
J Supercomput
DOI 10.1007/s11227-013-1008-6

Parallel labeling of massive XML data with MapReduce

Hyebong Choi · Kyong-Ha Lee · Yoon-Joon Lee

© Springer Science+Business Media New York 2013

Abstract The volume of XML data has become enormous and still grows very
quickly as many data have been typed in XML by virtue of its simplicity and exten-
sibility. While a tree labeling algorithm has a crucial role in XML query processing,
conventional algorithms are all sequential so that they fail to label a large volume of
XML data in a timely manner. To address this issue, we devise parallel tree labeling
algorithms for massive XML data. Specifically, we focus on how to efficiently label
a single large XML file in parallel. We first propose parallel versions of two promi-
nent tree labeling schemes based on the MapReduce framework. We then present
techniques for runtime workload balancing and data repartition to solve performance
issues caused by data skewness and MapReduce’s inherited limitation. Through ex-
tensive experiments with synthetic and real-world datasets on 15 nodes, we show
that our parallel labeling algorithms are up to 17 times faster than conventional algo-
rithms, providing strong durability against data skewness.

Keywords Parallel computing · XML · Tree labeling algorithm · MapReduce

H. Choi · Y.-J. Lee
Department of Computer Science, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic
of Korea

H. Choi
e-mail: hbchoi@dbserver.kaist.ac.kr

Y.-J. Lee
e-mail: yoonjoon.lee@kaist.ac.kr

K.-H. Lee (B)
Intelligent Convergence Media Research Department, Broadcasting & Telecommunications Media
Research Laboratory, ETRI, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, Republic of Korea
e-mail: kyongha@etri.re.kr

mailto:hbchoi@dbserver.kaist.ac.kr
mailto:yoonjoon.lee@kaist.ac.kr
mailto:kyongha@etri.re.kr

H. Choi et al.

1 Introduction

XML is currently one of the most popular data formats for data representation and
transmission on the Internet [9]. As many data have been typed in XML, the volume
of a single XML document has also become enormous and also grows very quickly.
For example, Wikipedia provides page dumps as a single XML document that sizes
over 40 GBytes [4]. It is more often to witness large XML documents in scientific ar-
eas. For instance, UnitprotKB, which provides a collection of functional relationships
between proteins, now hits more than 108 GBytes a file [5]. Moreover, the size of the
XML document is continuously growing as biologists find new facts on the proteins
in their experiments. Consequently, there is a growing demand for the support of
query processing over a large XML document.

Meanwhile, labeling an XML document is the first and crucial step in XML query
processing. Tree labeling algorithms facilitate XML query processing by assigning a
unique label to each node in a tree that an XML document represents [19, 29, 30].
A structural relationship between two tree nodes is simply identified by comparing
two labels that correspond to the nodes. Without tree labeling algorithms, XML query
processing could be harder since there is no choice, but to traverse all nodes in an
XML tree to find all occurrences of the subtree pattern that a given query represents.

However, conventional tree labeling algorithms are all sequential. This involves
serious delays or halt in query processing as a system requires unbearable time to pro-
ceed its labeling process before actual query processing. Consequently, conventional
algorithms can no longer label a massive XML document in a timely manner. To pro-
vide a rationale behind this assertion, we tested two popular tree labeling schemes,
i.e., interval-based and prefix-based labeling schemes. We delicately implemented
two labeling algorithms in Java. Figure 1 presents the result of this mini-test, which
was performed on a Linux machine equipped with an AMD FX-4100 3.6 GHz pro-
cessor, 8 GB memory, and a 7200 RPM HDD. In the test, all the labeling algorithms
failed to label given XML files in a proper time. Specifically, the interval-based label-
ing algorithm spent approximately 5.56 hours (20,000 seconds) for labeling an XML
document that consists of 4,894 million nodes. Note that we labeled both elements
and attributes in the test.

To address this issue, we propose efficient parallel tree labeling algorithms for
massive XML data in this article. Specifically, we focus on how to efficiently label a

Fig. 1 Execution time for sequential XML labeling algorithms

Parallel labeling of massive XML data with MapReduce

single large XML file in parallel. First, we provide MapReduce-based algorithms for
two prominent tree labeling schemes. Then we present two optimization techniques
for solving performance issues caused by data skewness and MapReduce’s inherited
limitations. Note that dynamic labeling techniques for XML document updates are
out of scope in this article.

The key contributions of our approach are summarized as follows:

1. We provide an efficient method to parallelize conventional tree labeling algorithms
with MapReduce. In other words, we provide an efficient way to tailor conven-
tional tree labeling algorithms to fit the MapReduce programming model.

2. In our approach, elements are naturally grouped by tag name. In addition, ele-
ments with the same tag name are sorted in an ascending order of labels after the
labeling process. This is just the same as the input type used in most of holistic
twig join algorithms such as TwigStack [10]. Therefore, the results of our labeling
algorithms are directly used for twig pattern joins with no more efforts.

3. In the MapReduce programming model, an input is partitioned into many equal-
sized blocks with no semantic knowledge about its input data. This makes it diffi-
cult to label XML elements in parallel. We provide a method for keeping structural
information of an XML document during the labeling process.

4. We also present optimization techniques to address performance issues in MapRe-
duce. The skewed distribution of key-value pairs in input data may harm the over-
all performance of a MapReduce-based algorithm as the data skewness makes
MapReduce tasks have imbalanced workloads. We address this performance issue
by providing both a sophisticated runtime workload balancing and data repartition
techniques.

5. We report results from a comprehensive set of experiments carried out to evaluate
our MapReduce-based labeling algorithms in comparison with conventional tree
labeling algorithms.

The rest of this article is organized as follows. Section 2 explains preliminary
knowledge useful for better understanding of our work. Section 3 presents our par-
allel labeling techniques based on the MapReduce framework. Section 4 describes
optimization techniques to alleviate a data skewness problem in labeling massive
XML data. In Sect. 5, we extensively evaluate the performance of our parallel label-
ing algorithms with various datasets. Section 6 introduces previous work related to
our approach. Finally, we conclude this article in Sect. 7.

2 Preliminaries

2.1 XML and Tree Labeling Schemes

An XML document is modeled as an ordered, rooted, and labeled tree [10, 19]. Each
node in an XML document corresponds to an element or a value. Accordingly, each
edge represents an element–element relationship or an element-value relationship.
An XML element is represented by a pair of start-tag and end-tag. In addition, each
element is identified by a tag name and an element may have attributes with their

H. Choi et al.

Fig. 2 XML and two tree labeling schemes

values. Figure 2(a) presents a sample XML document, which will be used throughout
this article. For example, the quantity element is represented by a pair of a start-
tag <quantity> and an end-tag </quantity>with value 2 in Fig. 2(a). An order
of nodes in a tree that an XML document represents, aka document order, is obtained
by a preorder traversal of the tree nodes.

XML query processing is considered as a subtree pattern matching problem which
finds all occurrences of a given subtree pattern from a single large tree that an XML
document represents. For example, the following XPath expression:

//item[quantity=‘1’ and payment ="CreditCard"]

which matches all the item elements that (i) have a child element quantity with
a value 1 and (ii) have a child element payment with a value “CreditCard.” To pro-
cess XML queries, relationships between elements such as ancestor–descendant and
parent–child relationships must be identified. A tree labeling algorithm help users
identify a relationship between two XML elements by simply comparing two labels
associated with the elements. Users do not need to traverse whole nodes in an XML
tree for query processing. Figure 2 (b) and (c) illustrate tree representations for the
XML document shown in Fig. 2(a), which are labeled by two popular tree labeling
schemes. Note that we do not illustrate any attributes and values in the trees for sim-
plification.

2.1.1 Interval-Based Labeling Scheme

Interval-based labeling scheme or region numbering scheme helps identify a rela-
tionship between any two nodes in an XML tree with a 3-tuple defined as follows.

Definition 1 (Interval-based labeling scheme) Interval-based labeling scheme en-
codes the position of an XML tree node v as a 3-tuple (start, end, level), where a

Parallel labeling of massive XML data with MapReduce

pair of start and end indicates an interval of v and the level indicates the level of v in
the XML tree.

For any two XML tree nodes u and v, u is an ancestor of v iff u.start < v.start and
u.end > v.end. In other words, u is an ancestor of v iff u’s interval includes v’s inter-
val. A node u is a parent of a node v iff u is an ancestor of v and v.level = u.level+1.
Also, a node u precedes a node v in document order iff u.start < v.start. For exam-
ple, in Fig. 2(b), the first payment element is a child of the first item element
since the item element’s interval [3,8] includes the payment element’s interval
[6,7] and level difference between two elements is 1. In the interval-based labeling
scheme, a 3-tuple is completed when an end-tag occurs. Therefore, all labeled values
are generated in postorder, different from a document order of an XML document.
As a result, it is required to sort all the labels in document order.

2.1.2 Prefix-Based Labeling Scheme

In a prefix-based labeling scheme, a label for an XML tree node is a concatenation
of its parent’s label and its local order. We formally define the prefix-based labeling
scheme as follows.

Definition 2 (Prefix-based labeling scheme) Prefix-based labeling scheme encodes
the position of an XML tree node v, whose parent is u, by L(v) := a1.a2. · · · .am such
that

1. L(v) is a concatenation of L(u) and v’s local order, delimited by ‘.’.
2. The local order of v is i if v is the ith child of u.

For example, a label for the first item element in Fig. 2(c), “1.1.1,” is a con-
catenation of its parent’s label “1.1” and its local order “1.” We call the sequence
of components before local order, e.g., “1.1” in “1.1.1,” a prefix of the label as it is
inherited from its parent node’s label. For any two nodes u and v, u is an ancestor of
v iff the label of u is a prefix of the label of v. The u node is a parent of the v node
iff the label of v has no prefix when removing the label of u from the left side of the
label of v. For instance, a node labeled “1.1” is a parent of a node labeled “1.1.1,” but
not of a node labeled “1.2.1.” Note that labels in the prefix-based labeling scheme are
ordered by Dewey order. We define Dewey order, denoted by ≺, as shown below:

Definition 3 (Dewey order) Given two labels L(u): a1.a2. · · · .am and L(v):
b1.b2 · · · .bn, for any XML tree nodes u and v, u ≺ v iff either of the following
two conditions holds:

1. m < n and a1 = b1, a2 = b2, . . . , am = bm.
2. ∃k ≤ min(m,n) such that a1 = b1, a2 = b2, . . . , ak−1 = bk−1 and ak < bk .

The u node precedes the v node in document order iff L(u) ≺ L(v). For exam-
ple, the Africa element precedes the third item element in document order since
the label of the Africa element precedes the label of the third item element, i.e.,

H. Choi et al.

1.1 ≺ 1.2.1. In prefix-based labeling scheme, level information is implicitly repre-
sented by the number of components in a label, e.g., an element labeled “1.2.1” is in
level 3.

2.2 MapReduce

MapReduce is a parallel processing tool that provides ease-of-use, scalable, and fault-
tolerant features [13]. MapReduce hides the details of the parallel execution so that
users can focus only on their data processing strategies. The MapReduce program-
ming model consists of Map and Reduce functions. The input for a MapReduce-
based program is a list of (key1, value1) pairs and the map() function is applied to
each key-value pair to compute intermediate results, i.e., (key2, value2) pairs. The in-
termediate key-value pairs are then grouped by key2 values, i.e., (key2, list(value2)).
For each key2, the reduce() function reads a list of all values, list(value2), then
produces an aggregated result.

We implement our algorithms with Hadoop [3], a well-known open-source imple-
mentation of MapReduce, since MapReduce itself is not available to the public for
Google’s proprietary use. Like MapReduce, Hadoop consists of two layers: a data
storage layer called Hadoop DFS, aka HDFS, and a data processing layer called
Hadoop MapReduce. HDFS is a block-structured distributed file system just like
Google’s GFS. A MapReduce-based program, referred to as a job, performs in two
phases:the map and the reduce stages. Before starting the map stage, an input file is
loaded on HDFS. At the loading time, the file is split into multiple fixed-size blocks.
Hadoop MapReduce treats an input file as multiple InputSplits. An InputSplit is
a chunk of an input file, which will be processed by a single map task. Each map task
processes its InputSplit at a time. Note that an InputSplit can be more than one HDFS
block if the size of InputSplit is chosen to be larger than HDFS block size.

A mapper, a worker that runs a map task, reads records, i.e., key-value pairs, from
its InputSplit. Then the mapper applies the map() function to each record. The in-
termediate outputs produced by mappers are then sorted locally for grouping key-
value pairs by key. After local sort, the combine() function is optionally applied
to perform preaggregation to minimize the communication cost taken to transfer in-
termediate outputs to reducers. Then mapped outputs are stored on local disks of the
mappers, partitioned into R partitions where R is the number of reduce tasks allowed
in the MapReduce job. This is basically performed by static hash-based partitioning
scheme, i.e., hash(key) mod R. When all map tasks are completed, the interme-
diate outputs are assigned to reducers, a worker that runs a reduce task. Basically,
each record in the intermediate outputs is assigned to only a single reducer by one-to-
one shuffling strategy. A reducer reads the intermediate results and merge them on the
basis of key2, thus all values associated with a single key2 are grouped together. This
grouping is internally done by external merge-sort. After that, each reducer applies
the reduce() function to the grouped intermediate values for each key2. Finally,
the outputs of reducers are stored on HDFS.

Parallel labeling of massive XML data with MapReduce

3 Parallel XML Labeling with MapReduce

Figure 3 shows the overall procedure of our parallel labeling techniques based on
MapReduce. To begin with, an input XML document is loaded on HDFS. At the
loading time, a large XML document is split into many HDFS blocks. Next, each
map task labels XML elements in an InputSplit. By processing a file in chunks, we
make multiple map tasks operate on a single file in parallel. However, map tasks can-
not label all XML elements completely for two reasons. First, each map task does
not have any knowledge about XML elements located in the other InputSplits since
each map task works only on its InputSplit. Second, a start-tag and its correspond-
ing end-tag may not be placed together in an InputSplit. For the reasons, each map
task outputs labels which are partially completed. We call this process partial label-
ing. After the map stage, mapped outputs are shuffled by tag name and then sent to
reducers. Each reducer then has the partial labels for all XML elements, which are as-
sociated with a tag name. At the reduce stage, each reducer merges the partial labels
into a set of complete labels. We call this process label completion. To build a set of
complete labels from partial labels, we exploit additional information called offsets,
which are collected from every map task at the end of the map stage. The details of
the label completion are deferred to Sects. 3.2 and 3.3.

3.1 Splitting XML Data with XMLInputFormat

The InputFormat class in Hadoop decides how to split an input file into multi-
ple InputSplits and how to read key-value pairs from each InputSplit. The ba-
sic InputFormat class TextInputFormatinterprets each line in an InputSplit as a
key-value pair where the key is a byte offset address in the input file and the value
is the context of the line. However, the TextInputFormat class is not suitable
for processing XML documents due to its lack of XML semantics. It splits an input
file only on the basis of InputSplit size. This causes improper splits of an XML doc-
ument. For example, suppose that there is an XML document, which includes text
<author>Lee</author> and the document is split into two InputSplit Si and
Si+1, which hold “<author>Lee</” and “author>,” respectively. While read-
ing the InputSplit Si+1, the incomplete end-tag author> raises a fatal parsing error

Fig. 3 Overview of parallel XML labeling with MapReduce

H. Choi et al.

since it violates the XML grammar that an end-tag of an element must be in the form
of </‘tagname’>.

To address the issue, we write a custom InputFormat class, XMLInputFormat.
The XMLInputFormat adjusts the boundary of each InputSplit such that all tags
are not separated into two InputSplits. It checks the boundary of each InputSplit if
any tag will be separated. If so, it extends the boundary of the InputSplit to include
the tag. Furthermore, the XMLInputFormatclass also interprets the records in an
InputSplit on the basis of tags, unlike line-by-line key-value interpretation in the con-
ventional InputFormat class. with the XMLInputFormat class, a key in each
key-value pair is an identifier for the InputSplit, which contains a tag and a value is
the tag itself.

Example 1 With the XMLInputFormat class, an XML document shown in
Fig. 2(a) is interpreted as a series of key-value pairs, (1, 〈region〉), (1, 〈Africa〉),
(1, 〈item id="item0"〉), (1, 〈quantity〉), (1, 〈/quantity〉) and so on.

3.2 Parallel Interval-Based Labeling Algorithm

Our parallel interval-based labeling algorithm works in two phases: partial labeling
at the map stage and label completion at the reduce stage. Algorithm 1 describes the
partial labeling process at the map stage.

In the algorithm, inputs are a list of key-value pairs, each of which is in the form of
<InputSplitId, a tag>. At initialization, two variables currentCount and currentLevel
are set to zero (line 2). For each tag, currentCount increases by 1 (line 4). If a tag
is a start-tag, the algorithm build a new label with a start value which is set to
the currentCount value and then the label is pushed into a stack S (lines 5–7). If
a tag is an end-tag, the map() function pops a label from S, set an end value in
the label to currentCount, and then emits the label as an output (lines 13–17). The
currentLevel value is used to describe the level of an element. When a start-tag comes,
the currentLevel increases by 1 and it is pushed into S together with the start value
(lines 6–7). On the contrary, it decreases by 1 when an end-tag comes (lines 6 and 9).

The algorithm works similar to the conventional interval-based labeling scheme,
but different in that it allows open-started and open-ended labels. An open-started
label is a label that the start value of the label is still unknown, e.g., (x, 4, 2). An
open-started label is encoded when the algorithm meets an end-tag, which is not
paired by a corresponding start-tag in the same InputSplit. This happens if a start-tag
and its end-tag are separately located in two different InputSplits. Similarly, an open-
ended label is a label that the end value of the label is unknown yet, e.g., (10, x, 3).
An open-ended label is encoded when the algorithm meets a start-tag, which does not
have a corresponding end-tag in the same InputSplit.

If the algorithm meets an end-tag, which does not have its start-tag in the same
InputSplit, it tries to pop a label from S even though S is empty. In the case, we
make the map() function emit an open-started label (lines 10–11). On the contrary,
if there are start-tags, which do not have corresponding end-tags in the same Input-
Split, some open-ended labels are still left in S at the end of the map stage. There-
fore, we emit all the open-ended labels from S in the end (lines 19–21). Note that

Parallel labeling of massive XML data with MapReduce

Algorithm 1 Partial labeling at the map stage
1: Function INITIALIZE()
2: initialize a stack S and set variables Count and Level to 0
3: Function MAP(Integer inputSplitId, Text tag)
4: increment Count by 1
5: if tag is a start-tag then
6: increment Level by 1
7: build a new label L(Count,0,Level)
8: push L into S

9: else � if an end-tag
10: decrement Level by 1
11: if S is empty then
12: build a new label L(0,Count,Level) � for an open-started label
13: else
14: L ← pop from S

15: L.end ← Count
16: end if
17: emit(K , L) � K := < tagname, inputSplitId, L.start >

18: end if
19: Function CLEANUP()
20: while S is not empty do � for open-ended labels
21: L ← pop from S

22: emit(K , L)
23: end while
24: write offsetInfo(InputSplitId, Count, Level) into HDFS

the currentLevel value can be negative as an InputSplit may have multiple end-tags,
which are not paired by corresponding start-tags in the same InputSplit. In addition,
it is noteworthy that each key in mapped outputs is a composite key that is composed
of the tag name, InputSplit Id, and the start value. This composite key scheme is
useful for both grouping and sorting mapped outputs. With the key scheme, mapped
outputs are grouped by distinct tag name first, then records in each group are sorted
by InputSplit Id and the start value. Note that this grouping and sorting are naturally
done by MapReduce’s merge-sort based grouping strategy [13, 18]. Finally, each map
task writes the final state of the currentCount and the currentLevel values on HDFS
(line 23).

Figure 4 illustrates a comprehensive example of our parallel interval-based label-
ing algorithm. First, an input XML document is split into three InputSplits. Each
map task reads records from its InputSplit with the XMLInputFormat class and
then outputs partial labels. In the figure, the first map task reads tags located in the
first InputSplit and then encodes partial labels <4,5,4>, <6,7,4>, <3,8,3>,
<2,x,2>, and <1,x,1> where <2,x,2> and <1,x,1> are open-ended la-
bels since start-tags of Africa and region elements are not paired by their end-
tags in the InputSplit. Similarly, the second map task reads tags located in the second
InputSplit and then generates partial labels. Note that partial labels have not been

H. Choi et al.

Fig. 4 An example of our parallel interval-based labeling algorithm

sorted in document order yet. Among the partial labels that the second map task en-
codes, <x,7,0> for the Africa element is an open-started label. Finally, each map
task stores offset information OffsetInfo, which consists of the final state of the Count
and the Level values with its InputSplit Id, on HDFS. In the figure, the first map task
writes a tuple (1, 8, 2), which represents that the first InputSplit has 8 tags in-
cluding 2 open-ended tags. Again, the third map task writes a tuple (3, 8, -2) on
HDFS, which represents that the third InputSplit has 8 tags including 2 open-started
tags.

Algorithm 2 describes how we complete this labeling process with the partial la-
bels. First, it builds an offset table, which provides the information that is required to
complete partial labels at the reduce stage, with the offset information that map tasks
have written on HDFS (line 2). An offset table consists of 3 columns, i.e., InputSplit
Id, a cumulative count value, and a cumulative level value. In an offset table T , each
row denoted by Ti is computed by

Ti .count =
{

0 if i = 1∑i−1
k=1 OffsetInfok .count otherwise

Ti .level =
{

0 if i = 1∑i−1
k=1 OffsetInfok .level otherwise

(1)

Example 2 In Fig. 4, an offset table T has 3 rows as there are 3 InputSplits. The first
row in T , denoted by T1, has 0 count and 0 level as defined by formula (1). On the
contrary, T3’s count and level is set to 16 and 2, respectively.

Next, the algorithm initializes a stack S, which is used for pairing open-ended
labels to their corresponding open-started labels (line 3). Note that at the reduce
stage, input data are grouped by tag name and also sorted in ascending order of
(inputSplitId, start). The order is determined by the composite key scheme, i.e.,
(tagname, InputSplitId, start) as we described earlier. As a result, each reduce()
function works with sorted label lists each of which represents the elements that have
the same tag name.

Parallel labeling of massive XML data with MapReduce

Algorithm 2 Label completion at the reduce stage
// Reducer class

1: Function INITIALIZE()
2: read offsetInfo from HDFS and build offset table T

3: initialize stack S

4: Function REDUCE(Key, label)
5: i ← Key.InputSplitId
6: if label L is open-ended then � Ti is the i-th tuple in T

7: L.start ← L.start + Ti.count; L.level ← L.level + Ti.level
8: push L into S

9: else if L is open-started then
10: L.end ← L.end + Ti.count;
11: pop L′ from S

12: L ← L ⊕ L′ � merge open-ended and open-started labels
13: Output L as a final result
14: else
15: L.start ← L.start + Ti.count;
16: L.end ← L.end + Ti.count; L.level ← L.level + Ti.level
17: end if

There are three cases that the reduce() function works. First, when Reduce()
function meets a label L which is neither open-ended nor open started, it simply adds
Ti.count to both L.start and L.end. Also, it adds Ti.level to L.level (lines 14–15).
Note that the offset table T keeps the cumulative tag-count and the level values for
each InputSplit. Therefore, by simply adding the values in Ti to labels for the el-
ements in the ith InputSplit, the labels are completed just as if all XML elements
are numbered in serial from the beginning. Second, when the reduce() function
meets an open-ended label L, it adds Ti.start and Ti.level to L.start and L.level, re-
spectively. Then it pushes L into S (lines 6–8). Last, when the reduce() function
meets an open-started label L, it adds Ti.end and Ti.level to L.end and L.level, re-
spectively. Finally, it pops an open-ended label L′ from S and then merges L′ and
an open-started label L into a single label L by a label-merge operator ⊕ defined as
below (lines 9–12).

Definition 4 (Label-merge operator) Given an open-started label L and an open-
ended label L′, label-merge operator, denoted by ⊕, is defined by

L〈x, end, level1〉 ⊕ L′〈start, x, level2〉 → L〈start, end, level2〉

Example 3 In Fig. 4, the first reducer reads an open-ended label L :< 2, x,2 > for
the Africa element in the first InputSplit. Then it adds values in T1 to L and pushes
L into S. No change occurs in L since values in T1 are all zero. Next, the reducer
now reads an open-started label L′ :< x,7,0 > from the second InputSplit, then it
adds values in T2 to L′, i.e. L′ :< x,7 + 8,0 + 2 >. Finally, the reducer pops L

from S and then L :< 2, x,2 > and L′ :< x,15,2 > are merged into a single label
L :< 2,15,2 >.

H. Choi et al.

Note that since each reducer works with the sorted label lists grouped by tag
name, each reducer always keeps open-ended tags in S in ascending order of start
values for a single tag name. Therefore, whenever we pop an open-ended tag from
S, the current open-started tag pairs with its corresponding open-ended tag. It is
always satisfied even if elements are recursive, e.g., <Africa><Africa>...
</Africa></Africa>.

3.3 Parallel Prefix-Based Labeling Algorithm

As described in Sect. 2.1.2, a label for an XML element is a concatenation of its par-
ent’s label and its local order in the prefix-based labeling scheme. Figure 5 illustrates
a comprehensive example of our parallel prefix-based labeling algorithm.

First, each map task reads key-value pairs from its InputSplit. A map task works
with two variables, a vector label that keeps the label for one’s parent and a numeric
variable localorder that keeps one’s local order. The label and the localorder are
initially set to empty and 0. Whenever a map task reads a start-tag, a mapper generates
a new label by concatenating label and localorder+1 unless the label vector is empty.
Then it puts the new label into the label vector and set the localorder value to 0 again.
For the first start-tag in an InputSplit, a label is just localorder + 1 since the label
vector is empty. Whenever a map task meets an end-tag, it removes a postfix from
the label vector and replace the localorder value with the postfix unless the label
vector is empty. When the label vector is empty, the label vector stays empty and the
localorder value is reset to 0 (This is for the same case of the open-started tag as in
the previous Sect. 3.2). In this way, we label all elements in parallel.

However, the labels are still incomplete since each map task works only with its
InputSplit. For example, the item element in the second InputSplit is labeled as 1 at
Map stage in Fig. 5. A final label for the element must be 1.1.2 since it is the second
child of the Africa element which is labeled as 1.1. We complete partial labels at
the reduce stage. This process is called label calibration. To do this, we use map
tasks’ final states of label and localorder. For example, we calibrate the partial label
1 with the final states of label and localorder of the first map task, i.e., 1.1 and 1. The
details are described later in this section.

Fig. 5 An illustration of parallel prefix-based labeling

Parallel labeling of massive XML data with MapReduce

Nonetheless, the information is still insufficient to restore a global Dewey order.
For example, both item and Asia elements in the second InputSplit are labeled as
1 in Fig. 5. This happens since the Asia element is the first element in level 0 while
the item element is in level 1. It is not surprising that some elements are under
level 1 since some elements remain unpaired in an InputSplit after the map phase in
our algorithm.

To complement this, we use an additional variable basement, which decides how
many postfixes should be removed from label. The basement value for an XML el-
ement indicates how many end-tags, which are not paired by their start-tags exist
before the element within an InputSplit. If the basement value for an XML element
is 0, no end-tag which is not paired by its start-tag exists before the element in an
InputSplit. On the contrary, the basement value for the Asia element is set to −1 in
the figure since an end-tag </Africa>, which is not paired by a start-tag, appears
before the element in the second InputSplit.

Suppose that we have a basement value −1 and a partial (incomplete) label X.
When we calibrate the partial label with a given prefix 1.1.2, we remove the last
postfix from the prefix by the basement value −1, i.e., 1.1.

Map tasks output partial labels in forms of <label,basement, inputSplitId>.
Moreover, each map task writes offset information as a 3-tuple <label,basement,
localorder> on HDFS before it ends. The offset information is collected to build an
offset table T similar to the algorithm in the previous section.

We now define the label-calibrate operator, which is used for both building an
offset table and label calibration.

Definition 5 (Label-calibrate operator) Given two tuples X : 〈x1.x2.xm, bx, lx〉
and Y : 〈y1.y2.yn, by, ly〉, label-calibrate operator, denoted by �, is defined by

X � Y ≡

⎧⎪⎨
⎪⎩

〈x1.x2.xm.(y1 + lx).y2.yn, 0, ly〉 if by = 0

〈x1.x2.xm+by , 0, xm+by+1 + ly〉 if by �= 0, n = 0

〈x1.x2.xm+by .(xn+by+1 + y1).y2.yn, 0, ly〉 if by �= 0, n > 0
(2)

where xi and yi represent the ith items of two labels. The b and the l represent the
basement value and the localorder value, respectively.

The label-calibrate operator calibrates a label for an XML element e with the tuple
for e’s preceding element. We explain how it works in each case with examples.

Example 4 Suppose that there are two tuples X and Y and X is set to <1.1,0,2>.

1. The 1st case For a tuple Y: <1.1,0,1>, the result of label calibration is
<1.1.3.1,0,1> since X �Y = <1.1,0,2>�<1.1,0,1> = <1.1.(2+1).1,0,1>

when by = 0.
2. The 2nd case For a tuple Y: <empty,−1,1>, X � Y = <1,0,2> since by �= 0,

n = 0.
3. The 3rd case For a tuple Y: <1.1,−1,1>, X � Y = <1.(1 + 1).1,0,1> since

by �= 0, n > 0.

H. Choi et al.

Note that the operation � is neither commutative nor associative. We now define
an offset table used in our parallel prefix-based labeling algorithm.

Definition 6 (Offset table) An offset table T consists of tuples in forms of
<label,basement, localorder> and the ith tuple Ti of T is computed as follows:

Ti =
{ 〈empty, 0, 0〉 if i = 1⊙i−1

k=1 OffsetInfok otherwise
(3)

where
⊙

is a cumulative operator that is defined by
⊙n

i=1 xi ≡ x1 � x2 � · · · � xn.

The offset table T is similar to the offset table in Sect. 3.2 except column types
that it holds. In real application, we can omit basement column in the offset table
since the column values are always zero in T . However, basement values in mapped
outputs are still kept for label calibration.

Finally, we define label calibration which computes global labels by calibrating
partial labels with the offset table T .

Definition 7 (Label calibration) Given a label L for an XML element in the ith
InputSplit with basement b, label calibration builds a complete label L′ as follows:

T ′ = Ti� < L,b,_ > (4)

where Ti is the ith tuple of an offset table T and L′ is the label in the tuple T ′.

Example 5 In Fig. 5, the item element in the second InputSplit is labeled as 1 with
0 basement at Map stage. Thus, a mapped output for the element is recorded as <1,
0, _ > (local order is not involved in the record). Since the element is in the second
InputSplit, T2 is referred to calibrate the label for the element. That is,

T ′ = T2<1.1,0,1 > � < 1,0,_ > = < 1.1.(1 + 1),0,_> ∴ L′ = 1.1.2.

Example 6 In Fig. 5, the Asia element in the second InputSplit is labeled as
<1,−1,_>. The complete label for this element is computed by

T ′ = T2<1.1,0,1 > � < 1,−1,_> = < 1.(1 + 1),0,_ >∴ L′ = 1.2.

In our implementation, we compress all the labels in DLN(Dynamic Level Num-
bering) scheme introduced in [8] for compact label representation, which results in
reducing both I/O cost and space overhead during the labeling process.

4 Optimizations

As described in the previous section, we use distinct tag names as keys in our algo-
rithms. This enables to group all XML elements by tag name. All XML elements with
the same tag name flock to a reducer by virtue of the hash-based partitioning strategy

Parallel labeling of massive XML data with MapReduce

Fig. 6 Overview of the optimized version of parallel labeling process

in the MapReduce framework. However, the hash-based partitioning strategy may
skew workloads assigned across reducers. If element frequencies are skewed in an
input XML, workloads of MapReduce tasks are also apt to be skewed. Suppose that
we process an XML document, which consists of 3 distinct tag names A, B, and C.
We further suppose that the element frequency for each tag name is 150, 50, and
50, respectively. If the number of reducers in the MapReduce program is 2, the first
reducer is assigned to A and C elements, 200 elements in total, while the second re-
ducer has only 50 B elements in the hash-based partitioning strategy. This workload
imbalance makes MapReduce-based algorithms inefficient. It becomes worse at the
reduce stage since reducers are not balanced well by runtime scheduling as much as
mappers do [17]. Therefore we focus on balancing workloads across the reducers.

Furthermore, we observe that key cardinality is sometimes much less than the
number of reducers. It causes another problem that some reducers do not work at
all as any elements are not assigned to them. This significantly limits the level of
parallelism in our MapReduce-based algorithms. To address the issues, we suggest
workload balancing and data repartition techniques. Figure 6 overviews the overall
procedure of our parallel labeling algorithm, which includes the optimization tech-
niques that we describe in this section.

Our optimization techniques require the information of element frequencies. To
achieve this, we apply an additional MapReduce job before the MapReduce job for
the parallel labeling process. The additional job simply counts the element frequency
for each distinct tag name and then records the statistics on HDFS. After that, our
optimization module optimizes parallel labeling process by repartitioning inputs and
balancing workloads at the reduce stage according to the statistics. It is undoubtable
that the additional MapReduce job imposes an extra cost to the parallel labeling pro-
cess. However, we claim with our experimental results that the cost of the additional
MapReduce job are well compensated by the improved overall performance of the
labeling process.

4.1 Runtime Workload Balancing

We first define our workload balancing problem as follows:

H. Choi et al.

Definition 8 (Workload balancing problem) Given a set S of n distinct tag names
coupled with element frequency e1, e2, . . . , en, we partition S into R subsets,
S1, S2, . . . , SR such that the sum of element frequencies in each subset is equal. The
subsets S1, S2, . . . , SR are disjoint and they cover S.

This problem can be reduced to an optimization version of a well-known NP-
complete decision problem, k-partition problem [12]. Since there is no pseudo-
polynomial solution known in literature, we solve this with a heuristic approach based
on a greedy approximation algorithm, known as first-fit decreasing algorithm in lit-
erature [6]. Algorithm 3 describes our workload balancing algorithm. Before running
the algorithm, we first sort the list of distinct tag names in descending order of ele-
ment frequency, which are acquired by the first MapReduce job in our parallel label-
ing process. Note that since the number of distinct tag names is small, sorting cost
can be ignorable (refer to Table 2). With a sorted list of element frequencies FreqList,
the algorithm first assigns R tag names whose element frequencies are the highest in
the list to R reducers such that each reducer has a single tag name. The algorithm
then computes the cost of each reducer with the element frequency of the tag name
assigned (lines 2–5). After that, the algorithm selects a reducer whose cost is the low-
est and then assigns another tag name whose element frequency is the highest in the
list to the reducer. It iterates until all tag names in FreqList are assigned (lines 7–11).
Note that whenever tag names are assigned, the tag names are removed from FreqList.
Finally, the algorithm returns the allocationMap data structure that describes, which
reducer a key-value pair is assigned to. We update the default partitioning strategy in
Hadoop in a way that it guides each key-value pair to a suitable reducer according to
the allocationMap.

It is straightforward that the time complexity of this algorithm is O(R +N · logR)

where N is the number of distinct tag names. In our application, both N and R are
small even in real applications so that this algorithm can be simply run in memory.

Algorithm 3 Workload balancer
FreqList := a list of (tagname, frequency) sorted by frequency
cost[R] ← all 0 � R : the number of reducers

1: Function LoadBalancer(keyreqList)
2: for reduceID = 1 → R do
3: selects a tag name k whose element frequency is the highest from FreqList
4: put a pair (k, reducerID) into allocationMap
5: add frequency of k to cost[reduceID]
6: end for
7: for each tag name k in FreqList do
8: find the reduceID of a reducer with the smallest cost
9: put a pair (k, reducerID) into allocationMap

10: add frequency of k to cost[reduceID]
11: end for
12: return allocationMap

Parallel labeling of massive XML data with MapReduce

4.2 Data Repartition

Sometimes, only a few distinct tag names appear in an XML document. In the case,
the level of parallelism is restricted despite the workload balancing algorithm in
Sect. 4.1. For example, only three tag names occupy more than 75 % of element
population in UniRef100 XML document as shown in Fig. 8. In the case, some com-
puting nodes fail to get assigned XML elements in a balanced way. For that reason,
we cannot fully utilize all nodes in a cluster if a few tag names exhibit high occupancy
in an Input XML document. Moreover, this give rise to a performance problem in that
only a few of reducers are assigned to too many XML elements. The heavy-loaded
tasks defer the overall process since a MapReduce-based program will not complete
its job until all of its tasks end. This problem becomes worse as the number of distinct
tag names in an XML document is much less than the number of reducers.

We address this issue by repartitioning mapped outputs in a balanced way before
the second Reduce stage. Our key idea is that given the total number of XML ele-
ments m and the number of reducers R, each reducer is guided to process at most
m/R partial labels. To do this, we repartition a list of partial labels, which exceeds
m/R into several lists. Meanwhile, we also keep the number of repartitions as few as
possible in order to merge the labels from different repartitions. Note that the total
number of XML elements and its mean value are counted by the first MapReduce job
as shown in Fig. 6. Also note that XML elements which belong to a single tag name
may come from multiple InputSplits. Moreover, the mapped outputs that we reparti-
tion here are partial labels which are not fully labeled. Therefore, we need to record
which InputSplits the XML elements that correspond to the partial labels come from.
The information is used to merge the results into a final list of fully-computed labels.

Algorithm 4 describes our repartitioning algorithm in detail. First, it finds all
tag names of which element frequency exceeds meanFreq each (line 2). Next,
it examines which InputSplits constitute an element list for the tag name k, de-
noted by ListK, with frequency distribution (line 3). Next, it partitions ListK into
ListK1,ListK2, . . . ,ListKn such that |ListKi | ≤ meanFreq, ∀i < n. To achieve this, it
checks element frequency information in each InputSplit (lines 5–6). When the sum
of element frequencies for a tag name exceeds meanFreq, it partitions the element
list by creating a new tag name whose element list is composed of the elements that
appear in from the startID-th to the (i − 1)-th InputSplit (lines 7–8). Next, it replaces
the original tag name k in FreqList with the new partitioned keys (line 14). Finally,
we return the FreqList to the workload balancer (lines 15–16). It is intuitive that the
time complexity of this algorithm is simply O(t · n) where t is the number of distinct
tag names and n is the number of the input splits.

Example 7 Suppose that we have 4 reducers and 4 distinct tag names A, B, C, and D.
Table 1 describes element frequency information for each tag name and how the ele-
ment lists are composed of XML elements from multiple InputSplits. The meanFreq
value is 100 since m/R = 400/4. First, our repartitioning algorithm selects a list of
B elements to partition since |ListB| exceeds meanFreq. The ListB is partitioned
into two partitions, ListB1 and ListB2 where ListB1 consists of elements only from
InputSplit 1 while ListB2 consists of elements from InputSplit 2–4. Other element

H. Choi et al.

Algorithm 4 Data repartitioner
FreqList := a list of (tagname, frequency) sorted by frequency
DistributionMap := a list of (tagname, freqArray[n]) � n is the number of
InputSplits
freqArray[i] := element frequency in the i-th InputSplit
meanFreq := the total number of elements in an input/ the number of reduces

1: Function Repartitioner(keyFreqList, keyDistributionMap,meanFreq)
2: for all tagname k in FreqList that satisfies frequency > meanFreq do
3: FreqArray ← DistributionMap.get(k)
4: startID ← 1, partitionID ← 1, currentFreq ← FreqArray[1]
5: for i = 2 → n do
6: if currentFreq + FreqArray[i] > meanFreq then
7: create new kpartitionID whose elements appear in from startID-th to the

(i − 1)-th InputSplit
8: partitionID++, currentFreq = 0, startID = i

9: else
10: currentFreq+ = FreqArray[i]
11: end if
12: end for
13: create new kpartitionID whose elements appear in from the startID-th to the

n-th InputSplit
14: replace k in FreqList with k1, k2, . . . , kpartitionID

15: end for
16: return updated FreqList

Table 1 An example of
element frequencies # of elements Tag name A B C D

InputSplit 1 20 100 10 10

InputSplit 2 30 50 10 10

InputSplit 3 20 30 20 10

InputSplit 4 30 20 10 20

Element list size 100 200 50 50

lists are not partitioned since their sizes are not bigger than meanFreq. Finally, Inputs
for reducers in the second M/R job are set to ListA, ListB1, ListB2, ListC, and ListD.

5 Performance Study

5.1 Experimental Setup

We implemented our algorithms with Hanborq Distribution of Hadoop (HDH), which
features a fast job launching and low-latent task transitions [24]. We ran all experi-
ments on a cluster of 16 machines running on Ubuntu 10.10 unless stated otherwise.

Parallel labeling of massive XML data with MapReduce

Table 2 Statistics of XML dataset

Filename XMark1000 TreeBank1000 UniRef100 UniParc UniProtKB

File size(KB) 117,159,962 84,064,928 25,088,663 38,334,953 108,283,066

of elements 1,670,594,672 2,437,665,001 335,153,446 360,376,852 2,110,330,358

of attributes 383,127,024 1 589,568,839 1,215,063,103 2,783,354,175

Depth in avg. 4.738 6.873 4.565 3.775 4.333

Max depth 12 36 6 5 7

distinct paths 548 338,749 30 24 149

distinct tag names 77 251 19 23 80

Table 3 Hadoop settings for
our experiments Parameter Value

The number of nodes 16 (1 for master, 15 for slave nodes)

The number of mappers
per node

8

The number of reducers
per node

4

HDFS block size 64 MB (by default)

InputSplit size 64 MB (by default)

Replication factor 3 (by default)

A node works as a master and the other nodes are designated as slaves. Each node
is equipped with two Intel Xeon E5620 2.4 GHz CPU, 7200 RPM HDD, and 16 GB
memory. All nodes are connected through a gigabyte switching hub. Table 3 presents
the information about our Hadoop settings. This setting was used throughout our ex-
periments. All other settings were set to default values for fair comparison.

We tested our parallel XML labeling algorithms with two synthetic and three real-
world XML data [5, 25, 28], which have been widely used in many XML-related re-
searches. Table 2 presents the statistics of XML datasets used in our experiments. We
generated XMark dataset with scale factor 10, 100, and 1,000 [25] for synthetic XML
data. We also generated synthetic XML documents based on Treebank XML [28] to
test our labeling algorithms with deep-structured XML documents, which contain
many distinct root-to-leaf paths. For the real-world dataset, we selected three real-
world XML data, i.e., UniRef100, UniParc, and UniProtKB, which represent protein
sequences and their functional information [5]. Figures 7 and 8 present the distribu-
tion of element frequencies in our XML dataset. Note that element frequency distri-
bution is more skewed in Treebank than in XMark. In fact, 18 percentile of XML
elements belong to a single tag name while other 189 tag names occupy less than
0.01 % of element population in Treebank. Furthermore, UniRef100 and UniParc ex-
hibit not only skewed distribution of element frequencies but also a limited number
of distinct tag names. More than 300 million elements belong to only 19 distinct tag
names in UniRef100.

H. Choi et al.

Fig. 7 Tag name frequency for the synthetic dataset

Fig. 8 Tag name frequency for the real-world dataset

5.2 Performance Analysis

First, we compared two labeling schemes in terms of label size. Figure 9 presents the
size information of two label types. As shown in the figure, the size of prefix-based
labels is two or more times smaller than that of interval-based labels. The reason
is that prefix-based labels are compressed by DLN scheme [8] in our experiments
unlike interval-based labeling scheme. Note that the overall size of labels is always
same whether the labels are computed in serial or in parallel.

Parallel labeling of massive XML data with MapReduce

Fig. 9 The size of XML labels

Fig. 10 Sequential vs. parallel algorithm for interval-based labeling

We then compared our parallel algorithms with conventional (sequential) algo-
rithms. The results are shown in Figs. 10 and 11. Note that all the parallel labeling
algorithms in the figures are naive now that they are not optimized by two tech-
niques described in Sect. 4. The performance of our parallel algorithms did not out-
play sequential algorithms when the size of an input XML document is small, e.g.,
XMark10 and TreeBank10. In the cases, some mappers did not work at all as they
had not been assigned to any InputSplit. This happens when an input XML document

H. Choi et al.

Fig. 11 Sequential vs. parallel algorithm for prefix-based labeling

is not big enough to assign its InputSplits to all the mappers. However, when an input
XML document is big enough, our parallel algorithms clearly outperforms sequential
labeling algorithms. Specifically, parallel interval-based labeling algorithm showed
better speedup than parallel prefix-based labeling algorithm showed. The reason is
that the interval-based labeling algorithm requires sorting, which is naturally applied
during processing in MapReduce. However, when it comes to speedup and efficiency
per node, these results of naive approaches are not impressive. The best speedup
of our parallel interval-based labeling scheme achieved with 15 slave nodes recorded
x3.8∼x7.3 as shown in Figs. 10 and 11. In other words, efficiency per node is 0.253∼
0.486. It is a strong evidence that a naive MapReduce-based program does not offer
remarkable performance in the parallel labeling process. We show the effectiveness
of our optimization techniques in the following section.

5.3 Optimization

We compared the optimized versions of our parallel algorithms with the naive al-
gorithm. Figure 12 shows the results of three versions of our parallel interval-based
labeling algorithm: a naive algorithm that has no optimization (naive), a parallel
algorithm which has the feature of workload balancing (w/LB), and an optimized
algorithm with both workload balancing and data repartition (w/LB&RP). Figure 13
presents the results of three versions of our parallel prefix-based labeling algorithm.

Note that the execution times in the figures are depicted in log scale. Our opti-
mization techniques improved the performance of parallel labeling algorithms even
though it required an additional MapReduce job. This result is more clear in cases of
Treebank and real-world dataset. The reason is that the distribution of element fre-
quencies is more skewed in the dataset, but also the number of distinct tag names

Parallel labeling of massive XML data with MapReduce

Fig. 12 The effect of optimizations in parallel interval-based labeling

Fig. 13 The effect of optimizations in parallel prefix-base labeling

are much fewer. Therefore, there are more chances to be optimized by both workload
balancing and data repartition in the dataset. The cumulative bar graphs in Figs. 14
and 15 present the execution time breakdown of three parallel labeling algorithms that
processed synthetic and real-world dataset. If the volume of input XML data is not
big enough, the performance gain is marginal since the substantial MapReduce job

H. Choi et al.

Fig. 14 The execution time breakdown of parallel interval-based labeling algorithms

Fig. 15 The execution time breakdown of parallel prefix-based labeling algorithms

acts as a burden that the parallel labeling algorithm shoulders. However, the bigger
the volume of input XML data, the better performance gain we could achieve.

Figure 16 shows how much the optimization techniques improved parallel labeling
algorithms for a massive volume of XML data. In all cases, an algorithm optimized by
both workload balancing and data repartition always showed the best performance.

Parallel labeling of massive XML data with MapReduce

Fig. 16 The effect of workload balancing and input repartition

Fig. 17 The execution time at the reduce stage (XMark1000 in interval-based labeling scheme)

Note that a vertical line in each bar represents the difference between the shortest
and the longest execution time of reducers in the second MapReduce job. A long
vertical line implies that workloads have not been evenly distributed across reducers,
involving the long overall execution time. On the contrary, a short vertical line implies
that workloads have been evenly distributed across nodes. Note that the high end of
a vertical line always meets with the overall execution time of the algorithm since a
MapReduce job ends when all reducers end.

To further test the effect of workload balancing and data repartition, we also exam-
ined the execution time of all reducers in the second MapReduce job. The results are
shown in Figs. 17 and 18. We observed that our optimization techniques effectively
mitigated the data skewness problem by balancing workloads across reducers.

Finally, we investigated the scalability of our parallel labeling algorithms with
the optimization features. The results are presented in Figs. 19 and 20. As shown in

H. Choi et al.

Fig. 18 The execution time at the reduce stage (XMark1000 in prefix-based labeling scheme)

Fig. 19 Scalability of parallel interval-based labeling algorithms

the figures, naive algorithms revealed a scalability issue. Thus, corresponding graphs
flattened as the number of nodes increased. On the other hand, algorithms with the
features of workload balancing and data repartition scaled nicely.

Parallel labeling of massive XML data with MapReduce

Fig. 20 Scalability of parallel prefix-based labeling algorithms

6 Related Work

It is known in literature that Dietz’s number is the first work which provides a labeling
scheme for trees [14]. He labeled each tree node with a pair of numeric values, pre and
post, each of which represents preorder and postorder traversal numbers of the tree
node, respectively. Zhang et al. adapted Dietz’s number into XML query processing
in a relational database [30]. They labeled an XML element with a 3-tuple of (start,
end, level), each of which describes the position of the start-tag, the position of the
end-tag, and level of the XML element, respectively. This approach is also known as
region or interval-based numbering scheme in literature. Li et al. extended Dietz’s
number to avoid frequent relabeling of whole XML elements when new elements are
inserted [19]. BaseX, an open-sourced XML DBMS [1], also uses a modified version
of Li’s approach in processing XML queries [15].

Prefix-based labeling schemes originated from Dewey decimal classification,
which was invented for library classification by M. Dewey [26]. Tatarinov et al. first
introduced the prefix-based labeling scheme called Dewey ID into XML query pro-
cessing [29]. In their approach, each XML element is associated with a vector of
identifiers which represents a path from the root to the element. An advantage of the
prefix-based labeling scheme over the interval-based labeling scheme is an ability
to avoid relabeling whole XML elements when updates on the XML tree occurred.
Due to the easy maintenance under dynamic updates on XML trees, some commer-
cial DBMS have used prefix-based labeling schemes in XML query processing [7,
21, 22]. ORDPATH is a novel prefix-based labeling scheme used in MS SQL Server
2005. It is similar to DeweyID, but uses only odd numbers for the first labeling [22].
When a new element is added, the element is labeled with an even number between

H. Choi et al.

two odd numbers to concatenate another odd number. DLN(dynamic level number-
ing) [8] is another prefix-based labeling scheme integrated with eXist-db, another
open source XML DBMS [2]. The size of prefix-based labels is usually larger than
the one of interval-based labeling scheme. Thus, prefix-based labeling schemes have
been also considered to be encoded in a concise form, for example, both ORDPATH
and DLN represent their labels as compressed bitstrings.

In recent years, some efforts to parallelize XML query processing have been re-
ported in literature. As multicore CPUs emerge, some researches have tried to utilize
the multicore CPUs for parsing XML data in parallel [20, 23, 27]. However, they
just focused on the parsing problem, not on XML labeling. HadoopXML is the first
work which earnestly processes twig pattern queries for large scale XML data with
the MapReduce framework [11]. This approach supports parallel and simultaneous
processing of many queries for a very large size of XML document in a shared and
balanced way. However, it also reveals that the current labeling schemes are all se-
quential so that labeling process delays its entire query processing time significantly.

MapReduce is a scalable and fault-tolerant data processing tool that is devised to
process a large volume of data in parallel with many low-end computing nodes [13].
By virtue of its simplicity and fault-tolerance, MapReduce has been gaining signifi-
cant momentum from both academia and industry. However, MapReduce has inher-
ited limitations on its performance and I/O efficiency. Therefore, many studies have
endeavored to overcome the limitations [18]. A MapReduce job may have a strag-
gling task that delays the overall job execution. Thus, the MapReduce framework
sometimes re-executes the straggling task on idle nodes speculatively [13]. However,
the speculative reexecution does not alleviate the straggling problem if the problem is
caused by data skewness. Rather, it exacerbates the phenomenon by running redun-
dant tasks on multiple nodes. LEEN is devised to solve the straggler problem by pro-
viding fair key partitioning with the knowledge of key distribution [16]. SkewTune is
an adaptive algorithm devised to mitigate the skewness problem [17]. It detects strag-
gler tasks at runtime and then partitions their inputs, which are unprocessed so far
into multiple pieces. The input pieces are then assigned to other idle tasks. However,
both LEEN and SkewTune require to modify MapReduce internals. Moreover, LEEN
is only effective when the number of keys is sufficiently large and the key distribu-
tion is not extremely skewed. SkewTune pays for an additional cost for coordinating
workloads across tasks at runtime.

7 Conclusion

XML labeling is an essential operation for efficient XML query processing. In this
article, we suggested parallel XML labeling algorithms for two prominent tree label-
ing schemes with MapReduce. The algorithms label a massive volume of XML data
in parallel. However, XML documents may have the skewed distribution of element
frequencies and quite a few number of distinct tag names. This makes some nodes
lag with many XML elements to process. We also provided two optimization tech-
niques for mitigating the data skewness problem. With the optimization techniques,
our parallel labeling algorithms efficiently label a massive volume of XML data in a
scalable and balanced way.

Parallel labeling of massive XML data with MapReduce

Acknowledgements This work was funded by the MSIP(Ministry of Science, ICT & Future Planning),
Korea in the ICT R&D Program 2013. It is also partly supported by the NRF grant funded by the Korea
government (No. 2011-0016282), and the IT R&D program of MKE/KEIT Korea [10041709, Develop-
ment of Key Technologies for Big Data Analysis and Management based on Next Generation Memory].

References

1. BaseX: Processing and Visualizing XML with a native XML Database. Grun, C. and others.
http://www.baseX.org/

2. eXist-db: Open Source native XML Database. Meier, W and others. http://exist-db.org/
3. Hadoop. Apache Software Foundation. http://hadoop.apache.org
4. Wikipedia (2013): Database download. Wikipedia Foundation, Inc. http://en.wikipedia.org/wiki/

Wikipedia:Database_download
5. Bairoch A et al (2005) The universal protein resource (UniProt). Nucleic Acids Res 33(suppl 1),

D154–D159
6. Baker BS (1985) A new proof for the first-fit decreasing bin-packing algorithm. J Algorithms 6(1):49–

70
7. Beyer K, Cochrane R, Josifovski V, Kleewein J, Lapis G, Lohman G, Lyle B, Özcan F, Pirahesh H,

Seemann N et al (2005) System RX: one part relational, one part XML. In: Proceedings of the 2005
ACM SIGMOD conference. ACM, New York, pp 347–358

8. Böhme T, Rahm E (2004) Supporting efficient streaming and insertion of XML data in RDBMS. In:
Proc 3rd DIWeb workshop, pp 70–81

9. Bray T, Paoli J, Sperberg-McQueen C, Maler E, Yergeau F (1997) Extensible markup language
(XML). World Wide Web J 2(4):27–66

10. Bruno N et al (2002) Holistic twig joins: optimal XML pattern matching. In: Proceedings of the ACM
SIGMOD conference, pp 310–321

11. Choi H, Lee KH, Kim SH, Lee YJ, Moon B (2012) HadoopXML: a suite for parallel processing
of massive XML data with multiple twig pattern queries. In: Proceedings of the 21th ACM CIKM
conference, pp 2737–2739

12. Cormen TH et al (2001) Introduction to algorithms. MIT Press, Cambridge
13. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM

51(1):107–113
14. Dietz P (1982) Maintaining order in a linked list. In: Proceedings of the 14th annual ACM symposium

on theory of computing. ACM, New York, pp 122–127
15. Grün C, Gath S, Holupirek A, Scholl M (2009) XQuery full text implementation in BaseX. Database

and XML technologies, pp 114–128
16. Ibrahim S, Jin H, Lu L, Wu S, He B, Qi L (2010) Leen: locality/fairness-aware key partitioning for

mapreduce in the cloud. In: IEEE second international conference on cloud computing technology
and science (CloudCom), 2010. IEEE Press, New York, pp 17–24

17. Kwon Y, Balazinska M, Howe B, Rolia J (2012) SkewTune: mitigating skew in MapReduce applica-
tions. In: Proceedings of the ACM SIGMOD conference. ACM, New York, pp 25–36

18. Lee K, Choi H, Lee Y, Chung YD, Moon B (2012) Parallel data processing with MapReduce: A
survey. ACM SIGMOD Record 40(4):11–20

19. Li Q, Moon B (2001) Indexing and querying XML data for regular path expressions. In: Proceedings
of the 27th VLDB conference, pp 361–370

20. Lu W, Chiu K, Pan Y (2006) A parallel approach to XML parsing. In: 7th IEEE/ACM international
conference on grid computing. IEEE Press, New York, pp 223–230

21. Murthy R, Liu Z, Krishnaprasad M, Chandrasekar S, Tran A, Sedlar E, Florescu D, Kotsovolos S,
Agarwal N, Arora V et al (2005) Towards an enterprise XML architecture. In: Proceedings of the
ACM SIGMOD conference. ACM, New York, pp 953–957

22. O’Neil P, O’Neil E, Pal S, Cseri I, Schaller G, Westbury N (2004) ORDPATHs: insert-friendly XML
node labels. In: Proceedings of the ACM SIGMOD conference. ACM, New York, pp 903–908

23. Pan Y, Lu W, Zhang Y, Chili K (2007) A static load-balancing scheme for parallel XML parsing
on multicore CPUs. In: 7th IEEE international symposium on cluster computing and the grid, 2007.
CCGRID 2007. IEEE Press, New York, pp 351–362

24. Rao A et al Hanborq Distribution with Hadoop. https://github.com/hanborq/hadoop

http://www.baseX.org/
http://exist-db.org/
http://hadoop.apache.org
http://en.wikipedia.org/wiki/Wikipedia:Database_download
http://en.wikipedia.org/wiki/Wikipedia:Database_download
https://github.com/hanborq/hadoop

H. Choi et al.

25. Schmidt A, Waas F, Kersten M, Carey M, Manolescu I, Busse R (2002) XMark: a benchmark for XML
data management. In: Proceedings of the 28th VLDB conference. VLDB Endowment, pp 974–985

26. Scott ML, SCOTT ML (1998) Dewey decimal classification. Libraries Unlimited
27. Shah B, Rao P, Moon B, Rajagopalan M (2009) A data parallel algorithm for XML DOM parsing.

Database and XML technologies pp 75–90
28. Suciu D (1992) Treebank: XML data repository
29. Tatarinov I, Viglas S, Beyer K, Shanmugasundaram J, Shekita E, Zhang C (2002) Storing and querying

ordered XML using a relational database system. In: Proceedings of the ACM SIGMOD conference.
ACM, New York, pp 204–215

30. Zhang C et al (2001) On supporting containment queries in relational database management systems.
In: Proceedings of the ACM SIGMOD conference, pp 425–436

	Parallel labeling of massive XML data with MapReduce
	Abstract
	Introduction
	Preliminaries
	XML and Tree Labeling Schemes
	Interval-Based Labeling Scheme
	Preﬁx-Based Labeling Scheme

	MapReduce

	Parallel XML Labeling with MapReduce
	Splitting XML Data with XMLInputFormat
	Parallel Interval-Based Labeling Algorithm
	Parallel Preﬁx-Based Labeling Algorithm

	Optimizations
	Runtime Workload Balancing
	Data Repartition

	Performance Study
	Experimental Setup
	Performance Analysis
	Optimization

	Related Work
	Conclusion
	Acknowledgements
	References

