
Visopt ShopFloor: Going Beyond
Traditional Scheduling

Roman Barták

Charles University, Faculty of Mathematics and Physics
Institute for Theoretical Computer Science

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic
bartak@kti.mff.cuni.cz

Abstract. Visopt ShopFloor is a generic scheduling system for solving complex 
scheduling problems. It differentiates from traditional schedulers by offering
some planning capabilities. In particular, the activities to achieve the goal are
planned dynamically during scheduling. In the paper, we give a motivation for 
the integration of planning and scheduling and we describe how such
integration is realised in the scheduling engine of the Visopt ShopFloor system.

1 Introduction

Planning and scheduling are closely related areas but usually the problems from these 
areas are solved separately using a different technology. The planning task is to
generate activities to achieve some goal while the scheduling task is to allocate the
known activities to available resources and time. When both tasks are included in the 
real-life problem then usually the planning component generates the activities in
advance and the separate scheduling component allocates the activities to the
resources and time [18]. As we argued in [2], such separation is not appropriate if the 
problem environment is more complex and if the planning decisions are strongly
influenced by the scheduling decisions (like the introduction of set-up activities with
by-products). Our proposal how to solve the problems on the edge of planning and
scheduling is based on the integration of planning and scheduling in a single solver
[3].

In [6] we described our realisation of the integrated planning and scheduling
system called Visopt ShopFloor. In this paper, we present the unique capabilities of
this system using a particular example of the problem going beyond traditional
scheduling.

The paper is organised as follows. First, we highlight the main features of the
problem area and we describe one particular benchmark problem that can be solved
by our system and that the conventional schedulers cannot handle. Then we present
the technology and the basic ideas behind the solver. The paper is concluded with the 
results of the benchmark problem and we also show some results of real-life models.



2 Roman Barták

2 The problem

Traditional scheduling deals with the problem of allocating known activities to
available resources and time. Usually, the resources are rather simple; they define a
limited capacity for processing the activities. Either we have a unary resource, where
only one activity can be processed at a time - this is sometimes called disjunctive
scheduling. Or we have a cumulative resource where more activities can be processed 
in parallel provided that the resource capacity is not exceeded - this is called
cumulative scheduling. Distinction of unary and cumulative resources is important
because a resource constraint with stronger filtering can be defined for unary
resources [1]. Despite the widespread use of unary and cumulative resources in
traditional scheduling applications, neither one cares about alignment or sequencing
of activities in the resource (we explain these notions later in Section 2.1).

In addition to the resource constraints restricting the allocation of activities, the
traditional schedulers allow the definition of precedence constraints between the
activities. Usually, the activities are grouped into tasks, where a prescribed sequence
of activities must be followed. Therefore we are speaking about the task-centric
models [9,2]. Job-shop scheduling [7] is a typical example of the task-centric view of 
the scheduling problem. Constraint-based scheduling [20] is more general by allowing 
precedence relations between arbitrary activities but it still requires knowing the
activities in advance.

In the following sub-sections we show that the real-life problems are more
complex than the above pure schema of the scheduling problems. In particular we
give examples of the resources with more complex behaviour going beyond the
unary/cumulative classification. We also explain why a fixed task schema is not
appropriate to model some production processes. The section is concluded by a
description of an example problem that contains some of these features.

2.1 Complex resources

Unary (machine) and cumulative (store) resources are typical representatives of
resources but in some production environments like process industries the behaviour
of resources is more complex. In particular, alignment and sequencing of activities is
important. In Visopt ShopFloor we are modelling batch production with a complex
transition scheme.

Batch production means that the activities can be processed in parallel but if two
activities overlap in time, they must start and finish at the same times. Such
overlapping activities form a batch. In addition to the capacity restriction we also
have a compatibility restriction, i.e., the activities are tagged by a type and only the
activities of the same type can be processed in parallel.

In addition to batch production we can model a complex transition scheme. The
resources are described using states and transitions between the states. At any time, a 
resource is in exactly one state and the state can be changed only according to the
transition scheme. Moreover, the number of batches processed at each state can be
limited. We now give some examples how the transition scheme is used to model
behaviour of a real resource.



Visopt ShopFloor: Going Beyond Traditional Scheduling 3

Let us consider a resource with two modes of production, parallel and serial. There 
is no restriction about the number of batches processed in the serial mode but exactly 
three batches are processed in the parallel mode. The restricted number of batches in
the parallel mode is due to the following technological reason. Some by-product is
outputted during the parallel production and this by-product is temporarily stored
close to the machine. The temporal storage is full after three production batches and
thus a recycling batch must be processed before the production can continue.

To make the transition scheme even more complex, we can consider that from time 
to time there must be a cleaning batch inserted. Moreover, cleaning cannot be done
while some by-product is stored in the resource. We discuss the rules about insertion 
of the cleaning batch later in the paragraph about batch counters.

The above transition scheme can be easily described via a state transition graph
where each state is tagged by a minimum and a maximum number of batches
processed in this state (Figure 1).

Fig. 1. Behaviour of many resources can be described using states with a minimum and a
maximum number of batches per state (in brackets) and using a transition scheme between the
states (left). This transition scheme must be followed during batch sequencing (right).

The transition scheme with the minimum and the maximum number of batches per
state provides a flexible framework for modelling real-life resources. For example, it
is easy to describe a learning curve of the worker. Let us assume that the worker
needs first four batches to learn how to use the machine, i.e., duration of these batches 
is longer than duration of all following batches. We allow tagging the states by
attributes, like duration and time windows, and these attributes are then applied to all 
batches of the state. Thus, the above worker can be modelled via a state transition
scheme with two states: beginner and experienced (Figure 2). The batches processed
in the beginner state are longer than the batches processed in the experienced state.

Fig. 2. State transitions can describe evolution of the resource, e.g., after a sequence of batches 
of given state, the resource irreversibly changes its state.

The above described transition scheme allows counting the batches of the same state. 
However, in many situations the users need to count batches of different states, e.g. to 
model insertion of the cleaning batch after a specified number of production batches.
Thus, in Visopt ShopFloor we introduce the concept of a general batch counter that
counts the batches across several states (Figure 3). This counter restricts further the
sequencing of batches.

beginner (4..4) experienced (1..sup)

P P P R S S

S S P P P

S S C P P P

parallel (3..3)

recycle (1..1)

clean (1..1)

serial (1..sup)

R



4 Roman Barták

Fig. 3. Batch counters count batches across more states to model situations like forced cleaning 
after eight production (parallel or serial) batches.

It is hard or even impossible to model the above-described resources in the
conventional scheduling. The main difficulty here is the transition scheme with the
batch counters that forbid some transitions while force other transitions. It means that 
sequencing of batches is not arbitrary and the appearance of the batch depends on the 
allocation of other batches [2,17]. Thus the batches cannot be introduced in advance
and it is more convenient to plan the batches dynamically during scheduling, i.e., to
integrate planning and scheduling as we proposed in [3].

2.2 Resource dependencies

In the conventional scheduling systems, the direct relations between the activities are 
described via precedence constraints. These precedence constraints can be seen as an 
abstraction of the item flow between the activities - the item must be produced before 
it can be consumed. However, a simple precedence relation is not enough to model
many real-life dependencies. The item must be produced before it is consumed but
sometimes the delay between the end of production and the start of consumption
should not be too long. For example, the item is cooling after its production and some 
minimal temperature is required when the item is consumed. This can be modelled
easily in constraint-based scheduling where the simple precedence relation is
substituted by tighter constraints:

min_delay ≤ consumer_start - supplier_end ≤ max_delay.
The problem is when we do not know which activities are connected using the above 
precedence constraints, e.g., when there are several process routes for a single item.
For example, assume that either the item is produced in a parallel mode when two
machines co-operate and a worker is necessary (Figure 4 left), or the item is produced 
in a serial mode when the item flows from the first machine to the second machine
and no worker is necessary (Figure 4 right). The structure of the production route is
different in the above cases, namely different batches are used with different relations 
between them. Conventional scheduling requires one production route (task) to be
chosen before scheduling (i.e. during planning). We propose to postpone this decision 
to the scheduling stage when more information about the batches is available [3].

ser. par. par. par. ser. ser. ser. ser. clean

parallel (3..3) clean (1..1) serial (1..sup)
count countreset after 8 

1 2 3 4 5 6 7 8 0



Visopt ShopFloor: Going Beyond Traditional Scheduling 5

Fig. 4. In the real-life factories, the item can be typically produced using more processing
routes, e.g. via a parallel production when two machines run in parallel and a worker is required 
(left) or via a serial production when the item is pre-processed in the first machine and then
finished in the second machine (right).

Another difficulty of the conventional scheduling is modelling many-to-many
relations between the batches, i.e., the batch has more suppliers and/or more
consumers, and modelling recycling. In recycling, the set-up batch produces a by-
product that can be used to satisfy some demands. Because the set-ups are not known
until the production batches are allocated, it is not possible to plan recycling in the
foregoing planning stage.

To address the above issues, we propose to describe supplier-consumer
dependencies between the resources rather than to specify precedence relations
between particular activities. Each supplier-consumer dependency is specified by the
supplying and the consuming resource (and their states) and by the delay between the 
end of the supplying batch and the start of the consuming batch. When the
dependency is established between two batches, the dependency describes also the
quantity moved between the batches. Therefore a single supplying batch can be
connected to more consuming batches and vice versa.

The supplier-consumer dependencies model naturally the item flow in the factory
so they provide a declarative description of the processes in the factory. We can see
them as a specimen for the precedence constraints that are posted when the batches of 
given type are introduced dynamically during scheduling (see Section 4). Figure 5
shows an example how the user describes the processes, i.e. the supplier-consumer
dependencies using the graphical user interface of Visopt ShopFloor.

Fig. 5. Visopt ShopFloor graphical user interface describing an item flow.

worker

machine

machine



6 Roman Barták

2.3 The task at a glance

The Visopt ShopFloor system concentrates primarily on the problems going beyond
traditional scheduling. Let us now summarise the task solved by the Visopt ShopFloor 
by giving a particular benchmark example.

Let us consider a small factory with two machines, r1 (Figure 3) and r2 (Figure 1), 
producing a single final item. These machines run either in a parallel mode or in a
serial model (Figure 4). In the parallel mode, the batches of both machines run in
parallel and a worker is required. One final item is outputted from the batch and
duration of this batch depends on the experience of the worker (see below). In the
serial mode, the machine r1 pre-processes the item (3 time units) that is finished in the 
machine r2 (3 time units). There is no delay for moving the item from r1 to r2.

During the parallel production, a by-product is produced. This by-product can be
recycled only on the machine r2 and we need three by-products to get a single final
item. Recycling takes 2 time units and it must be done immediately after the three
batches of the parallel processing (Figure 1).

Both machines require cleaning after eight production batches or sooner (Figure 3) 
and the cleaning must be done at the same time on both machines. At the beginning,
both machines are clean. 

The worker, who is necessary for parallel processing, is a beginner. After four
production batches, the worker becomes experienced (Figure 2). The parallel
production takes 3 time units for the beginner and 2 time units for the experienced
worker. Moreover, the worker is available only in the following time windows (0..10), 
(30..40), (60..70).

The task is to plan/schedule production starting from time 0 in such a way that 5
final items are ready in time 20 and additional 25 items are ready in time 100.

As we can see from the above example the goal of the system is to find out the
batches that are necessary to satisfy the demands (planning) and to allocate these
batches to available resources (scheduling). A plan/schedule for a given time period is 
returned to the user.

In this paper we discuss only feasibility issues, but the Visopt ShopFloor does
optimisation based on cost as well. The conventional schedulers use some objective
function like makespan, tardiness, or earliness to define quality of the schedule.
However, in real-life environment the schedule quality is usually subjective,
evaluated by the plant persons. To model these subjective criteria we use the cost
parameters attached to batches, transitions, dependencies etc. The total cost is then
used to guide scheduling, for details see [6].

3 The technology

Traditional scheduling technology is either based on special scheduling algorithms [7] 
or some general schema like constraint-based scheduling [20] is applied. If the
activities are known in advance then it is quite natural to model the scheduling
problem as a constraint satisfaction problem (CSP). However if the planning
component is present then the static approach is hardly applicable due to variability of 



Visopt ShopFloor: Going Beyond Traditional Scheduling 7

possible plans [16]. Some approaches try to fit the planning problem into the static
concept of CSP via dummy activities [8,17] but it works only when the planning
branching does not lead to many different structures of the plan. Other researchers
propose to use some generalised concept of CSP that provide more dynamic features
like Dynamic CSP [14] or Structural CSP [15].

In the Visopt ShopFloor system, we solve the scheduling problems where the
appearance of the activity depends on allocation of other activities. In terms of CSP it 
means that the existence of some variables and constraints depends on assigning a
value to another variable. Moreover, the variable/constraint disappears from the
system only when the original assignment is withdrawn, i.e., during backtracking.
Having this in mind we decided to use the existing technology of Constraint Logic
Programming (CLP) in the way this framework was originally defined [10], i.e., the
constraints are used to reduce the search space of the logic program.

Opposite to the standard CSP technique (i.e., define the variables and the
constraints first and then do labelling) we propose to interleave the labelling stage
with the introduction of new variables and constraints. Basically, it means that we
model the planning decisions (branching) using the disjunctive constraints
(constructive disjunction). When some element of the disjunction is selected then the 
system automatically introduces other variables and constraints corresponding to the
selected planning branch. This gives us the freedom to define different sets of
variables and constraints in different branches of the search tree, i.e., to explore
different plans. Thus planning decisions are resolved during scheduling.

4 The solver

The Visopt ShopFloor system consists of two independent parts: the ShopFloor
graphical modelling environment and the scheduling engine (see Figure 6).

In the ShopFloor, the user specifies completely the problem to be solved. In
particular he or she describes the available resources, i.e., their states and transitions, 
the item flow, i.e., the supplier-consumer dependencies (see Figure 5), and the
customer orders (demands). Data can be entered and modified manually or they can
be extracted automatically from the databases of ERP systems. The ShopFloor
module generates the problem description in the form of a text file called a factory
model that is passed to the solver.

The factory model contains a complete description of the problem (resources,
dependencies, and orders) in a human readable form. It means that the factory model
can be explored, prepared, and modified in an arbitrary text editor. This file is the
only input to the scheduling engine.

The scheduling engine (the solver) first generates a constraint model from data
(from the factory model) and then it searches for the solution. The solver has a
modular architecture so it is possible to add a new module describing a new type of
resource. Also, the search strategy is a separate module so it can be exchanged by a
new strategy. The scheduling engine returns the plan/schedule into the ShopFloor that 
displays it in the form of a Gantt chart.



8 Roman Barták

Fig. 6. The Visopt ShopFloor system architecture consists of two independent modules: the
graphical modelling environment (left) and the scheduling engine (right).

4.1 The constraint model

The traditional static constraint models are defined by the set of variables, their
domains, and by the set of constraints restricting possible combinations of values. As
we discussed in Section 3, we need a more dynamic approach to CSP, namely, the
variables and the constraints are introduced as search progresses. There exist some
static approaches to overcome difficulties with the unknown set of
variables/constraints based on dummy variables and deactivated constraints [8,17].
Unfortunately, such approaches lead to huge models so they cannot be used to model 
the problem completely statically. Nevertheless, we use the dummy variables partially 
to do look-ahead for planning decisions (via constructive disjunction, see Section 3)
and to realise the idea of active decision postponement [11].

The constraint model in the Visopt solver is a piece of code responsible for
introduction of variables and constraints. The basic idea is as follows: at the
beginning we introduce only the objects that are known, i.e., the customer orders. As
these customer orders should be satisfied, we also start dependencies to the resources 
that can produce the ordered items. When the actual supplier is found (this is usually
decided during labelling), we need to find suppliers for this supplier etc. To
summarise it: if there is a planning decision, i.e. the decision about what objects
should be part of the plan/schedule, we introduce all of them (via dependencies).
Together with these objects, the relevant constraints are posted so we can exploit the
power of constraint propagation. Let us now describe some details about what
variables and what constraints are used.

The slot representation
Opposite to most scheduling systems that use the task-centric model of the problem,
we decided to apply the resource-centric model because it simplifies modelling of the 
complex transition schemes [2]. It means that the batches are grouped per resource
rather than per task. Of course, we do not know the batches in the resource at the
beginning so we use a chain of empty slots to represent the schedule for each
resource. Opposite to the slots used in the timetabling applications, the slots in our

Constraint model
• generating variables
• introducing constraints

Search strategy
• assigning values
• (branching)

resource

Search strategy
• assigning values
• (branching)

Search strategy
• assigning values
• (branching)

resource

GUI Solver

Factory model



Visopt ShopFloor: Going Beyond Traditional Scheduling 9

system may slide in time and they may have variable duration. The only restriction is 
that the ordering of slots must be preserved (due to the transition constraints).

Each slot has some attributes like the start time, the end time, and the duration
represented as finite domain variables. Also, there is a special variable describing the 
type of the batch (the state) that can be filled in the slot. When this state variable
becomes a singleton we know the batch in the slot - we say that the slot is filled by the 
batch. This may introduce other variables that are specific for the particular batch, e.g. 
quantities of consumed and produced items. Naturally, all the slot variables are
connected via constraints describing the time windows etc. and these constraints can
be posted even if the batch in the slot is not known yet. Moreover, there can be also
constraints between the neighbouring slots to describe the transition scheme.

To model the minimum and the maximum batches per state we introduce a special 
variable called a serial number that "counts" the batches of the same state. This
variable participates in the transition constraints so it may force the state change when 
the maximum number of batches is reached or it may forbid the state change when the 
minimum number of batches is not reached. Figure 7 illustrates this mechanism, for
technical details see [5]. The same mechanism is used to model the batch counters.

Fig. 7. The transition scheme (top left) is modelled using the serial numbers and the special
transition constraints defined over the transition table (top right).

As we mentioned above the slots are also introduced dynamically which saves some
memory. In fact, a new slot is attached to the end of the slot list when there is a
demand to the resource but there is no free slot to satisfy this demand. Note however, 
that it does not mean that the new slot will be filled by the coming batch that caused
its introduction. Perhaps some waiting (not yet allocated) batch or a future batch
overhauls it or the slot will stay empty if we find later that the batch is not necessary. 
Still, the ordering of slots is fixed so it is not possible to introduce a new slot in-
between two existing slots. Thus, deciding to which slot the batch is allocated
corresponds to the decision about the absolute ordering of batches in the resource.
This view is similar to the idea of permutation based scheduling presented in [21].
The main difference of our approach is that we can solve problems where the
appearance of the batch depends on allocation of other batches. In particular, the
structure of the batches in the resource depends on the demands from other resources 
as well as on the transition scheme for the resource.

Notice that although we do not know the batches in the resource, thanks to the slot 
representation we can post many constraints in advance and thus to use the power of
constraint propagation. The main reason for using the slot representation is modelling 
complex transition schemes.

parallel (3..3)

serial (1..sup)

State MinBatches MaxBatches NextStates

1 3 3 2
2 1 sup 1

state = 1
serial = 1

1
state = 1
serial = 2

2
state = 1
serial = 3

3
state = 2
serial = 1

4
state = 2
serial = 2

5
state = 1
serial = 1

6










	asl.pdf
	10.pdf
	ERCIM2003proc[1]-11.pdf
	ERCIM2003proc[1]-12.pdf
	ERCIM2003proc[1]-13.pdf

