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Abstract—Technological advancements in communications and 
embedded systems have led to the proliferation of wireless sensor 
networks (WSNs) in a wide variety of application domains. 
One commonality across all WSN application domains is the 
need to meet application requirements (e.g., lifetime, reliability, 
etc.). Many application domains require that sensor nodes 
be deployed in harsh environments (e.g., ocean floor, active 
volcanoes), making these sensor nodes more prone to failures. 
Unfortunately, sensor node failures can be catastrophic for 
critical or safety related systems. To improve reliability in 
such systems, we propose a fault-tolerant sensor node model 
for applications with high reliability requirements. We develop 
Markov models for characterizing WSN reliability and MTTF 
(Mean Time to Failure) to facilitate WSN application-specific 
design. Results show that our proposed fault-tolerant model can 
result in as high as a 100% MTTF increase and approximately a 
350% improvement in reliability over a non-fault-tolerant WSN. 
Results also highlight the significance of a robust fault detection 
algorithm to leverage the benefits of fault-tolerant WSNs. 

Index Terms—Fault-Tolerance, reliability, Markov modeling, 
wireless sensor networks 

I. INTRODUCTION AND MOTIVATION 

Wireless sensor networks (WSNs) consist of spatially 
distributed autonomous sensor nodes that collaborate with 
each other to perform an application task. WSN sensor 
nodes are typically mass produced and are often deployed 
in unattended and hostile environments making them more 
susceptible to failures than other systems [1]. Additionally, 
manual inspection of faulty sensor nodes after deployment is 
typically impractical. Nevertheless, many WSN applications 
are mission-critical, requiring continuous operation. Thus, in 
order to meet application requirements reliably, WSNs require 
fault detection and fault-tolerance (FT) mechanisms. 

Fault detection encompasses distributed fault detection 
(DFD) algorithms which identify faulty sensor readings that 
indicate faulty sensors. DFD algorithms typically use existing 
network traffic to identify sensor failures and therefore 
do not incur any additional transmission cost. A fault 
detection algorithm's accuracy signifies the algorithm's ability 
to accurately identify faults. Though fault detection helps 
in isolating faulty sensors, WSNs require FT to reliably 
accomplish application tasks. 

One of the most prominent FT techniques is to add hardware 
and/or software redundancy to the system [2]. However, 
WSNs are different from other systems as they have stringent 
constraints and the added redundancy for FT must justify the 

additional cost. Studies indicate that sensors (e.g., temperature 
and humidity sensors) in a sensor node have comparatively 
higher fault rates than other components (e.g., processors, 
transceivers) [3][4]. Fortunately, sensors are cheap and adding 
spare sensors contribute little to the individual sensor node's 
cost. 

Even though FT is a well studied research field [5][6][7][8], 
fault detection and FT for WSNs are relatively unstudied. 
Additionally, fault detection and FT for WSNs have added 
complexities due to varying FT requirements across different 
applications. For instance, mission critical applications (e.g., 
security and defense systems) have very high reliability 
requirements whereas non-mission critical applications (e.g., 
ambient conditions monitoring applications) typically have 
relatively low reliability requirements. To the best of our 
knowledge there exists no sensor node model to provide 
better reliability for such critical applications. Furthermore, 
applications are designed to operate reliably for a certain 
period of time (i.e., WSN applications typically have specific 
lifetime requirements). Unfortunately, literature provides 
no rigorous mathematical model with insights into WSN 
reliability and lifetime. Finally, fault detection and FT have 
been studied in isolation and their synergistic relationship has 
not been investigated in the context of WSNs. 

Our main contributions in this paper are: 

• We investigate the synergy of fault detection and FT for 
WSNs and propose an FT sensor node model consisting 
of duplex sensors (i.e., one active sensor and one inactive 
spare sensor), which exploits this synergy between fault 
detection and FT. Whereas sensors may employ N-
modular redundancy (e.g., triple modular redundancy 
(TMR) is a special case of N-modular redundancy) [2], 
we propose a duplex sensor model to minimize the 
additional cost for our FT model. 

• To the best of our knowledge, we for the first time develop 
a Markov model for characterizing WSN reliability and 
MTTF. Our Markov modeling facilitates WSN design by 
enabling WSN designers to determine the exact number 
of sensor nodes required to meet the application's lifetime 
and reliability requirements. Our Markov modeling 
provides an insight on the type of sensor nodes (duplex 
or simplex) feasible for an application to meet the 
application's requirements. 
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I I . RELATED WORK 

Although general FT is a well-studied research field 
[5][6][7][8], little work exists in WSN-specific fault detection 
and FT. Jiang [9] proposed a DFD scheme that detected 
faulty sensor nodes by exchanging data and mutually testing 
among neighboring nodes. Jian-Liang et al. [10] proposed 
a weighted median fault detection scheme (WMFDS) that 
used spatial correlations among the sensor measurements 
(e.g., temperature, humidity). Lee et al. [11] presented a 
DFD algorithm that identified faulty sensor nodes based on 
comparisons between neighboring sensor nodes' data. The 
DFD algorithm used time redundancy to tolerate transient 
faults in sensing and communication. Khilar et al. [12] 
proposed a probabilistic approach to diagnose intermittent 
faults in WSNs. The simulation results indicated that the 
accuracy of the DFD algorithm increased as the number 
of diagnostic rounds increased (each round comprised of 
exchanging measurements with the neighboring nodes). 

Further work exists in WSN fault detection. Ding et al. [13] 
proposed two algorithms: faulty sensor identification and fault-
tolerant event boundary detection. Their algorithms considered 
that both the faulty sensors and sensor in the event region 
could generate abnormal readings (readings that deviate from 
a typical application-specific range). Krishnamachari et al. 
[14] proposed a distributed, Bayesian algorithm for sensor 
fault detection and correction that exploited the notion that 
measurement errors due to faulty equipment are likely to be 
uncorrelated. Wu et al. [15] presented a fault detection scheme 
in which the fusion center (the node that aggregated data 
from different nodes) attempted to identify faulty sensor nodes 
through temporal sequences of received local decisions using 
a majority voting technique. 

In the area of FT for WSNs, Koushanfar et al. [4] proposed 
an FT scheme that provided back up for one type of sensor 
using another type of sensor. However, they did not propose 
any FT model. Clouqueur et al. [16] presented algorithms 
for collaborative target detection in the presence of faulty 
sensors. Chiang et al. [17] built and evaluated system-level 
test interfaces for remote testing, repair, and software upgrades 
for sensor nodes. They added a test interface module (TIM) to 
provide the testing function and experimental results indicated 
that the TIM with double, triple, and quadruple redundancy 
increased the WSN's availability. 

Even though DFD algorithms were proposed in literature for 
detecting sensor faults, the fault detection was not leveraged to 
provide FT. Additionally, there does not exist any model for FT 
sensor nodes, nor does there exist any model for characterizing 
WSN FT metrics such as reliability and MTTF. 

I I I . FAULT-TOLERANT MARKOV MODELS 

In this section, we present our proposed Markov models 
for FT WSNs. Our Markov models are comprehensive and 
encompass the sensor node, a WSN cluster (a group of sensor 
nodes), and the overall WSN. 

Fig. 1. Sensor node Markov model. 

A. Fault-Tolerance Parameters 

The FT parameters leveraged in our Markov model are 
coverage factor and sensor failure probability. The coverage 
factor c is defined as the probability that the faulty active 
sensor is correctly diagnosed, disconnected, and replaced by 
a good inactive spare sensor. The c estimation is critical in an 
FT WSN model and can be determined by: 

c — ck cc (1) 

where cfc denotes the accuracy of the fault detection algorithm 
in diagnosing faulty sensors and cc denotes the probability 
of an unsuccessful replacement of the identified faulty sensor 
with the good spare sensor. cc depends upon the sensor 
switching circuitry and is usually a constant and ck depends 
upon the average number of sensor node neighbors k and the 
probability of sensor failure p [9][10][13][14]. 

The sensor failure probability p can be represented using an 
exponential distribution with failure rate As over the period ts 

(the period ts signifies the time over which the sensor failure 
probability p is specified) [18]. Thus, we can write: 

p — 1 - exp(-Xsts) 

B. Fault-Tolerant Sensor Node Model 

(2) 

We propose an FT duplex sensor node model consisting 
of one active sensor (such as a temperature sensor) and one 
inactive spare sensor. The inactive sensor becomes active only 
once the active sensor is declared faulty by the fault detection 
algorithm. Fig 1 shows the Markov model for our proposed 
FT sensor node. The states in the Markov model represent the 
number of good sensors. The differential equations describing 
the sensor node duplex Markov model are: 

P2 (t) — -AtP2(t) 

p'l(t) — XtcP2(t) - XtPi(t) 

Po(t) — At(1 - c)P2(t) + AtPi(t) (3) 

where Pi (t) denotes the probability that the sensor node will 
be in state i at time t and Pi (t) represents the first order 
derivative of Pi(t). At represents the failure rate of an active 
temperature sensor and the rate at which recoverable failure 
occurs is cAt. The probability that the sensor failure cannot 
be recovered is (1 - c), and the rate at which unrecoverable 
failure occurs is (1 — c)At. 



Fig. 2. WSN cluster Markov model. 

Solving (3) with the initial conditions P2(0) = 1, Pi(0) = 
0, and P0 (0) = 0, the reliability of the duplex sensor node is 
given by: 

RSd (t) = 1 — Pc(t) 
e-Xtt + c\tte-Xtt 

The MTTF of the duplex sensor system is 

(4) 

Fig. 3. WSN cluster Markov model with three states. 

M T T F S d = I RSd (t) dt 
J 0 

= 1 c 
= A + A (5) 

The average failure rate of the duplex sensor system depends 
on k (since the fault detection algorithm's accuracy depends 
on k (Section III-A)) and is given by: 

A 
1 

Sd(k) MTTF Sd(k) 
(6) 

C. Fault-Tolerant WSN Cluster Model 

A typical WSN consists of many clusters and we assume 
for our model that all nodes in a cluster are neighbors to each 
other. If the average number of nodes in a cluster is n, then 
the average number of neighbor nodes per sensor node is k = 
n — 1. Fig. 2 depicts our Markov model for a WSN cluster. We 
assume that a cluster fails (i.e., fails to perform its assigned 
application task) if the number of alive (non-faulty) sensor 
nodes in the cluster reduces to kmin. The differential equations 
describing the WSN cluster Markov model are: 

P ' n ( t ) = — n A S d ( n - 1 ) P n ( t ) 

Pn-l(t) = nXSd(n-1)Pn(t) — (n — 1)ASd(n-2)Pn-l(t) 

Pkmin ( t ) = (kn + 1)A Sd(kmin )Pkmin+i(t) (7) 

WSN cluster reliability is given as: 

Rc(t) = 1 — Pkmin (t) 
= e - ( k m i " + 2 ) x ' d ( k m i n + 1 ) t + 

(kmin + 2 ) A S d ( k m i , + 1)e-(k"i"+2)A°d(^mi,+Dt 

(kmin + 1 ) A s d ( k m i n ) — (kmin + 2 ) A s d ( k m i n +1) 

( k m i n + 2)ASd(kmin+1)e-(kmin +1)A'd(^mi,)t 

(kmin + 2 ) A s d ( k m i n +1) — (kmin + 1 ) A s d ( k m i n ) 

The MTTF of the WSN cluster is: 

Rc(t) dt 

+ 

(8) 

1 
( k m + 2)ASd(km +1) 

1 

+ 

+ 
( k m + 1)ASd(km) — ( k m + 2)ASd(km +1) 

( k m + 2)ASd(km+1) 

( k m + 2 ) ( k m + 2)ASd(km )ASd(km + 1 ) — ( k m + 1 ) 2 A 2
d ( k m ) 

(9) 

where we denote kmin by km in (9) for conciseness. The 
average failure rate of the cluster Ac(n) depends on the average 
number of nodes in the cluster n at deployment time and is 
given by: 

1 

where Asd(n-1), Asd(n-2),and Asd(kmin) represent the duplex 
sensor node failure rate (6) when the average number of 
neighbor sensor nodes are n — 1, n — 2,and kmin, respectively. 
For mathematical tractability and closed form solution, we 
analyze a special (simple) case of the above WSN cluster 
Markov model where n = kmin+2, which reduces the Markov 
model to three states as shown in Fig. 3. 

Solving (7) for n = kmin + 2 with the initial conditions 
Pkmin+2(0) = 1, Pkmin+1(0) = 0, a n d Pkmin(0) = 0, t he 

Ac(n) = MTTF c(n) 
(10) 

D. Fault-Tolerant WSN Model 

A typical WSN consists of N = ns/n clusters where ns 

denotes the total number of sensor nodes in the WSN and 
n denotes the average number of nodes in a cluster. Fig. 4 
depicts our WSN Markov model. We assume that the WSN 
fails to perform its assigned task when the number of alive 
clusters reduces to Nmin. The differential equations describing 

DO 

OO 
MTTFc = 

0 



the WSN Markov model are: 

PN (t) = -NXc(n) 

PN-l(t) = NXc(n) PN (t) - (N - 1)Ac(n) PN-1 (t) 

P N m % n ( t ) = ( N m l n + 1 ) A c ( n ) P N m l n + 1 ( t ) (11) 
where Xr(n) represents the average cluster failure rate (10) 
when the cluster contains n sensor nodes at deployment time. 

Solving (11) for N = Nmin + 2 with the initial conditions 
PNmin+2{0) = 1, PNmm+1(0) = 0, and Pjvmin(0) = 0, the 
WSN reliability is given as: 

RWSn(t) = 1 - PNmin (t) 

= e - ( N x + 2 ) A •c(n) + ( N m i n + 2 ) A c ( n ) 

3 - ( N m i n + 1 ) A c ( „ ) t _ „ - ( N m i n + 2 ) A c ( „ ) t (12) 

where Ac(n) represents the average cluster failure rate (10) 
when the cluster contains n sensor nodes at deployment time. 
The WSN MTTF when N = Nmin + 2 is: 

MTTF Rwsn ( t ) d t 

1 
_ + N m i n + 2 - 1 (13) 

( N m i n + 2 ) A c ( n ) N m i n + 1 

IV. RESULTS 

We use the SHARPE Software Package [19] to obtain our 
FT sensor node, WSN cluster, and WSN model results. We 
assume cc = 0 in (1) (i.e., once a faulty sensor is identified, 
the faulty sensor is replaced by a good spare sensor perfectly, 
and thus c = ck in (1)). We use typical ck values for 
our analysis that represent ck for different fault detection 
algorithms [9][10][13][14]. We compare the MTTF for FT and 
non-FT (NFT) sensor node, WSN cluster, and WSN models. 
The MTTF also reflects the system reliability (i.e., a greater 
MTTF implies a more reliable system). 

Fig. 5 depicts the MTTF for an NFT and FT sensor node 
(based on our sensor node duplex model Section III-B) for k 
values of 5, 10, and 15 versus the sensor failure probability 
p when ta in (2) is 100 days [13][14]. The FT results are 
obtained for different k because a fault detection algorithm's 
accuracy, and thus c, depends upon k. The results show that 
the MTTF for an FT sensor node improves with increasing 
k. However, the MTTF shows negligible improvement when 
k = 15 over k = 10 as the fault detection algorithm's 
accuracy improvement gradient (slope) decreases between 

^NFT 
— FT, k=5, c*1 
-o-FT, k=10, 
^FT , k=15, 
-*-FT. c—1 

0.4 0.5 0.6 0.7 
Sensor Failure Probability p 

Fig. 5. MTTF (days) for an FT and a non-FT (NFT) sensor node. 

large k values. Fig. 5 also compares the MTTF for an FT 
sensor node when c =1 V k,p representing the ideal case 
(i.e., the fault detection algorithm is perfect and the faulty 
sensor is identified and replaced perfectly for any number of 
neighbors and sensor failure probability). Whereas c = 1 for 
existing fault detection algorithms, however, comparison with 
c = 1 provides insight into how the fault detection algorithm's 
accuracy affects the sensor node's MTTF. Fig. 5 shows that the 
MTTF for an FT sensor node with c =1 is always greater than 
the FT sensor node with c = 1. We observe that the MTTF for 
both the NFT and FT sensor node decreases as p increases, 
however, the FT sensor node maintains better MTTF than the 
NFT sensor node for all p values. 

We calculated the percentage MTTF improvement gained 
by an FT sensor node over an NFT sensor node for 
different values of p. We observed that the MTTF percentage 
improvement for an FT sensor node decreases as p increases 
when c = 1 . The percentage MTTF improvement for an FT 
sensor node with k = 5 and k = 10 are 86% and 96%, 
respectively, for p = 0.1. The MTTF percentage improvement 
drops to 0.9% and 1.3%, respectively, for p = 0.99.The MTTF 
percentage improvement for an FT sensor node over an NFT 
sensor node is 100% on average when c = 1 , thus highlighting 
the importance of a robust fault detection algorithm. 

Fig. 6 depicts the MTTF for NFT and FT WNS clusters 
versus p when kmin = 4 (we observed similar trends for other 
kmin values). The FT WSN cluster consists of sensor nodes 
with duplex sensors (Section III-B) and the NFT WSN cluster 
consists of NFT non-duplex sensor nodes. The figure shows 
the results for two WSN clusters that contain on average n = 
kmin + 2 and n = kmin + 5 sensor nodes at deployment 
time. The figure reveals that the FT WSN cluster's MTTF is 
considerably greater than the NFT WSN cluster's MTTF for 

y 

n 



Fig. 6. MTTF (days) for the FT and non-FT (NFT) WSN clusters with 
k̂ n.ô . — 4. 

both cluster systems (n = kmin + 2 and n = kmin + 5). 
Fig. 6 also compares the MTTF for FT WSN clusters when 
c = 1 with c = 1 and shows that the MTTF for FT WSN 
clusters with c =1 is always better than the FT WSN clusters 
with c = 1. We point out that both the NFT and FT WSN 
clusters with n>kmin have redundant sensor nodes and can 
inherently tolerate n - kmin sensor node failures. The WSN 
cluster with n = kmin + 5 has more redundant sensor nodes 
than the WSN cluster with n = kmin + 2 and thus has a 
comparatively greater MTTF. 

We observed the percentage MTTF improvement of FT 
WSN clusters as compared to NFT WSN clusters for two 
cluster systems containing n = kmin + 2 and n = kmin + 5 
sensor nodes. The MTTF percentage improvement for the 
FT WSN cluster with n = kmin + 2, c = 1, is 83% for 
p = 0.1 and drops to 2.3% for p = 0.99. Similarly, the 
percentage MTTF improvement for the FT WSN cluster with 
n = kmin + 5, c = 1, is 88% for p = 0.1 and drops to 
2.5% for p = 0.99. The percentage MTTF improvement for 
the two cluster systems is 100% on average when c = 1. We 
observed that the MTTF percentage improvement for the FT 
WSN cluster with n = kmin + 5 over n = kmin + 2 is 103% 
on average. 

Fig. 7 depicts the MTTF for two WSNs containing on 
average N = Nmin + 2 and N = Nmin + 5 clusters at 
deployment time and each WSN fails when there are no more 
active clusters (i.e., N = Nmin = 0). The FT WSN contains 
sensor nodes with duplex sensors (Section III-B) and the NFT 
WSN contains NFT non-duplex sensor nodes. We assume 
that both WSNs contain clusters with n = kmin + 5 where 
kmin = 4 (Section III-C). The figure reveals that the FT WSN 
improves the MTTF considerably over the NFT WSN for both 
cases (N = Nmin + 2 and N = Nmin + 5). Fig. 7 also shows 
that the MTTF for FT WSNs when c =1 is always greater 
than the MTTF for FT WSNs when c = 1. We observe that 
as p ^ 1, the MTTF for the FT WSN drops close to the 
NFT WSN, thus leading to an important observation that to 
build a more reliable FT WSN, it is crucial to have low failure 
probability sensors. We observe that the MTTF for WSNs with 
N = Nmin + 5 is always greater than the MTTF for WSNs 
with N = Nmin + 2. This observation is intuitive because 
WSNs with N = Nmin+5 have more redundant WSN clusters 

Sensor Failure Probability p 

Fig. 7. MTTF (days) for the FT and non-FT (NFT) WSNs with Nmin — 0. 

(and sensor nodes) and can survive more cluster failures before 
reaching the failed state (N = 0) as compared to WSNs with 
N = N m i n + 2. 

We observed the percentage MTTF improvement for FT 
WSNs over NFT WSNs for two cases where N = Nmin + 2 
and N = Nmin + 5. The MTTF percentage improvement for 
FT WSNs with N = Nmin + 2, c = 1 , i s88% for p = 0.1 and 
drops to 3.3% for p = 0.99. Similarly, the MTTF percentage 
improvement for FT WSNs with N = Nmin + 5, c = 1, is 
88% for p = 0.1 and drops to 3.3% for p = 0.99.Weobserve 
that the MTTF improvement for FT WSNs with c = 1 is 100% 
on average for all p values and is greater than the FT WSNs 
with c = 1 . The MTTF percentage improvement for FT WSNs 
with N = Nmin + 5 over FT WSNs with N = Nmin + 2 is 
52% on average. 

We present example reliability calculations using our 
Markov models. For an NFT sensor node reliability 
calculation, sensor failure rate Xt = ( -1 /100 ) ln(1 -
0.05) = 5.13 x 1 0 - 4 failures/day). SHARPE gives Px (t) = 
e - 5 . i 3 x i o - 4 1 and sensor node reliability Rs(t) = P1(t). 
Evaluating Rs(t) at t = 100 gives Rs(t)|t=100 = 
e

- 5 . 1 3 x 1 0 - 4 x i 0 0 = 0 . 9 4 9 9 9 . 

For an FT sensor node reliability calculation when c = 1, 
different reliability results are obtained for different k because 
the fault detection algorithm's accuracy and coverage factor c 
depends on k .For k = 5, c = 0.979, SHARPE gives P2(t) = 

- 5 . 1 3 v 1 0 - 4 1 and P1 (t) = 5.0223 x 10 - 4 te , — 4 , — 5 . 1 3 v 1 0 - 4 1 . The 
• 5.0223 x reliability Rs(t) = P2(t) + P1 (t) = e - 5 - 1 3 x 1 0 ~ 1 + 5.0223 

10 - 4 t e - 5 - 1 3 x 1 ° - 4 * and Rs(t)|t=100 = e - 5 - 1 3 x 1 ° - 4 x 1 0 0 + 
5 .0223x10 - 4 x 1 0 0 x e - 5 - 1 3 x 1 0 - 4 x 1 0 0 = 0.94 9 99+0.04 771 = 
0.99770. 

Similarly, we performed reliability calculations for an NFT 
and an FT WSN cluster and a complete WSN. Based on these 
reliability calculations, Table I shows the reliability for an 
NFT WSN and an FT WSN evaluated at t = 100 days when 
N = Nmin+2 (Nmin = 0) for clusters with nine sensor nodes 
on average (though similar calculations can be performed for 
WSN clusters containing a different number of sensor nodes 
on average). We observe similar trends as with sensor node 
reliability and WSN cluster reliability where reliability for 
both an NFT WSN and an FT WSN decreases as p increases 
(i.e., reliability Rwsn ^ 0 ^^ p ^ 1) because a WSN 
contains clusters of sensor nodes and decreased individual 



TABLE I 
RELIABILITY FOR A N N F T W S N AND A N F T W S N WHEN 

N = Nmm + 2 ( N m m = 0). 

p NFT FT (c = 1) FT (c = 1) 

0.05 0.99557 0.99883 0.99885 
0.1 0.98261 0.99474 0.99534 
0.2 0.93321 0.97583 0.98084 
0.3 0.85557 0.93775 0.95482 
0.4 0.75408 0.87466 0.91611 
0.5 0.63536 0.78202 0.86218 
0.6 0.51166 0.65121 0.78948 
0.7 0.36303 0.49093 0.69527 
0.8 0.20933 0.30328 0.55494 
0.9 0.08807 0.11792 0.39647 

0.99 4.054 x 1 0 - 3 4.952 x 1 0 - 3 0.08807 

sensor node reliability with increasing p decreases both WSN 
cluster and WSN reliability. Table I shows that an FT WSN 
with c =1 outperforms an FT WSN with c = 1 and an 
NFT WSN for all p values. For example, the percentage 
improvement in reliability for an FT WSN with c =1 over an 
NFT WSN and an FT WSN with c =1 is 5% and 0.5% for 
p = 0.2 and 350% and 236% for p = 0.9, respectively. These 
results show that the percentage improvement in reliability 
attained by an FT WSN increases as p increases because 
the fault detection algorithm's accuracy and c decreases as 
p increases. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed an FT duplex sensor node model 
based on the novel concept of determining the coverage factor 
using sensor fault detection algorithm accuracy. We developed 
a comprehensive Markov model for WSNs consisting of 
sensor node clusters to compare the MTTF for FT and NFT 
WSNs. our Markov model helps compare and evaluate the 
MTTF (and/or reliability) of WSNs, which is vital in WSN 
design given that different WSN applications require different 
reliability and MTTF. 

We observed that the fault detection algorithm's accuracy 
plays a crucial role in FT WSNs. Results indicated that our 
proposed FT sensor node duplex model can provide on average 
100% MTTF improvement with a perfect fault detection 
algorithm whereas the MTTF improvement varied from 96% 
to 1.3% due to a fault detection algorithm's typically poor 
performance at high sensor failure rates. We also observed 
that the redundancy in WSNs plays an important role in 
improving WSN MTTF. our results revealed that just three 
redundant sensor nodes in a WSN cluster resulted in an MTTF 
improvement of 103% on average. Similarly, redundancy in 
WSN clusters contributes to the MTTF improvement and 
the results indicated that three redundant WSN clusters can 
improve MTTF by 52% on average. We observed that the 
percentage improvement in reliability for an FT WSN with 
c = 1 over an NFT WSN and an FT WSN with c =1 is 
350% and 236%, respectively, for p = 0.9. 

our results motivate the development of robust distributed 
fault detection algorithms and are the focus of our future 

work. We plan to develop a WSN performability model 
to capture both the performance and availability (and/or 
reliability) simultaneously. We also plan to investigate FT in 
sensed data aggregation (fusion) in WSNs. 
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