small ampli-
tude waves, and the numerical Newton-Kantorovich iterative method, which
can go beyond the small amplitude regime if care is taken to provide a very
good first guess. Haupt and Boyd (1988a) were able to extend these methods
to deal with resonance conditions. These methods were generalized to two
dimensions to find double-cnoidal waves (two waves of differing wave number
on each period) for the integrable Korteweg-de Vries equation (1988b) and
the nonintegrable regularized long wave equation (Haupt, 1988). However,
these methods require careful analytics and programming that is very problem
specific. Here we are able to add a simple modification to the cost function of
our GA to obtain a similar result.

a mu c u u vuX XXX XXXX-() + - = 0

u uu u vut x xxx xxx+ + - =a m 0

182 ADVANCED APPLICATIONS

www.MatlabSite.com

To find the solution of equation (6.16), we expand the function u in terms
of a Fourier cosine series to K terms to obtain the approximation, uK:

(6.17)

The cosine series assumes that the function is symmetric about the X-axis
(without loss of generality). In addition we use the “cnoidal convention” by
assuming that the constant term a0 is 0. Now we can easily take derivatives as
powers of the wave numbers to write the cost that we wish to minimize as

(6.18)

This is reasonably easy to put into the cost function of a GA where we want
to find the coefficients of the series, ak. The only minor complication is com-
puting u to insert into the cost function, (6.18). However, this is merely one
extra line of code.

The parameters that we used here are n = 1, m = 0, a = 1, and a phase speed

cost u k u c k k v a kxk
k

K

k() = - -() + +[] ()
=
Â a m3 5

1

sin

u X u X a kXk k
k

K

() () = ()
=
Â� cos

1

SOLVING HIGH-ORDER NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 183

-4 -3 -2 -1 0 1 2 3 4
-40

-20

0

20

40

60

80

100

x

u

Figure 6.33 Cnoidal wave of the super Korteweg de Vries equation. Solid line: exact
solution; dashed line: genetic algorithm solution.

www.MatlabSite.com

184 ADVANCED APPLICATIONS

of c = 14.683 to match with a well-known nonlinear solution. The phase speed
and amplitude of solitary-type waves are interdependent. We could instead
have specified the amplitude and solved for the phase speed. It is equivalent.
We computed the coefficients, ak, to find the best cnoidal wave solution for K
= 6. We used Npop = 100, m = 0.2, and 70 iterations. We evaluated the cost func-
tion at grid points and summed their absolute value. The results appear in
Figure 6.33. The solid line is the “exact” solution reported by Boyd (1986) and
the dashed line is the GA’s approximation to it. They are barely distinguish-
able. In addition we show a GA solution that converged to a double cnoidal
wave as Figure 6.34. Such double cnoidal waves are very difficult to compute
using other methods (Haupt and Boyd, 1988b).

So we see that GAs show promise for finding solutions of differential and
partial differential equations, even when these equations are highly nonlinear
and have high-order derivatives.

BIBLIOGRAPHY

Beychok, M. R. 1994. Fundamentals of Stack Gas Dispersion, 3rd ed. Irvine, CA: Milton
Beychok.

-4 -3 -2 -1 0 1 2 3 4
-100

-50

0

50

100

150

200

x

u

Figure 6.34 Double cnoidal wave of the super Korteweg de Vries equation as com-
puted by the genetic algorithm.

www.MatlabSite.com

Boyd, J. P. 1986. Solitons from sine waves: Analytical and numerical methods for non-
integrable solitary and cnoidal waves. Physica 21D:227–246.

Branstator, G., and S. E. Haupt. 1998. An empirical model of barotropic atmospheric
dynamics and its response to forcing. J. Climate 11:2645–2667.

Cartwright, H. M., and S. P. Harris. 1993. Analysis of the distribution of airborne pol-
lution using GAs. Atmos. Environ 27A:1783–1791.

Chambers, L. (ed.). 1995. GAs, Applications, Vol. 1. New York: CRC Press.
Davidor, Y. 1991. GAs and Robotics. River Edge, NJ: World Scientific.
Davis, L. 1991. Handbook of GAs. New York: Van Nostrand Reinhold.
Fausett, L. 1994. Fundamentals of Neural Networks: Architectures, Algorithms, and

Applications. Upper Saddle River, NJ: Prentice Hall.
Hagan, M. T., H. B. Demuth, and M. Beale. 1995. Neural Network Design. Boston: PWS.
Hasselmann, K. 1976. Stochastic climate models. Part I: Theory. Tellus 28:473–485.
Haupt, R. L. 1995. An introduction to GAs for electromagnetics. IEEE Ant. Propagat.

Mag. 37:7–15.
Haupt, S. E. 1988. Solving nonlinear wave problems with spectral boundary value tech-

niques. Ph.D. dissertation. University of Michigan, Ann Arbor.
Haupt, S. E., and J. P. Boyd. 1988a. Modeling nonlinear resonance: A modification to

the Stokes’ perturbation expansion. Wave Motion 10:83–98.
Haupt, S. E., and J. P. Boyd. 1988b. Double cnoidal waves of the Korteweg De Vries

equation: Solution by the spectral boundary value approach. Physica 50D:117–134.
Holland, J. H. 1992. Genetic Algorithms. Sci. Am. 267:66–72.
Karr, C. L. 2003. Minimization of sonic boom using an evolutionary algorithm. Paper

AIAA 2003-0463. 40st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.
Karr, C. L., I. Yakushin, and K. Nicolosi. 2001. Solving inverse initial-value, boundary-

value problems via GA. Eng. Appl. Art. Intell. 13:625–633.
Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated anneal-

ing. Science 220:671–680.
Koza, J. R. 1992. The Genetic Programming Paradigm: Genetically Breeding Popula-

tions of Computer Programs to Solve Problems. In B. Soucek (ed.), Dynamic,
Genetic, and Chaotic Programming: The Sixth Generation. New York: J. Wiley, pp.
203–321.

Loughlin, D. H., S. R. Ranjithan, J. W. Baugh, Jr., and E. D. Brill Jr. 2000. Application
of GAs for the design of ozone control strategies. J. Air Waste Manage. Assoc.
50:1050–1063.

Michalewicz, Z. 1992. Genetic Algorithms + Data Structures = Evolution Programs. New
York: Springer-Verlag.

Obayashi, S., D. Sasaki, Y. Takeguchi, and N. Hirose. 2000. Multiobjective evolutionary
computation for supersonic wing-shape optimization. IEEE Trans. Evol. Comput.
4:182–187.

Pack, D., G. Toussaint, and R. Haupt. 1996. Robot trajectory planning using a GA. Int.
Symp. on Optical Science, Engineering, and Instrumentation. SPIE’s Annual
Meeting, Denver, CO.

Penland, C. 1989. Random forcing and forecasting using principal oscillation pattern
analysis. Mon. Weather Rev. 117:2165–2185.

BIBLIOGRAPHY 185

www.MatlabSite.com

Penland, C. 1996. A stochasic model of IndoPacific sea surface temperature anomalies.
Physica 98D:534–558.

Penland, C., and M. Ghil. 1993. Forecasting northern hemisphere 700 mb geopotential
height anomalies using empirical normal modes. Mon. Weather Rev. 121:2355.

Penland, C., and T. Magorian. 1993. Prediction of NINO3 sea-surface temperatures
using linear inverse modeling. J. Climate 6:1067.

Whitley, D., T. Starkweather, and D. Shaner. 1991. The traveling salesman and sequence
scheduling: Quality solutions using genetic edge recombination. In L. Davis (ed.),
Handbook of GAs. New York: Van Nostrand Reinhold.

Widrow, B., and S. D. Sterns, 1985. Adaptive Signal Processing. Upper Saddle River, NJ:
Prentice-Hall.

Yao, X. (ed.). 1995. Progress in Evolutionary Computation. New York: Springer-Verlag.

186 ADVANCED APPLICATIONS

www.MatlabSite.com

