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Abstract—Local binary pattern (LBP) is a nonparametric de-
scriptor, which efficiently summarizes the local structures of im-
ages. In recent years, it has aroused increasing interest in many
areas of image processing and computer vision and has shown its
effectiveness in a number of applications, in particular for facial im-
age analysis, including tasks as diverse as face detection, face recog-
nition, facial expression analysis, and demographic classification.
This paper presents a comprehensive survey of LBP methodology,
including several more recent variations. As a typical application of
the LBP approach, LBP-based facial image analysis is extensively
reviewed, while its successful extensions, which deal with various
tasks of facial image analysis, are also highlighted.

Index Terms—Face detection, face recognition, facial expression
analysis, local binary patterns (LBPs), local features.

I. INTRODUCTION

DURING the past few years, local binary patterns (LBPs)
[1] have aroused increasing interest in image processing

and computer vision. As a nonparametric method, LBP summa-
rizes local structures of images efficiently by comparing each
pixel with its neighboring pixels. The most important proper-
ties of LBP are its tolerance regarding monotonic illumination
changes and its computational simplicity. LBP was originally
proposed for texture analysis [2], and has proved a simple yet
powerful approach to describe local structures. It has been exten-
sively exploited in many applications, for instance, face image
analysis [3], [4], image and video retrieval [5], [6], environment
modeling [7], [8], visual inspection [9], [10], motion analy-
sis [11], [12], biomedical and aerial image analysis [13], [14],
and remote sensing [15] (see a comprehensive bibliography of
LBP methodology online [16]).

LBP-based facial image analysis has been one of the most
popular and successful applications in recent years. Facial im-
age analysis is an active research topic in computer vision, with
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a wide range of important applications, e.g., human–computer
interaction, biometric identification, surveillance and security,
and computer animation. LBP has been exploited for facial
representation in different tasks, which include face detec-
tion [4], [17]–[19], face recognition [20]–[26], facial expression
analysis [27]–[31], demographic (gender, race, age, etc.) clas-
sification [32], [33], and other related applications [34], [35].
The development of LBP methodology can be well illustrated
in facial image analysis, and most of its recent variations are
proposed in this area.

Some brief surveys on image analysis [36] or face analysis
[37]–[39], which use LBP, were given, but all these studies
discussed limited papers of the literature, and many new related
methods have appeared in more recent years. In this paper,
we present a comprehensive survey of the LBP methodology,
including its recent variations and LBP-based feature selection,
as well as the application to facial image analysis. To the best
of our knowledge, this paper is the first survey that extensively
reviews LBP methodology and its application to facial image
analysis, with more than 100 related reviewed literatures.

The remainder of this paper is organized as follows. The LBP
methodology is introduced in Section II. Section III presents the
recent variations of LBP. LBP-based feature-selection methods
are discussed in Section IV. Section V describes different facets
of its applications on facial image analysis. Finally, Section VI
concludes the paper.

II. LOCAL BINARY PATTERNS

The original LBP operator labels the pixels of an image with
decimal numbers, which are called LBPs or LBP codes that
encode the local structure around each pixel. It proceeds thus, as
illustrated in Fig. 1: Each pixel is compared with its eight neigh-
bors in a 3 × 3 neighborhood by subtracting the center pixel
value; the resulting strictly negative values are encoded with 0,
and the others with 1. For each given pixel, a binary number is
obtained by concatenating all these binary values in a clockwise
direction, which starts from the one of its top-left neighbor. The
corresponding decimal value of the generated binary number
is then used for labeling the given pixel. The derived binary
numbers are referred to be the LBPs or LBP codes.

One limitation of the basic LBP operator is that its small
3 × 3 neighborhood cannot capture dominant features with
large-scale structures. To deal with the texture at different scales,
the operator was later generalized to use neighborhoods of dif-
ferent sizes [1]. A local neighborhood is defined as a set of
sampling points evenly spaced on a circle, which is centered at
the pixel to be labeled, and the sampling points that do not fall
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Fig. 1. Example of the basic LBP operator [3].

Fig. 2. Examples of the ELBP operator [20]. The circular (8, 1), (16, 2), and
(24, 3) neighborhoods.

within the pixels are interpolated using bilinear interpolation,
thus allowing for any radius and any number of sampling points
in the neighborhood. Fig. 2 shows some examples of the ex-
tended LBP (ELBP) operator, where the notation (P, R) denotes
a neighborhood of P sampling points on a circle of radius of R.

Formally, given a pixel at (xc , yc ), the resulting LBP can be
expressed in decimal form as follows:

LBPP, R (xc, yc) =
P −1∑

P =0

s(iP − ic)2P (1)

where ic and iP are, respectively, gray-level values of the central
pixel and P surrounding pixels in the circle neighborhood with
a radius R, and function s(x) is defined as

s(x) =
{

1, if x ≥ 0
0, if x < 0.

(2)

From the aforementioned definition, the basic LBP opera-
tor is invariant to monotonic gray-scale transformations, which
preserve pixel intensity order in the local neighborhoods. The
histogram of LBP labels calculated over a region can be ex-
ploited as a texture descriptor.

The operator LBP(P,R) produces 2p different output values,
corresponding to 2p different binary patterns formed by P pixels
in the neighborhood. If the image is rotated, these surrounding
pixels in each neighborhood will move correspondingly along
the perimeter of the circle, thus resulting in a different LBP
value, except for patterns with only 1 and 0 s. In order to remove
rotation effect, a rotation-invariant LBP is proposed in [1]

LBPri
P, R = min{ROR(LBPP, R , i)|, i = 0, 1, . . . , P − 1}

(3)
where ROR(x, i) performs a circular bitwise right shift, on the
P-bit number x, i times. The LBPri

(P,R) operator quantifies occur-
rence statistics of individual rotation-invariant patterns, which
correspond to certain microfeatures in the image; hence, the pat-
terns can be considered to be a feature detector [1]. However,
in [40], it was shown that such a rotation-invariant LBP operator
does not necessarily provide discriminative information, since
the occurrence frequencies of the individual patterns that are in-

corporated in LBPri
(P,R) vary greatly and the crude quantization

of the angular spaces at 45◦ intervals.
It has been shown that certain patterns contain more informa-

tion than others [1]. It is possible to use only a subset of 2p binary
patterns to describe the texture of images. Ojala et al. named
these patterns uniform patterns, which are denoted as LBPU 2

(P,R) .
An LBP is called uniform, if it contains at most two bitwise
transitions from 0 to 1 or vice versa when the corresponding bit
string is considered circular. For instance, 00000000 (0 transi-
tions) and 01110000 (2 transitions) are both uniform, whereas
11001001 (4 transitions) and 01010011 (6 transitions) are not.
It is observed that the uniform patterns account for around 90%
of all the patterns in a (8, 1) neighborhood, and around 70% in
a (16, 2) neighborhood in texture images [1]. A similar experi-
ment was conducted on the FERET database, and it was found
that 90.6% of the patterns in a (8, 1) neighborhood, and 85.2% in
a (8, 2) neighborhood are uniform [20]. More recently, Shan and
Gritti [41] verified the validity of uniform patterns to represent
faces from the viewpoint of machine learning. Specifically, they
applied AdaBoost to select the discriminative patterns for fa-
cial expression recognition, and their experiments demonstrated
that, by using LBP(8,2) operator, 91.1% of these selected pat-
terns are uniform. Accumulating the nonuniform patterns into
a single bin yields an LBP operator with less than 2p labels.
For example, the number of labels with the neighborhood of 8
pixels is 256 for the standard LBP, but only 59 for LBPU 2 .

It should be noted that, when the original LBP operator was
proposed, Zabih and Woodfill introduced a census transform
(CT) method [42], which is very similar to LBP. In addition,
CT maps the local neighborhood, which surrounds a pixel onto
a binary string, and the only difference between LBP and CT
is the opposite order of bit string. Later, CT and its variations
were exploited for facial image analysis [43]–[45].

The C/C++ and MATLAB implementations of the LBP op-
erator can be found online [46].

III. RECENT VARIATIONS OF LOCAL BINARY PATTERN

LBP methodology has been developed recently with large
number of variations for improved performance in different ap-
plications. These variations focus on different aspects of the
original LBP operator: 1) improvement of its discriminative ca-
pability; 2) enhancement of its robustness; 3) selection of its
neighborhood; 4) extension to 3-D data; and 5) combination
with other approaches. In this section, we review recent varia-
tions of LBP (see Table I for the overview).

A. Enhancing the Discriminative Capability

The LBP operator defines a certain number of patterns to
describe the local structures. To enhance their discriminative
capability, more patterns or information could be encoded. Jin
et al. [17] modified the LBP operator to describe more local
structure information under certain circumstances. Specifically,
they proposed an improved LBP (ILBP), which compares all
the pixels (including the central pixel) with the mean intensity
of all the pixels in the patch (as shown in Fig. 3). For instance,
the LBP(8,1) operator produces only 256 (28) patterns in a 3 ×
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TABLE I
LIST OF RECENT LBP VARIATIONS

Fig. 3. Example of the ILBP operator [37].

3 neighborhood, while ILBP has 511 patterns (29 − 1, as all
zeros and all ones are the same). Later, ILBP was extended to
use the neighborhoods of any size instead of the original 3 ×
3 patch [47]. Almost at the same time, a similar scheme was
used to extend CT to modified CT [43], namely, modified LBP
(MLBP) in [48]. A mean LBP [49] is presented, which is similar
to ILBP, but without considering the central pixels.

Yang and Wang [50] proposed Hamming LBP to improve
the discriminative ability of the original LBP. They reclassified
nonuniform patterns based on Hamming distance, instead of col-
lecting them into a single bin as LBPu2 does. In the Hamming
LBP, these nonuniform patterns are incorporated into existing
uniform patterns by minimizing the Hamming distance between
them; for example, the nonuniform pattern (10001110)2 is con-
verted into the uniform one (10001111)2 , since their Hamming
distance is one. When several uniform patterns have the same
Hamming distance with a nonuniform pattern, the one with the
minimum Euclidian distance will be selected.

The ELBP [51], [52] is another approach to improve the dis-
criminative capability of LBP. The ELBP operator not only per-
forms binary comparison between the central pixel and its neigh-
bors, but also encodes their exact gray-value differences (GDs)
using some additional binary units. Specifically, the ELBP fea-
ture consists of several LBP codes at multiple layers, which
encode the GD between the central pixel and its neighboring
pixels. As shown in Fig. 4, the first layer of ELBP is actually the
original LBP code that encodes the sign of GD. The following
layers of ELBP then encode the absolute value of GD. Basically,
each absolute GD value is first encoded in its binary represen-
tation, and then all the binary values at a given layer result in
an additional LBP. For example, in Fig. 4, the first layer is the
original LBP code that encodes the sign of GD, thus yielding a
decimal number of 211 from its binary form (11010011)2 . The
absolute values of GD, i.e., 1, 5, 3, 2, 1, 2, 3, and 0, are first
encoded in their binary numbers: (001)2 , (101)2 , (011)2 , (010)2 ,
. . ., etc. Using a same weight scheme of LBP on all the binary
bits, its ELBP code of the corresponding layer can be generated,
e.g., L2 is composed of (01000000)2 , and its decimal value is
64; L3 is composed of (00110110)2 , and its decimal value is
54; finally, L4 is composed of (11101010)2 , and its decimal
value is 234. As a result, when describing similar local textures,
although the first layer LBP is not discriminative enough, the
information encoded in the other additional layers can be uti-
lized to distinguish them. Its downside is that ELBP increases
feature dimensionality to a large extent.
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Fig. 4. Example of the ELBP operator.

Fig. 5. Example of the LTP operator [22].

More recently, Guo et al. proposed a complete LBP (CLBP)
[53], which, in our opinion, is quite similar with ELBP. In addi-
tion, CLBP includes both the sign and the GDs between a given
central pixel and its neighbors in order to improve the discrim-
inative power of the original LBP operator. Unlike the binary
bit coding strategy used by ELBP, CLBP compares the absolute
value of GD with the given central pixel again to generate an
LBP-liked code.

B. Improving the Robustness

LBP is sensitive to noise, since the operator thresholds exactly
at the value of central pixel. To address this problem, Tan and
Triggs [22] extended the original LBP to a version with 3-value
codes, which is called local ternary patterns (LTPs). In LTP,
indicator s(x) in (1) is replaced by

s (in , ic , t) =

⎧
⎨

⎩

1, in ≥ ic + t
0, |in − ic | < t
−1, in ≤ ic − t

(4)

where t is a user-specified threshold. The LTP codes are more
resistant to noise, but no longer strictly invariant to gray-level
transformations. A coding scheme is used to split each ternary
pattern into two parts: the positive one and the negative one, as
illustrated in Fig. 5. One problem of LTP is to set threshold t,
which is not simple.

Fig. 6. Two examples of the elongated LBP operator [23].

The soft LBP (SLBP) was introduced in [54], which employs
two fuzzy membership functions instead of (2)

s1,d(x) =

⎧
⎨

⎩

0, x < −d

0.5 + 0.5
x

d
, −d ≤ x ≤ d

1, x > d

(5)

s0,d(x) = 1 − s1,d(x). (6)

Parameter d controls the amount of fuzzification, which is
performed by the fuzzy function. When the local neighborhood
consists of P sampling points, the histogram with a uniform
pattern operator has bins numbered 0, 1, . . ., 2p − 1. The con-
tribution of a single pixel (xc , yc ) to bin h of the histogram
is

SLBP(xc, yc , h) =
P −1∏

p=0

[bp(h) · s1,d(ip − ic)

+ (1 − bp(h)) · s0,d(ip − ic)] (7)

where bp (h) ∈ {0,1} denotes the numerical value of the pth bit
of binary representation of h.

With SLBP, one pixel contributes to more than one bin, but the
sum of the contributions of the pixel to all bins is always 1. SLBP
enhances the robustness in the sense that a small change in the
input image causes only a small change in output. However, it
loses the invariance to monotonic variations, as well as increases
the computation complexity. As with LTP, a proper value of d
should be set.

C. Choosing the Neighborhood

The choice of an appropriate neighborhood for LBP-based
techniques has a significant impact on the final performance. It
involves the number of sampling points, the distribution of the
sampling points, the shape of the neighborhood, and the size of
the neighborhood.

Neighboring pixels in the original LBP are defined on a circle.
Liao and Chung [23] argued that the main reason to define the
neighborhood in such an isotropic manner is to obtain rotation
invariance for texture description. However, this is not suitable
for all applications; on the contrary, the anisotropic information
could also be an important feature. As a result, they proposed
elongated LBP with neighboring pixels lying on an ellipse. Fig. 6
shows two examples of the elongated LBP, where A and B denote
the long axis and short axis, respectively, and m is the number
of neighboring pixels. Followed by the original LBP, bilinear
interpolation technique is adopted for neighboring pixels that
do not fall exactly at the pixels. The elongated LBP operator
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Fig. 7. Example of the MB-LBP operator [18].

could be rotated around the central pixel, with a specific angle to
characterize elongated local structures in different orientations,
to achieve multiorientation analysis.

In order to capture not only the microstructures but also the
macrostructures, Li et al. [18], [55] proposed a multiblock LBP
(MB-LBP), which, instead of comparing pixels, compares aver-
age intensities of neighboring subregions. The original LBP can
be regarded as a special case of the MB-LBP. Fig. 7 shows an ex-
ample of MB-LBP, where each subregion consists of six pixels.
The subregion can either be a rectangle or a square. The average
intensities over the blocks can be computed efficiently by using
summed-area table [56] or integral image. A similar scheme is
introduced in [57]: Three-patch LBP (TP-LBP) and four-patch
LBP (FP-LBP) are proposed to compare distances between the
whole blocks (patches) concerned, instead of single pixel [1] or
average intensity in [55], and any distance function can be used
(e.g., L2-norm of their gray-level differences).

D. Extending to 3-D Local Binary Pattern

Several researchers have been trying to extend the LBP from
2-D plane to 3-D volume [30], [58]–[60]; however, it is not as
straightforward as it appears at first glance. There are two diffi-
culties: First, equidistant sampling on a sphere is a difficult job,
and second, it is also difficult to set an order to those sampling
points, which is important to achieve rotation invariance.

To endow the LBP with the ability to capture dynamic tex-
ture information, Zhao and Pietikäinen [30], [60] extended the
LBP neighborhood from 2-D plane to 3-D space. The operator
is named as volume LBP (VLBP or 3-D-LBP). VLBP combines
motion and appearance information, and can thus be used to
analyze image sequences or videos. It should be noted that this
approach makes use of dynamic texture analysis of 2-D time
series instead of full 3-D volumetric data. The VLBP features
are not only insensitive to translation and rotation (toward rota-
tions around the z axis), but also robust to monotonic gray-scale
changes. Compared with LBP(P,R) , VLBP(L,P,R) takes time
domain into account, and the parameter L denotes the length of
the time interval. From a small local neighborhood in volume,
comparing neighboring pixels with the central pixel, a number
of binary units are obtained, and the weights for these units
are given as a spiral line (see Fig. 8). In order to make VLBP
computationally simple and easy to extend, only co-occurrences
on three separate planes are considered. The textures are mod-
eled with the concatenated LBP histograms extracted from three
orthogonal planes X–Y, X–T, and Y–T, and, thus, this simpler
version of VLBP is named LBP-TOP. The traditional circular

Fig. 8. Procedure of VLBP1 ,4 ,1 [60].

sampling is replaced by an ellipse so that different radius pa-
rameters can be set in the space and time domain.

Fehr [58] exploited the spherical harmonic transform to pro-
duce an orthogonal basis on the two-sphere, and then, compute
the LBP features in the frequency domain. This method over-
comes both the aforementioned problems. Paulhac et al. pro-
posed another solution to apply LBP to 3-D [59]. They used a
number of circles to represent the sphere, adding the parameter
S, thus the operator denotes LBP(S,P R) (see Fig. 9), and they also
defined the uniform rule as in 2-D. This method causes the prob-
lem that different textures could have the same LBP description.

E. Combining With Other Features

As a method to describe local features, LBP can be combined
with other approaches. For example, a set of approaches was
proposed to combine Gabor wavelets [61]–[63] and LBP fea-
tures by using different methods. It was concluded in [64]–[66]
that Gabor-wavelet- and LBP-based features are mutually com-
plementary because LBP captures the local appearance de-
tail, whereas Gabor wavelets extract shape information over
a broader range of scales. A simple fusion strategy is to first
extract Gabor and LBP features in the parallel way, and then,
fuse two kinds of features on feature level, matching score level,
or decision level [65], [66].

Another way of combination is the serial strategy, which con-
sists in first applying Gabor filters and, then, LBP to the raw
image [24], [67]. The multiple Gabor feature maps (GFMs)
are computed by convolving input images with multiscale and
multiorientation Gabor filters. Each GFM is divided into small
nonoverlapped regions, from which LBP histograms are ex-
tracted and, finally, concatenated into a single-feature histogram.
Multiresolution histograms of local variation patterns (MH-
LVPs) [24] as well as local Gabor binary pattern histogram
(LGBPH) [67]–[69] have been proposed on the basis of such
a procedure. Recently, He et al. [70] proposed a similar se-
rial method by using both wavelets and LBP, which first uses
wavelets to decompose raw images into four frequency images,
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Fig. 9. Representation of a 3-D LBP (S = 9, P = 16, and R = 2) [59].

Fig. 10. LBP and CS-LBP features for a neighborhood of eight pixels [73].

i.e., low frequency, horizontal high frequency, vertical high
frequency, and diagonal high frequency, as the inputs of the
original LBP.

Being motivated by LBP-TOP and LGBPH, Lei et al. pro-
posed to construct a third-order Gabor-image-based volume, and
then, apply the original LBP to three orthogonal planes to extract
the discriminative information not only in the spatial domain,
but also in the Gabor-frequency and orientation domains [71].
To reduce the computation complexity, a GV-LBP operator is
introduced to describe the variations in spatial-, frequency-, and
orientation domains simultaneously by defining the orientation
and scale neighboring points in different Gabor images.

A center-symmetric LBP (CS-LBP) [72], [73], was proposed
by only comparing pairs of neighboring pixels, which are in
the same diameter of the circle. This variation combines the
LBP operator with the scale-invariant feature transform (SIFT)
[74] definition, and thus, produces fewer binary units than the
original LBP does. The difference between CS-LBP and LBP
with 8 neighboring pixels is given in Fig. 10. Later, Fu and
Wei [75] introduced centralized binary patterns (CBPs), making
a small modification to this scheme. CBP compares the central
pixel with the mean value of all the pixels in the neighborhood to
produce an additional binary unit which is assigned the largest
weight to emphasize the effect of the new binary bit. More
recently, Huang et al. [76] proposed to combine the LBP and
SIFT approach in a serial way: First adopted the original LBP
operator on the input image using different scales to extract
several MS-LBP images, and then, SIFT was applied to these
resulting MS-LBP images to perform local matching.

Ahonen et al. proposed an approach, which is named LBP
histogram Fourier features (LBP-HF) [77], to combine the LBP
and the discrete Fourier transform (DFT). Unlike the existing

local rotation-invariant LBP features, the LBP-HF descriptor is
produced by computing an LBP histogram over the whole re-
gion, and then, constructing rotationally invariant features from
the histogram with DFT. That means, rotation invariance is ob-
tained globally and features are thus invariant to rotations of the
whole input signal, but they still retain information about the
relative distribution of different orientations of a uniform LBP.

IV. LOCAL-BINARY-PATTERN FEATURE SELECTION

In most existing work, the input image is divided into small
regions, from which LBP histograms are extracted, and the lo-
cal histograms are further concatenated into a spatially enhanced
feature vector of the dimensionality of O (103). Moreover, some
recent variations even increase the feature vector length dramati-
cally, such as ELBP, VLBP, and Gabor-wavelets-based LBP. It is
believed that the derived LBP-based feature vector provides an
overcomplete representation with redundant information [78],
which could be reduced to be more compact and discriminative.
Furthermore, when building real-time systems, it is also desired
to have LBP-based representation with reduced feature length.
For all the reasons, the problem of LBP feature selection has
recently been addressed in many literatures. We classify these
techniques into two categories: The first one is to reduce the fea-
ture length based on some rules (like uniform patterns), while
the other one exploits feature-selection techniques to choose
the discriminative patterns. Both streams have their own merits
and drawbacks: the first one is simple, but has limited feature-
selection ability; on the contrary, the second one has a better
feature-selection capacity, but usually requires offline training
that could be computationally expensive.

A. Rule-Based Strategy

Uniform pattern is an effective rule to select LBP features, and
it has been widely adopted in this paper. In addition, there are
other rules, which could be used. For instance, Lahdenoja et al.
[79] proposed a symmetry-level scheme for uniform patterns to
further reduce the length of LBP feature vectors. The symmetry
level Lsym of each pattern is defined as the minimum of the total
number of 1s and 0s in that pattern. For example, Lsym of both
patterns, i.e., (00111111)2 and (00011000)2 , is 2. The symmetry
level is rotation invariant according to the definition. The most
symmetric pattern contains the same number of 1s and 0s, which
indicates a symmetric edge, while the patterns with the lowest
symmetry level are the ones consisting of only 1s or 0s. It is
claimed that the patterns with high symmetry level occur more
frequently in the images with more discriminative power [79].
This conclusion is supported by experiments: The comparative
performance was obtained by using only the patterns of high
symmetry level, but the length of feature vectors was reduced
by a quarter.

B. Boosting Local-Binary-Pattern Features

Boosting learning [80] provides an effective way for feature
selection. In [78], by shifting and scaling a subwindow over face
image, more subregions are obtained to extract local LBP his-
tograms; the distance between the corresponding histograms
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of two images is utilized as the discriminative feature, and
AdaBoost is used to learn a few of the most efficient features.
Compared with [3], the approach achieves slightly better per-
formance, but with fewer histograms computed from the local
regions. A similar approach was also adopted in [27]. In these
studies, the nth bin of a local histogram is utilized as a whole
for region description, and feature selection is performed at
region level. AdaBoost can also be exploited to learn the dis-
criminative bins of an LBP histogram [41], since all the bins
are not necessary to supply useful information. Their exper-
iments illustrate that the selected LBP bins provide a much
more compact representation with a highly reduced length of
feature vector, while producing better performance. AdaBoost
has been widely adopted for LBP feature selection in various
tasks [18], [25], [27], [32]–[34], [47], [51], [55], [81]–[88]. Yao
et al. [69] exploited RankBoost with domain-partitioning weak
hypotheses to select the most discriminative LGBPH features.

C. Local-Binary-Pattern Subspace Learning

Subspace learning (or dimensionality reduction) [89] maps
dataset from a high-dimensional space to a low-dimensional
space, and thus, can be applied to LBP-based features to derive
a low-dimensional compact representation. For example, Chan
et al. introduced linear discriminant analysis (LDA) to project
high-dimensional multiscale LBP features into a discriminant
space [21], and the same scheme was later exploited with the
multispectral LBP features calculated from color images [90].
To deal with the small sample size problem of LDA, Shan et al.
[68] proposed an ensemble of piecewise LDA, which partitions
the entire LGBP feature vector into segments and then applies
LDA to each segment separately. Their approach was verified
to be more effective than applying LDA to high-dimensional
holistic feature vector. By combining Gabor wavelets and LBP
features for face recognition, Tan and Triggs [65] first projected
original feature vectors into the principal component analysis
(PCA) space, and then, utilized kernel discriminative common
vectors (KDCVs) to extract the discriminative features.

Dual-space LDA was also adopted to select discriminative
LBP features, and proved to be effective [91]. Zhao et al. [92]
employed Laplacian PCA (LPCA) for LBP feature selection,
and their experiments showed that LPCA outperforms PCA and
KPCA on selecting LBP-based feature. Wolf and Guttmann [93]
adopted max-plus PCA to select LBP feature, and achieved a
better performance than traditional PCA. Shan et al. [94] ap-
plied locality preserving projections for manifold learning. Gao
and Wang [95] proposed how to select LBP feature by applying
boosting learning in random subspaces. Specifically, multi-
ple low-dimensional subspaces are randomly generated from
original high-dimensional feature space as the input to boosting.

D. Other Methods

Shan et al. [96] adopted the conditional mutual information
(CMI) maximization criterion for LBP feature selection. Their
experiments show that selected LBP features perform very well.
Raja and Gong [97] proposed the multiscale selected local bi-
nary feature predicates as an improvement to traditional LBP.

Fig. 11. LBP-based face description [27].

A feature-selection method, which is named binary histogram
intersection minimization (BHIM), is introduced to generate the
predicates, which comprise individual point features from mul-
tiple scales. The experiments illustrate that BHIM establishes
less redundant LBP feature sets than CMI and AdaBoost do, and
it produced promising performance [97]. Nanni and Lumini [98]
adopted sequential forward floating selection to select the LBP
feature extracted from both 2-D and 3-D images.

V. LOCAL-BINARY-PATTERN-BASED FACIAL IMAGE ANALYSIS

Machine-based face recognition involves two crucial aspects,
i.e., facial representation [3], [63] [99]–[103] and classifier de-
sign [104]–[106]. Facial representation consists in deriving a set
of relevant features from original images to describe faces, in
order to facilitate effective machine-based recognition. “Good”
facial features are desired to have the following properties [4]:
First, they can tolerate within-class variations, while discrimi-
nate different classes well; second, they can be easily extracted
from the raw images to allow fast processing; finally, they lie
in a space with low dimensionality to avoid computationally
expensive classifiers. Since it was introduced for face repre-
sentation [3], LBP has proved to be an efficient descriptor for
facial image analysis, as it fulfills the aforementioned criteria
quite well, and recent years have witnessed increasing interest
in LBP features for facial representation.

In this section, we first present the LBP-based facial descrip-
tion, and then review existing studies on different tasks, includ-
ing face detection, face recognition, facial expression analysis,
demographic classification, and other applications.

A. Local-Binary-Pattern-Based Face Description

A face image can be considered as a composition of the
micropatterns described by LBP. One can build an LBP his-
togram computed over the whole-face image. However, such a
representation only encodes the occurrences of micropatterns
without any indication about their locations. In addition, to con-
sider the shape information of faces, Ahonen et al. [3] proposed
to divide face images into m local regions, from which local
LBP histograms can be extracted, and then to concatenate them
into a single, spatially enhanced feature histogram (as shown in
Fig. 11). The resulting histogram encodes both the local texture
and global shape of face images.

Most of the existing studies adopt the aforementioned scheme
to extract LBP features for facial representation. However,
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Fig. 12. Top four selected subregions [78].

Fig. 13. Evolvement from the LBP to multi-radius LBP [64].

dividing face images into a grid of subregions is somewhat
arbitrary, and the subregions are not necessarily well aligned
with facial features. Moreover, the resulting facial description
depends on the chosen size and the positions of these subre-
gions. To address this issue, in [78] and [96], many more sub-
regions are obtained by shifting and scaling a subwindow over
the face images, and boost learning [80] is adopted to select the
most discriminative subregions in terms of LBP histograms (as
shown in Fig. 12). In their experiments, the subregions of var-
ious positions and different sizes were selected. More recently,
facial representation based on LBP histograms extracted from
overlapped subregions was evaluated in [31]. Furthermore, the
subregions do not need to be rectangular. For example, they can
also be circular [20] or triangular [107] regions.

To achieve a more comprehensive description of local facial
patterns, the LBP operators with different numbers of sampling
points and various neighborhood radii can be combined. For
example, in [21], [64], and [108], the multiscale LBP or mul-
tiradius LBP were introduced for facial description, to reduce
sensitivity of LBP-based face representations to the scale of
face images (see Fig. 13). More recently, for facial expression
recognition, Shan and Gritti [41] first extracted LBP features
of different scales, and then, ran AdaBoost to learn the most
discriminative features. It proved that a boosted classifier of
multiscale LBP consistently outperforms that of single-scale
LBP, and the selected LBP bins are distributed at all scales on
the Cohn–Kanade database.

B. Face Detection

The purpose of face detection is to determine the locations
and sizes of human faces in digital images. Hadid et al. [4] first
used LBP for face detection. To describe low-resolution faces,
a four-neighborhood LBP operator LBP(4,1) was applied to
overlapping small regions. The support vector machine (SVM)
classifier was adopted to discriminate faces from nonfaces. To
compare with the state-of-the-art methods, they performed their
experiments on the MIT-CMU dataset, and the proposed method

detected 221 faces without any false positives. Later, they [109]
proposed a hybrid method to address face detection under un-
constrained environments. Their method first searched for the
potential skin regions in an input image to avoid scanning the
entire image, as was done in [110]. Then, a coarse-to-fine strat-
egy is employed to determine whether the scanned regions are
faces or not: In the coarse stage, LBP feature vector extracted
from the whole region is utilized as the input to a polynomial
SVM; patterns that are not rejected by the first SVM classifier
are further analyzed by the second finer one whose inputs are ex-
tracted from overlapped blocks inside the region. The detection
rate reported is 93.4% with 13 false positives.

Being motivated by the fact that LBP is invariant to monotonic
transformations, Zhang and Zhao [19] proposed to compute the
spatial histograms on color measurements for face detection in
color images. After extracting five measurements, Y, R, G, B,
and θ, in the RGB and YUV color space from the original im-
ages, LBP was utilized to transform the obtained measures to
histograms, which are computed as facial description with 23
different spatial templates to preserve the shape information of
faces. A hierarchical classifier combining histogram matching
and SVM was used to discriminate between faces and non-
faces. The experiments were conducted on 251 color images,
including 356 frontal faces with variations in color, position,
size, and expression, and precision of 91.7% was reported. Jin
et al. [17] exploited ILBP features for facial representation,
and modeled faces and nonfaces using the multivariable Gaus-
sian distribution. Given the ILBP-based features of an input
image, the likelihood of the face class and nonface class is cal-
culated separately; the Bayesian decision rule is then applied
to decide whether the image is a face or not. The Yale B and
MIT-CMU databases were used for evaluation, and the detec-
tion rate was more than 90% with a false-positive rate of 2.99
× 10−7 . They later extracted ILBP-based features from larger
neighborhoods [47], and trained a cascade AdaBoost detector,
which achieved detection result of 93.0% on the MIT-CMU
database, and 94.6% on the Yale B database. Zhang et al. [18]
exploited MB-LBP for face detection. Performing experiment
on a dataset containing 13 000 faces and 50 000 nonfaces with
a false-alarm rate set to 0.001, the MB-LBP-based approach
achieved superior accuracy, which was 15% higher than Haar-
like features and 8% higher than original LBP features. The
experiments on the MIT-CMU database also showed that the
approach displayed a comparable performance with that in [80]
but with fewer features.

C. Face Recognition

Face recognition aims to identify or verify a person from a
digital image or a video sequence. Ahonen et al. [3] introduced
LBP in face recognition with nearest neighbor (NN) classi-
fier and chi-square distance as the dissimilarity measure. The
experimental results showed that their approach outperforms
the PCA, the elastic bunch graph matching (EBGM), and the
Bayesian intra-/extrapersonal classifier on all four probe sets of
the FERET database. They later investigated whether these good
results are due to the use of local regions or the discriminative
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capacity of LBP methodology [111]. Based on the comparisons
with three other texture descriptors extracting features from the
same local patches, the strength of LBP to represent faces was
clearly confirmed. In [4], face recognition experiments were also
carried out on the MoBo database, which is quite challenging,
since the images are in low resolution. As mentioned earlier,
AdaBoost later was applied to select a few of the most effective
LBP-based features for face recognition [78]. Compared with
the approach in [3], the boosting LBP-based method achieves a
slightly better recognition rate, while using fewer LBP features.

Zhang et al. [24] introduced MHLVP for face recognition
based on histogram intersection. Their experiments on FERET
database showed that their algorithm provides better accuracy
than some milestone approaches, which contains the best ones in
FERET’97. In particular, they achieved 95.9% accuracy on the
fc set with illumination changes. They employed LGBPHS [67],
which is similar to MHLVP but with weighted rules, for the same
task. In addition to the FERET dataset, they also ran experiments
on the AR database. The results on both databases were very
promising. Furthermore, they [68] exploited LGBP with an en-
semble of piecewise LDA, which not only reduces the feature
dimension, but also improves the performance on the FERET
database. Yao et al. [69] adopted the domain-partitioning to se-
lect LGBPH features for face recognition. The subsets fb and
Dup I from the FERET database were used to evaluate the
approach, and comparable results were achieved with only 50
selected features. Zhang et al. [112] argued that Gabor phases
are also useful for face recognition. By encoding Gabor phases
through LBP and forming local feature histograms, impressive
recognition rates were obtained on FERET database (99% for
fb, 96% for fc, 78% for Dup I, and 77% for Dup II).

Zhao et al. [26] applied kernel LDA with the LBP features
for face recognition, where their kernel function was designed
using the chi-square distance and radial basis function. Their
method has been proved effective on FRGC Exp2.0.1, which
achieves a verification rate of 97.4% with false acceptance rate
(FAR) at 0.001, and 99.2% with FAR at 0.01. Rodriguez and
Marcel [113] proposed an LBP-based generative method for face
authentication. Specifically, LBP histogram is interpreted as a
probability distribution, and a generic face model is considered
as a collection of LBP histograms. A client-specific model is
then obtained by maximum a posteriori (MAP) from a generic
face model. The outcomes on XM2VTS and BANCA, reveals
that their approach outperforms the approaches in [3] and [78].

Li et al. [25] designed a framework to fuse 2-D and 3-D face
recognition based on LBP features at both feature and deci-
sion levels. AdaBoost was used for LBP feature selection. The
experiments on a database containing 252 subjects illustrate
the advantages of two-level fusion over decision-level fusion.
To our knowledge, this is the first study to apply LBP to 3-D
domain. Later, Huang et al. [52] extended LBP to 3-D-LBP,
which is actually similar to ELBP, as in [51], for 3-D face
recognition based on range images; their approach achieved
the promising result of 9.4% Energy efficiency ratio (EER) on
FRGC v2.0 Exp3. ROC I. Nanni and Lumini [98] also uti-
lized LBP to extract both 2-D and 3-D facial features; their
experiments were conducted on a subset of 198 persons from

the Notre-Dame database collection D; the reported EER was
3.5%.

Li et al. [114], [115] later applied LBP to near-IR (NIR) facial
images to obtain robust facial descriptions under illumination
variations. The method achieved a verification rate of 90% at
FAR = 0.001, and 95% at FAR = 0.01 on a database with 870
subjects. The same method was utilized with enhanced NIR
images for face verification outdoor, especially in sunlight [83].
Pan et al. [86] proposed to improve the robustness of this study
to variations of pose. NIR face images were decomposed into
several parts in accordance with key facial components, and LBP
features extracted from these parts were selected by AdaBoost;
the outputs of part classifiers were then fused to give the final
score. The verification rate of their approach is 96.03% with FAR
= 0.001. Huang et al. [51] adopted AdaBoost to learn ELBP
features for NIR face recognition, and obtained a recognition
rate of 95.74% on a database with 60 individuals.

Yan et al. examined multiradius LBP for face recognition
[64]. Their experiments on Purdue (90 subjects) and CMU-PIE
(68 subjects) datasets showed that LBP and Gabor features are
mutually complementary and a combination of similarity scores
can bring performance improvement. Chan et al. [21] employed
the multiscale LBP with LDA for face recognition. The reported
performance on the FERET and XM2VTS databases was better
than the state-of-the-art approaches. In addition, they projected
multispectral LBP features extracted from local regions into
an LDA subspace as the discriminative regional description.
They proved the effectiveness of their method on the FRGC and
XM2VTS databases. Hadid et al. [82], [85] introduced VLBP
to extract local facial dynamics for spatiotemporal face recog-
nition from video sequences. AdaBoost was applied to learn the
specific facial dynamics of each subject from the LBP-based fea-
tures, while ignoring intrapersonal temporal information, such
as facial expressions. Their approach achieved superior per-
formances on various databases: MoBo (97.9%), Honda/UCSD
(96.0%), and CRIM (98.5%). Lei et al. [71] used GV-LBP-TOP-
and E-GV-LBP-based features for face recognition, and both
methods achieved encouraging results on FERET and FRGC2.0
databases. Yang and Wang [50] introduced Hamming LBP for
face recognition on the FRGC dataset. The experimental results
reveal that the Hamming LBP outperforms the original LBP,
especially when variations of illumination and facial expression
exist. Liao and Chung [23] exploited elongated LBP to capture
the anisotropic structures of faces. Average maximum distance
gradient magnitude was proposed to embed the information on
gray-level difference between the reference and the neighboring
pixel in each elongated LBP pattern. With a subset of 70 per-
sons randomly selected from the FERET database, their method
obtained 93.16% accuracy, and 98.50% on the ORL database.

Tan and Triggs [22] proposed a method for face recognition
under illumination variations, which includes preprocessing to
reduce sensitivity to illumination changes, and LTP to solve the
problem caused by LBP’s sensitivity to random and quantiza-
tion noise. A distance transform-based similarity metric was
used for decision. The method showed promising performance
on three datasets with illumination variations: FRGC Exp 1.0.4
(86.3%), Yale-B (100%), and CMU PIE (100%). In addition,
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TABLE II
PERFORMANCE COMPARISON OF LBP-BASED FACE RECOGNITION ON THE FERET DATABASE

they fused Gabor and LBP features to construct heterogeneous
features for face recognition in [65]. With the features extracted
by KDCV, they achieved satisfying results on the FRGC 1.0.4,
FRGC 2.0.4, and FERET databases. Park and Kim [116] pre-
sented an adaptive smoothing approach for face image normal-
ization under changing lighting. The illumination is estimated
by iteratively convolving the input image with a 3 × 3 av-
eraging kernel weighted by a simple measure of illumination
discontinuity at each pixel. In particular, the kernel weights
are encoded into an LBP to achieve fast and memory-efficient
processing. Six hundred thirty-three frontal face images were
selected from the Yale B database, and average recognition
accuracy was 99.74% with 0.038 s time consumed for each
image.

Table II summarizes the performance of different approaches
on the FERET database.

D. Facial Expression Analysis

Machine-based facial expression recognition aims to recog-
nize facial affect states automatically, and may depend on both
audio and visual clues [117]. In this paper, we focus our at-
tention on studies purely based on visual information, which
use facial motion or facial features [118], [119]. Most of these
studies only consider the prototypical emotional states, which
include seven basic universal categories, namely, neutral, anger,
disgust, fear, happiness, sadness, and surprise.

Feng et al. [28], [120] exploited a coarse-to-fine classification
scheme with LBP for facial expression recognition by making
use of images. More precisely, at the coarse stage, a seven-class
problem was first reduced to a two-class one, while at fine stage,
a k-NN classifier performed the final decision. Their approach

produced 77% average recognition accuracy on JAFFE dataset.
In [121]–[123], with the same facial description, a linear pro-
gramming technique was applied for expression classification.
A seven-class problem was decomposed into 21 binary classifi-
cations by using the one-against-one scheme. With this method,
they obtained over 90% accuracy both on the JAFFE database
and some real videos.

Shan et al. [124] also investigated LBP for facial expression
recognition. The template matching with weighted chi-square
statistics and SVM were adopted to classify the basic prototyp-
ical facial expressions, and the best performance obtained on
the Cohn–Kanade Database reached 88.4% by using SVM. In
many applications, which involve facial expression recognition,
the input face images are with low resolution. In [124] and [125],
they further studied this topic. They not only performed eval-
uation on face images with different resolutions, but also ran
experiments on real-world low-resolution video sequences. It
was observed that LBP features perform stably and robustly
over a useful range of face images with low resolutions. Shan
et al. [96] introduced CMI maximization criterion for LBP fea-
ture selection, and the selected features improved recognition
accuracy compared with that using AdaBoost. Later, Shan et
al. [94] also studied facial expression manifold learning by em-
bedding image sequences in a high-dimensional LBP space to
a low-dimensional manifold. Their experiments on the Cohn–
Kanade database illustrated that meaningful projections could
be obtained. Shan and Gritti [41] used AdaBoost to learn a set
of discriminative bins of an LBP histogram for facial expression
recognition. Their experiments indicated that the selected bins
provide a much more compact facial description. In addition,
it was evidenced that it is necessary to consider the multiscale
LBP for facial description. By applying SVM to the selected
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multiscale LBP bins, they obtained recognition rate of 93.1%
on the Cohn–Kanade database, comparable with the best results
so far reported on this database.

He et al. [70] used LBP on four kinds of frequency images de-
composed by Gabor wavelets for facial expression recognition.
Their approach provided better performance than LBP did on
the JAFFE dataset. To consider multiple cues, Liao et al. [29] ex-
tracted LBPri

(P,R) features in both intensity and gradient maps,
and then, computed the Tsallis entropy of the Gabor filter re-
sponses as the first feature set and performed null-space LDA for
the second feature set. With the SVM classifier, they achieved
94.59% accuracy for images of 64 × 64 pixels, and 84.62% for
16 × 16 pixels on the JAFFE database. With an active appear-
ance model, Feng et al. [126] extracted the local texture feature
by applying LBP to facial feature points; the direction between
each pair of feature points was also considered as shape infor-
mation. In addition, they used LBP with the entire image to get
global texture information. Combining these three types of fea-
ture, an NN-based classifier with weighted chi-square statistic
was introduced for classification. Subject-independent recogni-
tion rate of 72% was reported on the JAFFE dataset. Cao et
al. [127] combined LBP with embedded hidden Markov model
to recognize facial expressions by using an active shape model
(ASM), and achieved 65% accuracy on the JAFFE dataset.

Zhao and Pietikäinen [30], [60] employed VLBP and LBP-
TOP for facial expression recognition in video sequences. A
recognition rate of 96.26% was achieved on the Cohn–Kanade
database; the evaluation over a range of image resolutions and
frame rates demonstrated that both approaches outperform the
state-of-the-art methods. In addition, they compute the LBP-
TOP at multiple resolutions to describe dynamic events [87].
AdaBoost technique was used to learn the principal appear-
ance and motion from the spatiotemporal descriptors. Fu and
Wei [75] utilized the CBP instead of LBP for facial expres-
sion recognition, and recognition rates of 94.76% and 94.86%
were achieved on the JAFFE and Cohn–Kanade databases, re-
spectively. The capacity of LBP to describe faces was further
demonstrated in [31], where Gritti et al. compared different lo-
cal features: LBP, LTP, histogram of oriented gradients [128],
and Gabor wavelets, with various parameter settings for facial
expression recognition. On the basis of their experiments, LBP
with an overlapping strategy achieved the best result, 92.9%, on
the Cohn–Kanade database. Furthermore, it was indicated that
the overlapping LBP is the most robust to deal with registration
errors.

E. Demographic Classification and Other Applications

Demographic classification is used to classify age, gender,
and ethnicity, based on face images. Sun et al. [32] adopted
the boosting-LBP-based approach [78] for gender recognition,
and obtained the performance of 95.75% on the FERET dataset.
In [129] and [130], Lian and Lu combined the LBP-based fa-
cial description with SVM for multiview gender classification
and reported an average accuracy of 94.08% on the CAS-PEAL
face dataset. Yang and Ai [33] exploited the LBP-based features
for a face-based demographic classification, which involved

Fig. 14. Original image (left) processed by the LBP operator (right) [132].

gender, ethnicity, and age classification. Given a local patch,
chi-square distance between achieved LBP histograms was uti-
lized as a confidence measure for classification. The positive
mean histogram was utilized for initialization, and the steep de-
scent method was applied to find an optimal reference template.
They adopted the Real AdaBoost to train a strong classifier. The
achieved error rates for gender classification on the FERET, PIE,
and a snapshot database were 6.7%, 8.9%, and 3.68%, respec-
tively. Their method also produced promising performance for
ethnicity and age classification.

Huang et al. [108] proposed an improved ASM framework,
namely, ELBP-ASM, in which local appearance patterns of key
points are modeled by the ELBP. The experiments on a dataset
with 250 samples show that ELBP-ASM achieves more accu-
rate results than the original ASM. In order to extend ASM
to improve robustness against illumination variations, Marcel
et al. [131] later presented a divided-square-based LBP-ASM
to extract histograms from a square region divided into four
blocks around each landmark instead of the normal profile.
Histograms were then concatenated into a single-feature vec-
tor, which represents local appearance. The comparative ex-
periments on XM2VTS dataset showed that this method out-
performs ELBP-ASM [108] and requires only raw images for
facial keypoint localization.

In [35], Ma et al. introduced the LGBP to encode the local
facial characteristics for head pose estimation. With an SVM
classifier, estimation rate of 97.14% for seven poses was gained
on a subset of the CAS-PEAL dataset that contains 200 sub-
jects. Cao et al. [34] used a facial-symmetry-based approach
to standardize the face image quality. With this method, facial
asymmetries caused by nonfrontal illumination and improper
facial pose can be measured. The effectiveness was evaluated
on images of ten persons of the Yale B dataset.

LBP can also be used as a preprocessing technique on face
images. For instance, Heusch et al. [132] considered LBP as
a preprocessing step to remove lighting effects (see Fig. 14).
Compared with other preprocessing methods, including his-
togram equalization and the technique proposed by Gross and
Brajovic [133], LBP provided better results on the XM2VTS
database. Cardinaux et al. showed that LBP is better combined
with feature-based HMM than with appearance-based LDA for
face recognition on the BANCA dataset [134]. Poh et al. pre-
sented a similar comparative study in [135], and their experi-
ments further supported that LBP is effective for face prepro-
cessing, but the combination of LBP with feature-based Gaus-
sian mixtures models did not perform as well as the combination
with LDA. The use of LBP for preprocessing was also addressed
in [48]; a comparative study on five preprocessing in 16 different
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Eigenspace-based recognition systems evidenced that MLBP
achieves promising results for illumination compensation and
normalization. More recently, in order to highlight the details of
facial images, Huang et al. [136], [137] proposed to use LBP to
extract range and texture LBP faces, and canonical correlation
analysis was then applied to learn the relationship between the
two types of LBP faces for asymmetric face recognition. The
reported result was 95.61% on the FRGC v2.0 dataset [137].

F. Face Analysis Systems

Advantages of LBP make it very attractive to build real-time
face analysis systems. Furthermore, related hardware designed
for high-speed LBP computation [138]–[141] also boosts the
development of LBP-based real-world applications.

Hadid et al. built an access control system by using LBP-
based face recognition [142]. In their system, a camera was set
on a door to capture video frames; LBP features were extracted
for both background subtraction and face recognition. The face
detection approach in [110] was adopted for face detection in
color images, and the face recognition method in [3] was ap-
plied for person identification. The face recognition accuracy of
71.6% was obtained on 20 video sequences of ten subjects.

Trinh et al. [143] presented a system to detect multiple faces in
video sequences, where faces are not limited to frontal views. An
adaptive selection approach from two skin models in RGB and
ratio RGB spaces is used to overcome the illumination problem
by automatic focus of the camera. The experimental result of
93% accuracy was reported on the NRC-IIT database, which
consists of 23 single-face video sequences of 11 persons with
different poses. The system runs at 2.57 f/s for image sequences
of 320 × 240 pixels on a standard PC (Pentium 4, 2.6-GHz,
512-MB RAM) in the Visual C++ environment.

Based on the LBP features extracted from NIR faces, Li et
al. [114], [115] designed an illumination-invariant face recog-
nition system for cooperative users in an indoor situation. Ad-
aBoost was used to learn Haar features for face detection and
eye detection, and to select LBP features for face recognition.
All three parts achieve outstanding results with low cost on a
large dataset. The system can operate in real time with an EER
below 0.3%.

Ekenel et al. [144] introduced a portable face recognition sys-
tem, which is deployed on a laptop using a standard webcam
for image acquisition. On the basis of the relevant regions de-
termined by skin color, the two eyes were first detected with a
cascade AdaBoost classifier of Haar features. These were then
used to register face images. LBP was used to preprocess fa-
cial regions to reduce illumination influences. Their system was
evaluated on a small dataset consisting of 42 sequences from 14
subjects, and produced 79% accuracy.

Hadid et al. [145] implemented face detection and authen-
tication on mobile phones equipped with an ARM9 processor.
Cascade AdaBoost with Haar features was applied for face and
eye detection, while LBP was exploited for face authentication.
Although the CPU and memory capabilities of mobile phones
are limited, the experiments showed encouraging performance
on face detection, and displayed recognition rates of 82% for

faces of 40 × 40 pixels and 96% for faces of 80 × 80 pixels. The
system ran at 2 f/s on video sequences with a resolution of 320
× 240 pixels. Abbo et al. [146] recently mapped an LBP-based
facial expression recognition algorithm proposed in [124] on
a low-power smart camera, which was assembled with a mas-
sively parallel processor for low-level and intermediate vision
processing, and an 8051 microcontroller for high-level decision
making and the camera control tasks.

Hannuksela et al. [88] proposed a head-tracking system to
control the user interface on hand-held mobile devices. Face
and eye detection were realized using boosting-LBP approach.
It worked in real time on a resource-limited mobile device. In an
interactive photo-annotation system [147], LBP was also used
to extract facial features for face clustering and reranking.

G. Discussion

The techniques developed so far for facial representation can
be roughly classified into two main categories: holistic-based
ones and local-based ones [148], [149]. The holistic approaches
use the whole facial region to construct a subspace using, e.g.,
PCA [99], LDA [100], independent component analysis [150],
or locally linear embedding [151]. On the other hand, the local-
based ones, e.g., [63], [101], and [152], proceed first to locate
a number of features or components from a face, and then,
classify them by combining and comparing with correspond-
ing local statistics. The local approaches have shown promising
performances in recent years. It has been proved by Heisele
et al. [153] that the component-based face recognition meth-
ods (local-feature-based) perform better than the global ones
(holistic-based). The main reason is that holistic approaches re-
quire face images to be accurately normalized with regard to
pose, illumination condition, and scale. In addition, global fea-
tures are also more sensitive to facial expression variations and
occlusions. Since the local feature-based methods extract fea-
tures from local points or patches, there always remain some
invariant features, even in the presence of facial expression
or occlusion variations, and recognition can still be achieved
by matching remaining invariant features. Therefore, the local-
feature-based methods are potentially more robust than holistic
ones to facial expression changes and occlusions. Moreover,
unlike holistic approaches, they require few samples for enroll-
ment, and can even achieve analysis with a single face image
in the gallery set [154]. From this viewpoint, if LBP is used
in a straightforward manner as a global representation, it is its
local- or component-oriented variants that prove to be efficient
descriptors for facial image analysis as the earlier overview
highlights. This motivates increasing interests in LBP-based
features for facial representation, since it was applied for face
representation [3].

Compared with other popular local descriptors, as discussed
in [148], [155], [156], namely, Gabor wavelets [63], [157]–[159]
and SIFT [101], [155], Luo et al. [155] showed that SIFT is
not as robust as LBP to illumination effects for face recogni-
tion on the FERET dataset. Zou et al. [148] compared Gabor
wavelets and LBP by using the same database for the same
task, and concluded that Gabor wavelets are more insensitive to
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illumination changes, since they detect amplitude-invariant spa-
tial frequencies of gray values of pixels, while LBP is greatly af-
fected by nonmonotonic gray-value transformations. Ruiz-del-
Solar et al. [156] evaluated these three methods extensively for
face recognition not only on controlled datasets, e.g., FERET
and FRGC, but also on the UCH FaceHRI database, which
is designed for human–robot interaction as well as the LFW
dataset, captured in unconstrained environments. With regard to
robustness-to-illumination variations, their study illustrated that
Gabor wavelets achieved the best performance on the FERET
database, LBP was not far behind, while SIFT was the last, thus
further supporting the earlier conclusions. On the UCH FaceHRI
database, the LBP approach gained the best results in all the spe-
cially designed experiments with indoor and outdoor lighting,
expression, scaling, and rotation, followed by Gabor wavelets
and SIFT. On the LFW dataset, LBP and Gabor wavelets ob-
tained a slightly better result than each other with aligned face
and nonaligned face, respectively, both of which surpassed that
of SIFT. On the other hand, in their investigation on computation
cost, LBP ran much faster than Gabor wavelet and SIFT.

VI. CONCLUDING REMARKS

LBP is one of the most powerful descriptors to represent local
structures. Due to its advantages, i.e., its tolerance of monotonic
illumination changes and its computational simplicity, LBP has
been successfully used for many different image analysis tasks,
such as facial image analysis, biomedical image analysis, aerial
image analysis, motion analysis, and image and video retrieval.

During the development of LBP methodology, a large number
of variations are designed to expand the scope of application,
which offer better performance as well as improve the robust-
ness in one or more aspects of the original LBP. ILBP, Hamming
LBP, and ELBP enhance the discriminative ability of LBP; LTP
and SLBP focus on improving the robustness of LBP on noisy
images; MB-LBP, elongated LBP, TPLBP, and FPLBP, change
the scale of LBP to provide other categories of local informa-
tion; Gabor-wavelet-based LBP, CS-LBP, and LBP-HF combine
other methods with LBP to bring in new merits. However, the
earlier extensions only operate on traditional 2-D data; the vari-
ant 3-DLBP and VLBP should be highlighted, since both of
them expand the scope of LBP applications: 3-DLBP extends
the LBP operator to describe 3-D volume data, while VLBP
endows LBP with the ability to capture dynamic information.

To obtain a small set of the most discriminative LBP-based
features for better performance and dimensionality reduction,
LBP-based representations are associated with some popular
techniques of feature-selection schemes to reduce the feature
length of LBP codes, which contain rule-based strategy, boost-
ing and subspace learning, etc.

As the most typical and important application of LBP, facial
image analysis provides a very good demonstration of the use,
development, and performance of LBP. From this comprehen-
sive overview, following conclusions can be drawn: 1) local- or
component-oriented LBP representations are effective represen-
tations for facial image analysis, as they encode the information
of facial configuration while providing local structure patterns;

and 2) using the local- or component-oriented LBP facial rep-
resentations, feature selection is particularly important for var-
ious tasks in facial image analysis, since this facial description
scheme greatly increases the feature length.

Meanwhile, similar to most of the texture-based techniques,
LBP is sensitive to severe lighting changes, and to blurred and
noisy images [39]. The former case can be regarded as non-
monotonic lighting variations, which normally occur in facial
images due to 3-D facial volume structures, thereby leading to
nonmonotonic transformations, e.g., shadows and bright spots
can typically occur and change their positions depending on
lighting directions. While the latter case is often caused by the
bad quality of camera sensors and poor user cooperation of
capture condition, etc. As a result, in such environments, it is
necessary and useful to preprocess the images before applying
LBP.

In addition, some open questions for subregion-based LBP
description, e.g., facial description, concern the relevant num-
ber of components and the corresponding neighborhood of a
certain LBP operator for the best analysis result. Although these
questions have been discussed in several papers, and even with
machine-learning techniques, these conclusions drawn so far
have always been dependent on the used databases and some
given parameters.
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