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Abstract
During the last two decades, evaluating severity of illness and predicting
mortality of critical patients became a major concern of all professionals that
work in intensive care units all over the world. Due to the binary nature of the
response variable, logistic regression models were a natural choice for modelling
this kind of data. The objective of this study is to compare the performance
of generalized linear models (GLMs) with binary response (McCullagh and
Nelder, Generalized Linear Models. Chapman and Hall, London, 1989), with
the performance of generalized additive models (GAMs) with binary response
(Hastie and Tibshirani, Generalized Additive Models. Chapman and Hall, New
York, 1990) and also with the performance of artificial neural networks (ANNs)
(Bishop, Neural Networks for Pattern Recognition. Clarendon Press, Oxford,
1995), in what concerns their predictive and discriminative power. A dataset of
996 patients was collected and the entire sample was used for the development
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of the models and also for the validation process, due to the nonexistence of an
external, independent dataset. The performance of the proposed methodologies
was assessed, not only by the evaluation of the agreement between observed
mortality and predicted probabilities of death through the use of calibration plots,
but also by their discriminating ability, measured by the area under the receiver
operating characteristic (ROC) curve.

1 Introduction

Since 1981 numerical scoring systems and multivariable statistical models have
been used to assess the severity of illness of critically ill patients. The former assign,
subjectively, weights to variables reflecting the degree of physiologic derangement.
In fact, the acute physiology and chronic health evaluation score, referred to as
APACHE [4], the simplified acute physiology score, referred to as SAPS [7] and
the APACHE II score [5] were built using a panel of experts to select variables and
weights. More recently, and because the subjectivity of these procedures may lead to
undesired discrepancies, multivariable statistical models were considered. Mortality
probability models, referred to as MPM [9–11], the APACHE III score [6] and
the SAPS II [8], were then developed, making use of more objective methods
such as multiple logistic regression. However, the fact that a non-linear dependence
between the binary response variable and the continuous covariates may exist led
us to adopt generalized additive models (GAMs) to accomplish the fitting process.
In fact, the more recently developed severity of illness scores, SAPS 3 [14, 15]
and APACHE IV [17] also make use of more flexible strategies, such as splines
and regression trees, to model the data. So, in this chapter, we propose the use of
GAMs to estimate the probabilities of death and/or to obtain new adjusted cut-off
points with the purpose of categorizing the continuous independent variables, if the
main interest is the obtainment of a severity of illness score. SAPS II variables were
used because this was the severity of illness score adopted by the clinicians of the
Portuguese intensive care unit (ICU) where the dataset analysed in the present study
was collected. Since artificial neural networks (ANNs) are an alternative to some
statistical methodologies, namely, regression models [16], this study also aims to
evaluate the performance of ANNs to predict the outcome under study. Finally, a
comparison of the several approaches was carried out.

All statistical analyses were performed using S-PLUS (version 8.0, 2007;
Insightful Corporation, Seattle, WA) and, to implement the ANNs, a new software
was developed using a standard commercially available mathematics package
format (MATLAB R2006b, The Math-Works Inc., 3 Apple Hill Drive, Natick, MA
01760).
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Fig. 1 Multi-layer perceptron architecture

2 Generalized Linear Models and Generalized Additive
Models

Let Y be a response variable and .X1; : : : ; Xp/ a vector of p associated covariates
that characterize each of n individuals. A GAM is defined by the expression
E.Y jX1; : : : ; Xp/ D h.ˇ0 C Pp

j D1 fj .Xj //, where Y has a probability mass or
density function that belongs to the exponential family, h.�/ is the link function and
fj .Xj /, j D 1; : : : ; p, known as the partial functions, are arbitrary univariable
functions that must be estimated from the data and represent the effect of the
covariates on the response [3]. A generalized linear model (GLM) is a particular
case of a GAM when fj .Xj / D ˇj Xj [12].

3 Artificial Neural Networks

An ANN is, fundamentally, a mathematical model composed by a set of units
(nodes), where information is processed [2]. These units are connected through
unidirectional communication links, which carry numerical data. One of the most
studied and used ANN architecture is the multi-layer perceptron (MLP). Funda-
mentally, one MLP consists of an input–output network, which has the neurons
distributed by several layers, fully connected between adjacent layers, and where
the flow of information is done in a feed-forward way. The following figure shows
an MLP with three layers: an input layer, without neurons, a hidden layer and a layer
with one output neuron.

If we have an MLP such as the one represented in Fig. 1 and with the same
activation function, f, in all its neurons, then it can be described mathematically as

y.x/ D f .!T
0 f .!T

H x//;
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where x is the input pattern and !0 and !H are the matrices of the parameters
related with the links of the output and hidden layers, respectively. As it can be
seen from the equation above, this is a relatively complex model since it is non-
linear in the parameters. Therefore, it is difficult to identify and estimate it correctly.
The method traditionally used to perform the training of such networks is the error
backpropagation algorithm [2], which consists of a variant of the instantaneous
gradient descent procedure. The network is trained, using the steepest descent
algorithm, in order to minimize an error such as the mean squared error (MSE)
given by

MSE � EN D 1

2N

X

x

.e.x//2 D 1

2N

X

x

.y.x/ � d.x//2;

where d.x/ corresponds to the desired output for the input pattern x and N is the
number of individuals of the training dataset. It can be viewed as a sort of non-linear
and non-parametric regression. The updating of the synaptic weights is

! D ! � ˛
@EN

@!ij

;

where ˛ is the learning rate. However, this kind of searching methods does not
guarantee convergence of the objective function to a global minimum, and the
convergence rate is typically very slow during most of the training process. To help
in both respects, it is common to consider the inclusion of a momentum term in the
weights updates:

�!
.k/
ij D �˛

@EN

@!ij

C ˇ�!
.k�1/
ij :

4 The New Simplified Acute Physiology Score (SAPS II)

The SAPS II is a severity of illness score, used in ICUs, that has received a lot
of attention in Europe for its simplicity and applicability. It includes 17 variables:
12 physiology variables (heart rate, systolic blood pressure, body temperature, the
ratio PaO2

F iO2
for ventilated patients, urinary output, serum urea level, white blood cells

count, serum potassium, serum sodium level, serum bicarbonate level, bilirubin level
and Glasgow coma score), age, type of admission (scheduled surgical, unscheduled
surgical or medical) and three underlying disease variables (acquired immunodefi-
ciency syndrome, metastatic cancer and hematologic malignancy). To develop and
validate this score, a large international sample of surgical and medical patients,
collected by an European/North American multicentre study, was used [8]. The
development phase used 65 % of the available patients, randomly selected, while
the remaining 35 % became the validation set. The cut-off points for each of the
continuous covariates that revealed to be statistically significant in the univariable
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analysis were found by using the LOWESS (locally weighted scatterplot smoothing)
technique. After the categories were defined, a multiple logistic regression was used
and the total severity score was obtained by adding the estimated coefficients of
the corresponding design variables multiplied by 10 and rounded off to the nearest
integer. Finally, for converting the SAPS II into a probability of hospital mortality, a
multiple logistic regression model was fitted with SAPS II and ln(SAPS II C 1) as
independent variables. However, when applied to different populations, this model
is often unable to adequately predict the outcome, and so, a customization may be
done by fitting that model to the new datasets.

Model calibration was evaluated by analysing the agreement between the
estimated probabilities of death and the actual observed mortality using the Hosmer–
Lemeshow goodness-of-fit test, having obtained a p-value D 0.104 for the valida-
tion sample. To evaluate the ability of the model to distinguish between patients who
live from patients who die, usually referred to as discrimination, receiver operating
characteristic (ROC) curves were used and an area under the curve of 0.86 was
achieved for the validation sample. Indeed, both results are highly satisfactory;
however, when SAPS II was applied to some external databases, the results obtained
were far worse (e.g. [1, 13]).

5 Results

Data from 996 patients, consecutively admitted to a Portuguese mixed (medical and
surgical) ICU, were analysed. All SAPS data were collected during the first 24
hours after ICU admission. The mean age of the patients was 60.3 (95 % C.I. :
59.3,61.4) years with a median SAPS score of 41 (interquartile range 20–60) and
a hospital mortality of 36 %. The original SAPS II scoring system did not produce
very good results, namely, in what concerns calibration (p-value < 0:001) (Fig. 2,
left), although an area under the ROC curve of 0.82 (95 % C.I. : 0.79, 0.84) was
achieved, showing a satisfactory discrimination ability. After customization, by
using a logistic regression model with SAPS II and ln(SAPS II C 1) as independent
variables, a new equation for the hospital mortality prediction was derived and a
better performance was obtained (Fig. 2, right), with a p-value D 0.517 attained by
the Hosmer–Lemeshow goodness-of-fit test and with the same area under the ROC
curve.

The same dataset was used to implement a 3-layered perceptron with 17 input
nodes, 5 hidden units, a single output node and a sigmoidal activation function.
Firstly, this network was trained using the steepest descent algorithm so to minimize
the MSE (Fig. 3, left). The obtained area under the ROC curve was 0.82 (95 % C.I.
: 0.79, 0.84). Secondly, the Kullback–Leibler (KL) distance was used instead of the
MSE criterium (Fig. 3, right) and the obtained area under the ROC curve was 0.81
(95 % C.I. : 0.78, 0.84).

At last, GAMs were used to analyse the data. Based on the partial functions
estimates, we found new cut-off values for each continuous covariate adjusted by
the remaining covariates and we fitted a logistic regression model with these new
categorical independent variables (Fig. 4, left).
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Fig. 2 Predicted versus observed probability of death. Original SAPS II (left) and customized
SAPS II (right)
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Fig. 3 Predicted versus observed probability of death. Artificial neural network using MSE (left)
and using the Kullback–Leibler distance (right)
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Fig. 4 Predicted versus observed probability of death. Logistic regression with the new categorical
covariates (left) and a GAM without categorizing the continuous covariates (right)

The entire sample was used for model estimation and validation was accom-
plished by randomly splitting the whole sample into five mutually exclusive groups.
Five regression models were then fitted, with each model excluding one group and
used to calculate predictions for the excluded group (fivefold cross validation). An
area below the ROC curve equal to 0.85 (95 % C.I. : 0.82, 0.87) and a calibration
p-value D 0.74 were obtained. The substantial improvements in both calibra-
tion and discrimination, even without introducing new prognostic variables, were
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interesting findings. However, since some information is lost in the categorization
process, we also used GAMs to estimate the probabilities of death without catego-
rizing the continuous covariates. After fitting a GAM to our cross-validated sample,
good calibration curves (Fig. 4, right) and an area under the ROC curve of 0.87 (95 %
C.I. : 0.85, 0.89) were obtained. As it can be seen from Fig. 4, GAMs obtained better
results than those presented by the other approaches.

6 Conclusions and Future Work

The performance of GAMs is clearly superior to the GLMs and neural networks
used in this study. When comparing these last two approaches, in what concerns
their discriminative power, results are according to the ones referred elsewhere
(no substantial differences between the areas under the ROC curve). The same
did not happen for the predictive power since neural network calibration plots
showed a weaker performance, independently of the used criterium (MSE or
KL distance). This means that, in our study, there was no relevant advantage in
using ANN-MLPs. As future work, other ANN structures, such as Generalized
Additive Neural Networks, will be implemented with the purpose of obtaining better
results.
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