
A Systematic Survey on the Design of Self-Adaptive Software Systems Using Control

Engineering Approaches

Tharindu Patikirikorala, Alan Colman, and Jun Han

Swinburne University of Technology

Victoria, Australia

{tpatikirikorala,acolman,jhan}@swin.edu.au

Liuping Wang

Royal Melbourne Institute of Technology

Victoria, Australia

liuping.wang@rmit.edu.au

Abstract—Control engineering approaches have been identi-
fied as a promising tool to integrate self-adaptive capabilities
into software systems. Introduction of the feedback loop and
controller into the management system potentially enables
the software systems to achieve the runtime performance
objectives and maintain the integrity of the system when they
are operating in unpredictable and dynamic environments.
There is a large body of literature that has proposed control
engineering solutions for different application domains, han-
dling different performance variables and control objectives.
However, the relevant literature is scattered over different
conference proceedings, journals and research communities.
Consequently, conducting a survey to analyze and classify
the existing literature is a useful, yet a challenging task.
This paper presents the results of a systematic survey that
includes classification and analysis of 161 papers in the existing
literature. In order to capture the characteristics of the control
solutions proposed in these papers we introduce a taxonomy as
a basis for classification of all articles. Finally, survey results
are presented, including quantitative, cross and trend analysis.

I. INTRODUCTION

In [16] Shaw compares the suitability of software engi-

neering methodologies with control engineering methodolo-

gies to design a cruise control system and states: “. . . When

the execution of a software system is affected by external

disturbances-forces or events that are not directly visible to

or controllable by the software—this is an indication that

a control paradigm should be considered for the software

architecture . . . ”. Many state-of-the-art software systems

have become complex and large scale, and have to deal with

unpredictable environmental conditions and dynamics. As a

consequence, subsequent to the Shaw’s paper, many papers

(e.g., [3], [6], [9], [15]) have identified control engineering

methodologies as a promising solution to implement self-

adaptive software systems. The integration of the feedback

loop and controller potentially enables operational goals

to be achieved and costs related to human supervision to

be reduced, while reacting to unpredictable disturbances

and un-modeled system dynamics in a timely and effective

manner.

The implementation of a control engineering solution

consists of two major steps: (1) modeling the dynamics of

the system and (2) developing a control system [10]. Many

such control solutions have been proposed for software

systems. However, these efforts are scattered over different

conference proceedings, journals and research communities.

They also relate to different application domains, and deal

with different performance variables and control objectives.

Analyzing the characteristics and trends of a large body

of literature is a challenging task, consequently results of

the exiting surveys [2], [4], [6]–[8], [11], [15], [20] are

often significantly limited to application domains or solution

domains.

The main objectives of this systematic survey are to (1)

build a classification model of the existing literature, (2)

quantify the published research work on the various model-

ing, control schemes and validation techniques utilized, and

(3) analyze the clustering of papers across categories of the

classification model and identify any apparent trends. Such

analysis could aid future researchers and developers of self-

adaptive systems to better identify the scope and domain

applicability of various control engineering techniques and

use proven modeling and control schemes for the control

problem at hand. To achieve these objectives 161 papers

were selected from different conference proceedings and

journals. A taxonomy was subsequently developed in order

to capture the content of these papers at a high-level of

abstraction and then classify the literature in a systematic

way. Finally, the results of the survey are presented with a

quantitative, cross and trend analysis.

II. RELATED WORK

There are several surveys related to this work that provide

overviews of control engineering applications to manage

software systems from different perspectives. An early sur-

vey [2] covers applications of feedback control in web

servers, network, scheduling and storage management. How-

ever, this survey does not include works published after

year 2003 in this area. In [7], a comprehensive survey has

been conducted on different types of control engineering

approaches applied to middleware (e.g., web and application

servers). A limited set of key research works that used differ-

ent types of control system designs to manage performance

978-1-4673-1787-0/12/$31.00 c© 2012 IEEE SEAMS 2012, Zürich, Switzerland33

of software systems is presented in [20]. In addition, [6]

provides a classification of a limited set of papers according

to the performance attribute regulated by the control system.

Brun et al in [3] also gives a classification based on

the non-adaptive and adaptive control system designs for

software systems. Furthermore, work in [14] classifies the

literature according to the control system design techniques

used. The detailed summary of several control engineering

solutions proposed by several researchers can be found in

[1], [10], [21]. Moreover, the lists of challenges and design

rules when applying control engineering methodologies to

software systems are presented in [8], [9].

The surveys [4], [15] analyze the attempts based on the

software architectural approaches to implement the self-

adaptive systems, giving less emphasis to the control en-

gineering approaches.

In contrast to the above work, this systematic survey

provides a comprehensive classification of the literature

based on a taxonomy which includes properties of the target

system, control system and validation mechanism.

III. REVIEW METHOD

Kitchenham et al. in [12] provide a set of guidelines

to conduct a systematic literature review. These guidelines

include the steps for formulating research questions to be

answered by the review and developing a review protocol.

These guidelines are followed for instance in [5], [18],

to conduct systematic reviews in different research areas

of software engineering. In this work, we also follow the

guidelines in [12] to conduct the systematic survey. The steps

we followed in this survey are as follows:

A. Research Questions

Formulation of the research questions is the most

important step of a systematic review [12]. The research

questions addressed by this survey are:

RQ1: How can we classify the existing approaches

based on the characteristics of the target software system

(problem domain) and control system implemented (solution

domain)?

RQ2: What are the methods used to model the dynamics

of the software system?

RQ3: What are the control schemes, control system

architectures and controllers (algorithms) used by the

existing work?

RQ4: What are the techniques used to validate the proposed

control solutions?

RQ5: What are the common clustering patterns and trends

that exist in these proposed control solutions?

B. Review Protocol

Developing a review protocol is important, in order to

select, organize and analyze the existing work without the

possibility of bias. The review protocol is a planned set of

activities [12], which includes the following steps.

1) Search Process: The basic idea behind this step is

to decide on search strings and sources to search for the

relevant papers (so called primary studies) for the survey.

Deciding search strings for this survey was challenging

because there is a large body of literature spanning the areas

of software and control engineering. In order to maintain

the count of the search results manageable, ‘feedback con-

trol’, ‘QoS’, ‘software system’ and ‘software application’

were used as the search strings and well known literature

search engines like IEEE explore, ACM Digital library,

ScienceDirect and DBLP Computer Science Bibliography

were used to assist and narrow down the search process. In

addition, based on our previous experience we also selected

the conference proceedings and journals listed in Table I

as sources. Furthermore, we also included all papers that

cited the text book [10] (a total of 424) and the papers cited

in surveys ([3], [6]–[8], [15]), related to feedback control

or self-management systems. The papers gathered from this

process were further investigated to improve the coverage

by including the papers cited in the selected paper and

other papers that cited the selected paper. Primarily the title,

keywords and abstract of the paper were used to make a

decision on the relevance of the paper. However, when it

was inadequate to make a decision, the introduction and

approach sections of the paper were considered as well.

2) Inclusion and Exclusion Criteria and Quality Assess-

ment: The selected papers from the search process are fur-

ther evaluated in this step to determine whether the selected

studies are relevant in answering the research questions and

to meet the expectations of the study.

Inclusion criteria: The main inclusion criteria were, (1)

the date of publication—between 1st of January 2000 to

1st of November 2011, (2) language written—English and

(3) problem domain and solution domain—papers that ad-

dressed the problems on automating the management of

the software applications, middleware or environments that

deployed software components (e.g. data centers), and those

that propose solutions to these problems based on control

engineering methodologies. In order to be a control engi-

neering solution, we investigated the two major steps of

control system design, i.e., modeling of system dynamics

and controller implementation. The list of control engineer-

ing methodologies selected are covered in details in Section

IV-B4. In addition, there were several papers that duplicated

the same contributions in different papers or cases where

the conference papers were extended to journal articles.

Removing such duplications was a major challenge to avoid

the bias of the systematic survey. In such cases, we included

the most complete paper (e.g., journal version was included

as oppose to the conference paper).

Exclusion criteria: There is a large body of literature which

has used control engineering methodologies to automate

34

Table I: Conference proceedings and journals selected to gather papers

Source Acronym

International Conference on Autonomic Computing ICAC

International Symposium on Software Engineering for Adaptive and Self-Managing Systems SEAMS

International Conference on Parallel and Distributed Systems ICPADS

International Workshop on Feedback Control Implementation and Design in Computing Systems and Networks FeBID

International Workshop on Quality of Service IWQoS

International Conference on High Performance Computing HiPC

International Conference on High Performance Computing and Communications HPCC

IEEE Real-Time and Embedded Technology and Applications Symposium RTAS

American Control Conference ACC

IEEE Conference on Decision and Control CDC

IEEE Transactions on Parallel and Distributed Systems PDS

IEEE Transactions on Network and Service Management NSM

management of mobile, wireless and routing networks.

These studies are out of the scope of this survey. The

papers that proposed management systems without utilizing

control theoretic approaches (e.g., optimization solution)

were excluded as well. This also excludes the control solu-

tions primarily based on fuzzy logic, neural networks, case

based-reasoning and reinforcement learning. In addition, the

papers that only deal with hardware (e.g, processor chips)

or operating system level management issues with control

solutions were also excluded. Furthermore, many papers that

present the challenges, design guidelines and short surveys

(e.g., [8], [21]) were excluded because they do not meet the

major inclusion criteria.

Quality assessment: Assessing the quality of the paper or

its contributions is a challenging and complex task. In order

to evaluate the quality of the selected papers we used the

following criteria

QA1: Is the paper peer-reviewed?

QA2: Does the paper provide a validation for the proposed

solution?

If the answers to both these questions are ‘yes’, we included

the paper in this survey.

At the end of this step, 161 papers that met the above

criteria were selected as the primary studies of this survey.

The complete list of these papers can be found in [13].

3) Data Extraction: The next step is to finalize the

data extraction strategies. In order to answer the research

questions formulated in Section III-A, information has to

be extracted from the selected papers accurately without

any bias. The extracted data provides an abstract view and

knowledge about a specific paper. To extract the data in

a systematic and standardized way, we started off with a

basic taxonomy, which was further developed during the data

extraction process. The basic taxonomy was developed by

the authors from their previous experience. The details of

the final taxonomy are presented in Section IV.

Firstly, a data extraction form was documented based on

the taxonomy (see Figure 1). This document also included

other details of the paper such as the title, authors, con-

ference/journal, publication year, bibliography identifier and

additional notes. Then, each paper was read in detail and

the data extraction form was filled. In addition, extracted

data was rechecked to improve the accuracy of the data

extraction. After the data extraction forms of all the papers

were completed, a relational database schema was designed

to record the data in a database management system. This

is done to improve the accuracy and tractability of the

classification and meta-analysis tasks involved in the next

steps of the survey by using standard feature rich query

languages provided by the database management systems.

For this purpose we used the Microsoft SQL server. Next,

all the information in the data extraction forms was inserted

to the database.

4) Synthesis of the Extracted Data: The final step was to

analyze the recoded data and answer the research questions

and present the results of the survey. The details of the

outcomes of this step is presented in Section IV and V.

IV. TAXONOMY

This section presents the taxonomy we developed after the

detailed analysis of the literature. This taxonomy provides a

mechanism to extract the knowledge about a particular paper

and represent it at a high-level of abstraction. It is also a

tool to classify and mine clustering patterns that exist in the

different levels of the hierarchy. The finalized taxonomy is

shown in Figure 1. The first level of the taxonomy captures

the characteristics of the Target system, Control System and

Validation provided in the paper. These categories also have

different subcategories. The final hierarchy of the taxonomy

was developed by further refining the classifications during

the data extraction in order to keep the taxonomy in a

manageable size. The details of these categories are given

below.

Taxonomy

Target System

Application domain

Dimension

Performance Variable

Control System

Scheme

Model

Loop Dimension

Validation

Simulation

Case StudyType

Figure 1: The high-level structure of the taxonomy

35

A. Target System

This category represents the characteristics of the soft-

ware system controlled by the proposed control engineer-

ing solution in each primary study. It was further clas-

sified by the subcategories of Application domain, Per-

formance/controlled variables and Dimension of the target

system. The application domains extracted from the selected

papers include data center, virtual machine environments,

data storage, middleware and real-time systems. The con-

trol engineering solutions are primarily used to maintain

the performance attributes at desired levels. Consequently,

the performance/controlled variables of the target software

system are the major property that has to be investigated. The

performance/controlled variables were further classified in to

Response time, Throughput, Progress/Miss ratio, Power uti-

lization, Processor utilization, Hit rate/ratio, Memory utiliza-

tion, Server utilization, Queue length, Temperature, Number

in system, Scheduling error and Other. The dimension of the

target system relates to the control objectives of the problem

at hand. It can be classified as single-input-single-output

(SISO) or multi-input-multi-output (MIMO), which achieves

a single control objective or multiple control objectives

respectively.

B. Control System

This category characterizes the control engineering solu-

tion proposed. The design and implementation of the control

solution includes two basic steps. Firstly, the behavior of

the target system has to be modeled. Secondly, a suitable

control system has to be implemented. The details of design

Controller-

Set point
(r)

Control
error
(e)

SA
Target
system

Control
input

(u)

Measured
output

(y)

Actuator Sensor

(a) Feedback control system

Feed forward
Controller

SA
Target
system

Control
input

(u)

Measured
output

(y)

Actuator Sensor

Disturbances

(b) Feed-forward control system

Feedback
Controller

-

Set point
(r)

Control
error
(e)

SA
Target
system

Control
input

(u)

Measured
output

(y)

Actuator Sensor

Disturbances
Feed-forward

Controller

-

uff

ufb

(c) Feedback and Feed-forward control system

Figure 2: Block diagrams of different types of control

systems

and implementation process are captured in the following

subcategories.

1) Model: The dynamics of a target system can be for-

mally represented by the analytical (first-principle) or black-

box models. The analytical models represent the behavior of

the system by using the underlying physical laws governing

the target system (for instance, mass-balance, electrical,

friction laws). However, in the case of software systems,

such models are not available or significantly complex [10].

From this survey, we observed the use of queuing models,

which can be also classified as an analytical model to

represent the behavior of many systems. As a consequence,

queuing model was included as a subcategory. In contrast,

the black-box models describe the system behavior with the

input and output variables considering the system as a black-

box. System identification (SID) is a widely used method to

construct black-box models for a system. A SID experiment

is conducted offline by applying a specially designed input

signal on the system and to gather output data for a sufficient

period of time [10]. Then the gathered measurements of the

input and output data is used to estimate the model.

2) Type: Three types of control systems are as follows.

Feedback control system: Figure 2a shows a block

diagram of a feedback control system. The target system

provides a set of performance variables referred to as mea-

sured outputs. The sensor monitors the outputs of the target

system, while the control inputs are sent to the actuator to

change the behavior of the system by adjusting the system

inputs. The feedback controller is the decision making unit

of the control system. The main objective of the controller

is to maintain the outputs of the system sufficiently close

to the desired values, by adjusting the control inputs under

disturbances. These desired values are translated in control

system terms as the set point signals, which gives the option

for the control system designer to specify the goals or

values of the outputs that have to be maintained at runtime.

The feedback control system is a reactive decision making

mechanism, because it waits until a disturbance affects the

outputs (feedback) of the system to make the necessary

decisions.

Feed-forward control system: In contrast to feedback

control, feed-forward control (See Figure 2b) measures the

major disturbances and adjusts the inputs to reduce the im-

pact of the disturbance on the system outputs. Consequently,

it is considered as a proactive control mechanism in the

literature. However, if the disturbance cannot be modeled

accurately the performance of the feed-forward controller

may be significantly poor. Furthermore, typically in the cases

where all the disturbances cannot be measured or there

are significant model uncertainties, the control objectives of

maintaining the outputs around the set points (so called set

point tracking) may not be achieved.

Feedback and Feed-forward control system: Figure 2c

shows the architecture of a combined feedback and feed-

36

Controller-
Set point

SA
Target

system

Control
input

(u)

Measured
output

(y)

Actuator Sensor

EstimationController design
Specifications Model parameters

Controller parameters

(a) Self-tuning adaptive control

SA

Control
input

Measured
output

Actuator Sensor

Target
system

Set point

Model predictive controller

Model based
predictor

Quadratic
program

(b) Model predictive control

Controller-
Set point

SA
Target

system

Control
input

(u)

Measured
output

(y)

Actuator Sensor

Gain Scheduler
Scheduling variables

Controller parameters (gains)

(c) Gain scheduling control

Inner
Controller

-

Set p
oint1

SA
Target
system

Control
input

(u)

Output1 (y1)

Actuator Sensor

Outer
Controller

Set point2 Output2 (y2)-

(d) Cascaded control

Figure 3: Block diagrams of basic schemes

forward control system. It addresses the limitation of both

schemes, where the feed-forward control adjusts the inputs

based on the disturbances that are measurable, while the

feedback control implements the set point tracking under

unmeasured disturbances.

3) Loop Dimension: The design of a control system

depends on the control objectives, i.e., whether it needs

to achieve a single objective (SISO) or multiple objectives

(MIMO). In the case of a SISO system a SISO control

system is sufficient to achieve the objective. When there are

multiple control objectives the control system that needs to

be designed is complex. We observed mainly two solutions

in our survey, including the design of multiple-SISO control

systems/loops or a MIMO controller. A multiple-SISO con-

trol system decomposes the multiple control objectives into

multiple single objectives and then designs multiple SISO

control systems. In contrast, the MIMO control systems,

achieves all the objectives using a single controller.

4) Scheme: This survey revealed that different control

schemes have been used to implement the self-management

capabilities into software systems. We further classify these

schemes as basic and complex schemes. The difference is

that the basic schemes have well defined structure and con-

crete implementation mechanisms, while complex schemes

Control layer

SA
Target

system

Reconfiguration layer

Specifications

Control
input

Measured
output

Reconfiguration
decisions

State info

(a) Reconfiguring

Target System

Sub
System1

Sub
System2

Sub
Systemn

…...

Level0
Controller

Level0
Controller

Level0
Controller

Level1
Controller

Level1
Controller

Level2
Controller

…...

..

State info

Decisions

(b) Hierarchical control

Target System

Sub
System1

Sub
System2

Sub
Systemn

…...

Controller1 Controller2 Controllern
..

Communication

States Decisions

Local state info

Global state info

(c) Decentralized control

Controller

Generator Actuator

Target System

Interface

Symbols/ Events Control symbols

Control inputSensor output

(d) Hybrid control

Figure 4: Conceptual architectures of the complex schemes

are conceptual control schemes realized in various method-

ologies.

a) Basic Schemes

Fixed-gain control: The structure of a fixed-gain control

scheme is the same to that of Figure 2a. For instance, differ-

ent variations of the Proportional Integral Derivative (PID)

controller is one such fixed-gain controller widely used

in existing work due to their robustness against modeling

errors, disturbance rejection capabilities and simplicity [10].

The control algorithm of the PID controller is as follows:

u(k) = Kpe(k)+Ki

k∑

j=1

e(j)+Kd(e(k)−e(k−1)), where u(k)

is the input for the current sample instance k, e(k) is the

difference between the output and set point and Kp, Ki and

Kd are the parameters of the controller called gains. These

gains are computed based on the model and other design

specifications and remain fixed at runtime (consequently, the

name, fixed-gain controller).

Adaptive control: In contrast to fixed gain control,

adaptive control dynamically estimates the model parameters

and gains of the controller at runtime. As shown in Figure

3a, adaptive controllers have a parameter adjustment loop,

which derives these required parameters at runtime [17].

The parameters of the target system’s model are estimated

by the Estimation component, while the Controller design

component uses these estimated model parameters and high-

level control objectives provided by the designer to compute

the gains of the controller.

Linear Quadratic Regulator (LQR): LQR is an optimal

control strategy particularly useful in the MIMO control

system designs. It uses a cost function, which represents

a quadratic formula involving the control error and control

effort. The basic idea is to minimize the cost function so

that the error is minimized with a small control effort. It also

gives the opportunity to trade-off between speed of response

to disturbances and over-reacting to noisy output signals. For

more details see [10].

37

Model predictive control (MPC): MPC is a class of

control algorithms that perform on-line optimization with

a natural ability to deal with the system constraints and its

particularly useful to manage MIMO systems. It is similar to

LQR, however the general idea behind MPC is to optimize

the future behavior of the system outputs by computing the

trajectory of the control inputs. Firstly, using the model of

the system and the feedback signals, the behavior of the

system outputs is predicted for a number of future samples.

Then the objective of the MPC is to compute the trajectory

of control inputs to maintain the predicted future outputs

sufficiently close to the desired set point, subject to various

constraints. For more details on MPC see [19]. MPC needs

the system model and a standard quadratic programming

solver to solve the optimization (or constraint) problem

online as shown in Figure 3b.

Gain scheduling: Gain scheduling is also regarded as

an adaptive control mechanism in [17]. Figure 3c shows

the block diagram of a gain scheduling control system. In

contrast to adaptive control, gain scheduling does not have

a model estimation component. Instead, it uses a predefined

logic/rule based evaluation to change the controller online.

The predefined rules are implemented in the gain scheduling

component depending on the prior knowledge about the per-

formance variables, disturbances and conditions. At runtime

when the rules are satisfied the relevant controller gains are

updated in the controller by the gain scheduling component.

Cascaded (nested) control: Most of the approaches

assume that the set point specified in the controller remains

constant or changes infrequently. The main objective of a

cascade control mechanism (Figure 3d) is to change the set

point of the inner loop. The outer loop tries to maintain

a single output around the set point by mapping control

objective into the inner loop control problem. Depending

on the control error of the outer loop, it generates the set

point periodically for the inner loop. When the inner loop

achieves its new set point, the control objectives of the outer

loop will be indirectly achieved at the same time.

b) Complex Schemes

Reconfiguring control: In the adaptive control schemes

the controller algorithm and the organization of the com-

ponents in the loop stays fixed overtime [14]. However,

for different operating conditions and disturbances different

control algorithms or loop organizations may provide better

control [14]. In reconfiguring control schemes the main idea

is to change the control algorithms, models and architecture

of the control system to deal with the changing operating

regions of the target system. Figure 4a illustrates the layered

architecture of reconfiguration control. The control layer

consists of the control system (including the controller)

providing the control in the current time instance. The re-

sponsibility of the reconfiguration layer is to reconfigure the

architecture of the control layer (e.g., by changing controller)

so that the control objectives of the target system can be

achieved under requirement or environmental changes.

Hierarchical control: Figure 4b shows a general archi-

tecture of the hierarchical control scheme. The hierarchical

control schemes can be used to realize control objectives

of large distributed systems. The main idea is to implement

the divide-and-conquer concept, where lower level (Level0)

controllers manage the sub systems of a large system,

while high-level controllers act as a coordination layer of

the lower level control systems. For instance, high-level

controllers may adjust the control objectives of the lower

level controllers after looking at the system-wide control

objectives.

Decentralized control: In contrast to the hierarchical

control where the management decisions flow downwards

from a centralized management entity, the decentralized con-

trol manages each subsystem with a controller individually.

There is no centralized entity that looks at the global control

objectives and specifies the management objectives. Instead,

the communication layer provides the information about the

global state variables or just the states of the neighboring

subsystems (see Figure 4c). Then, utilizing the local states

and information from the communication layer, each indi-

vidual controller provides control in an independent manner.

As a consequence, the system-wide objectives are/may be

achieved in a decentralized fashion.

Hybrid control: Many software systems shows combined

event and time based dynamics. The idea behind hybrid

control is to incorporate both event and time based dynamic

aspects into the control system design. Figure 4d shows a

basic architecture of a hybrid control system. The generator

produces special events after analyzing data from the target

system. The controller operates with a target system model,

typically described by a finite automata (hybrid automata).

It begins from the starting state and moves through different

states depending on the events/symbols generated by the

generator. Corresponding to the state, the controller sends

the control decisions as control symbols to the actuator,

which converts them to the system inputs.

Some papers included in the survey implement control

solutions, which included multiple control schemes together.

In such cases we classified the papers under all the relevant

schemes.

C. Validation

This category represents the type of validation provided in

the paper to show the effectiveness of the proposed control

engineering solution. It was further classified into validation

based on a Simulation or Case study. A simulation based

validation relies on some kind of a simulation model of a

target system and then implementing the proposed solution

on it. To develop a simulation model well established

techniques like discrete-event simulations or off-the-shelf

simulation tools (e.g., MATLAB) can be utilized. Case study

38

Table II: Quantitative results of the subcategories of ‘Target

system’ category

Application Domain

Number of papers Percentage

Middleware 54 30.9

Real-time systems 38 21.7

Data center 35 20.0

VM 24 13.7

Data Storage 23 13.1

Other 1 0.6

Performance variable

Number of papers Percentage

Response time 76 37.8

Processor Utilization 40 19.9

Power Utilization 20 10.0

Progress/Miss ratio 17 8.5

Throughput 13 6.5

Hit rate/ratio 7 3.5

Queue length 5 2.5

Memory 4 2.0

Server utilization 4 2.0

Temperature 3 1.5

Tardiness 2 1.0

Number in system 2 1.0

Scheduling error 2 1.0

Other 6 3.0

Dimension

Number of papers Percentage

MIMO 95 59.0

SISO 66 41.0

based validations implement a target system close to the

real world settings and deploying the system in a physical

environment. Then, that system is used to validate the pro-

posed control solution. We further analyzed the case-study

subcategory by extracting information on what benchmark

software applications and/or workload generators were used.

V. SURVEY RESULTS

The main focus of this section is to answer the research

questions RQ2, RQ3, RQ4 and RQ5 formulated in Section

III-A. To serve this purpose, Sections V-A, V-B and V-C pro-

vide a quantitative analysis of each high-level category of the

taxonomy. In addition, Sections V-D and V-E respectively

present a cross analysis and observed trends. Furthermore,

the limitations of this survey are also listed in Section V-F.

Note that the grouping of the paper references according to

the taxonomy is not presented due to space limitations (for

more details see [13]).

A. Analysis of the ‘Target system’ Category

Application Domain: Table II indicates that many control

theoretic solutions are proposed to manage middleware (e.g.,

web servers and application servers). Similarly, for some of

the management problems involved with real-time systems

and data centers, the control engineering solutions have been

proposed in close to 20% of the papers. In the case of real-

time systems, another interesting observation was that all the

control solutions were proposed to manage soft-deadlines

in unpredictable environments as oppose to hard-deadlines.

The main reason for this observation is under unpredictable

disturbances, the deadlines of some tasks could be violated,

which is not tolerated in the hard real-time systems. Fur-

thermore, over 10% of the papers have investigated the

management issues of data storage (e.g., databases, memory

and cache) and virtual machine environments.

Performance variables: Table II illustrates the performance

variables of the target system controlled by the control

solution proposed in the papers. 19 different performance

variables were identified. The first 13 attributes have been

used in more than 1 paper, while the Other category

represents 6 different performance variables appearing in

6 different papers. From the statistics the response time

is one of the major performance attributes investigated in

the existing literature. The reasons for this could be that

the response time is (1) the user perceived performance

attribute of the system (2) one of the attribute specified in

SLAs and (3) useful to formulate a set point tracking control

problem. The processor and power utilization are the other

performance variables looked at by a large number of papers.

In contrast, all other performance attributes are utilized in

less than 10% of the papers. It is also evident that many

variables related to queuing models are also used as the

performance variables (e.g., queue length, server utilization

and number in system).

Dimension: The simple classification based on the target

system input-output dimension indicates that most of the

target software systems are MIMO systems (59% of the

papers, compared to 41% classified under SISO systems, see

Table II). This further shows that there are typically multiple

control objectives in the management problem of a software

system.

B. Analysis of the ‘Control system’ Category

Model: From the statistics the black-box models are more

popular than the analytical models. In close to 65% of the

papers, the black-box models have been utilized. In contrast,

the queuing and other analytical models have been used

in similar percentages among the papers. The black-box

models may have been more useful to directly capture the

dynamics of the software systems because the complexity

of the analytical models limits the use of well-established

control engineering methodologies to design a controller,

unless linearization and other approximation techniques are

used to simplify the analytical models.

Type: Apart from the two papers which used stand-alone

feed-forward control path, close to 99% the papers have

included a feedback control loop. Many papers that used

feed-forward control path had measured the workload rates

as the primary disturbance. This is in fact true in most cases,

however it is hard to accurately measure the workload rates

because of the stochastic nature of the workloads faced by

the software systems. In addition, there are other un-modeled

disturbances such as garbage collections, runtime compiler

39

Table III: Quantitative results of the subcategories of ‘Con-

trol system’ Category

Model

Number of papers Percentage

Black box 107 64.8

Queuing 30 18.2

Analytical model 28 17.0

Type

Number of papers Percentage

Feedback 142 88.2

Feedback + forward 17 10.6

Feed-forward 2 1.2

Loop Dimension

Number of papers Percentage

SISO 74 45.4

MIMO 50 30.7

Multi-SISO 39 23.9

Scheme

Number of papers Percentage
Fixed 66 29.7

Adaptive 33 14.9

LQR 25 11.3

MPC 24 10.8

Hierarchical 17 7.7

Gain scheduling 16 7.2

Cascade 14 6.3

Hybrid 11 5.0

Reconfiguring 10 4.5

Decentralized 6 2.7

optimizations and competition for resources between compo-

nents that would affect the performance of the feed-forward

control. As a consequence, the feedback loop has been used

by most of the cases to achieve the desired control objectives

(set points) under un-modeled dynamics.

Loop dimension: The dimension of the controller or the

control loop also reveals interesting results (see Table III).

Many control solutions proposed in literature so far deal

with a single control objective. 74 papers in total designed

SISO control solutions. However, 89 papers have looked at

MIMO control problems and proposed multi-SISO or MIMO

control solutions for them. As mentioned, the software

systems typically require multiple performance objectives

to be achieved, which cannot be effectively handled by a

SISO control system prompting an interest in more complete

MIMO control solutions.

Scheme: From Table III, it is evident that many papers

(66 in total) have utilized fixed gain (PID control variations)

in the control solutions. The reason for this may be the

simplicity and robustness of this control scheme. From

the variations of the PID control, PI (50%) and I (24%)

control algorithms have been used widely compared to other

variations. The adaptive control, MPC and LQR schemes are

utilized in more than 10% of the papers. Although, the large

Table IV: Quantitative results of the subcategories of ‘Vali-

dation’ category

Validation Method Number of papers Percentage

Case study/test bed 116 72.2

Simulation 54 33.5

Table V: Quantitative results of the case studies that used a

benchmark and workload generator

Benchmark Number of papers

TPC-W (http://rubis.ow2.org/) 11

Rubis (http://rubis.ow2.org/) 9

Trade6 (http://www.ibm.com/developerworks/
data/tutorials/dm0506lau/)

5

RUBBoS (http://jmob.ow2.org/rubbos.html) 4

Workload generator Number of papers

httpref (http://www.hpl.hp.com/research/linux/
httperf/)

19

SURGE (http://www.net.t-labs.tu-berlin.de/
∼joerg/nsweb/doku/node12.html)

15

Benchmark workload generator 13

SPEC (http://www.spec.org/benchmarks.html) 5

Apache Ab (http://httpd.apache.org/docs/2.0/
programs/ab.html)

3

Apache Jmerter (http://jmeter.apache.org/) 1

scale software systems and typical operating conditions and

disturbances faced by the software systems demand complex

control solutions, the complex schemes such as hierarchical,

cascade and reconfiguring control have not been widely

adopted compared to the basic control schemes.

C. Analysis of the ‘Validation’ Category

The proposed control approach in each paper has been

validated either by a simulation study or case study with a

test bed (9 papers have used both) (see Table IV). The case

study based validation method is the more widely adopted

validation technique. In addition to the above statistics, we

further analyzed the case studies that utilized or included

the benchmark software systems in their test bed. It is worth

noting that only a few papers either used or specified such

usage of benchmarks. Table V summarizes the results of

those papers. It lists the benchmarks that have been used in

more than one paper. From the papers that used case studies,

27 papers have used a single or multiple benchmarks in their

validations. The TPC-W benchmark has been used by 11

papers. Other benchmarks have been used in less than 10

papers.

One of the important tools to provide validation is the

workload generator. The statistics of the papers that men-

tion such use are summarized in Table V. The workload

generators such as httpref and SURGE that are not based

on any benchmark have been used in 19 and 15 papers

respectively. Furthermore, the workload generators can be

classified as open-loop or closed-loop. For instance, httpref

and SURGE are open-loop workload generators that send the

requests without considering the completion of the previous

requests sent by a particular user. In contrast, the work-

load generator provided by the Rubis benchmark simulates

closed-loop workloads, i.e., the next request is sent based on

the completion of the previous request of a particular user.

D. Cross Analysis

Figures 5a, 5b and 5c illustrate cross analysis of some of

the subcategories of the taxonomy. The response time has

40

Data center
VM

Middleware
Real−time sys.

Response time
Miss ratio

Power Util.
Processor Util.

0

20

40

(a) Performance variable vs Domain

Black−box
Queuing

Analytical

Feedback

Feed−forward

Feedback + Forward

0

50

100

(b) Type vs Model

SISO
Multi−SISO

MIMO

Fixed
Adaptive

MPC
LQR

0

20

40

(c) Scheme vs Dimension

2000 2002 2004 2006 2008 2010
0

5

10

15

20

25

Year

N
u

m
b

e
r

o
f

p
u

b
lic

a
ti
o

n
s

(d) Publications in each year

2000 2002 2004 2006 2008 2010
0

20

40

60

Year

P
e

rc
e

n
ta

g
e

 (
%

)

Middleware

Data center

VM

Storage

(e) Domain

2000 2002 2004 2006 2008 2010
0

20

40

60

80

Year

P
e

rc
e

n
ta

g
e

 (
%

)

Response time

Power Util.

Processor Util.

(f) Performance variable

2000 2002 2004 2006 2008 2010
0

50

100

Year

P
e

rc
e

n
ta

g
e

 (
%

)

Fixed

Adaptive

MPC

LQR

(g) Scheme

2000 2002 2004 2006 2008 2010
0

50

100

Year

P
e

rc
e

n
ta

g
e

 (
%

)

SISO

Multi−SISO

MIMO

(h) Dimension

Figure 5: Cross and trend analysis of subcategories of the taxonomy

been used widely across all application domains, middleware

being the highest (see Figure 5a). In addition, the power and

processor utilization are used as the control variables in the

domains of data center and VM environments. In contrast,

the variables such as miss ratio and processor utilization

have been used widely in the case of real-time systems.

Such observations indicate that the managed performance

attributes vary depending on the application domain and

have to be carefully selected. There is also a correlation

between how the system model is developed with respect to

the type of the control system designed. According to Figure

5b, feedback control loops have been mostly designed based

on a black-box model. Furthermore, when the feed-forward

path is integrated to the control system, queuing models

have been used to predict the behavior of the system. In

Figure 5c, the control schemes are analyzed with respect to

loop dimension. It is evident that the SISO and multi-SISO

control systems have been widely developed using fixed gain

(PID) control schemes. In contrast, MIMO control systems

are mostly developed using MPC or LQR, indicating their

ability to deal with MIMO control problems. Although it

is not shown in Figure 5c, all the cascade control systems

are designed as multi-SISO control systems, whereas the

hierarchical and decentralized control systems are designed

as multi-SISO or MIMO control systems. If the validation

technique and application domain are compared, the case

study based validations are popular across all the domains,

apart from the real-time systems. In the case of real-time

systems, the simulation studies have been widely used as

well.

E. Trends

Figures 5e, 5f, 5g, and 5h show the percentages of work

done in some of the subcategories from the total work

across all subcategories in each year1. One of the main

observations from Figure 5d is that the applications of the

control engineering methodologies have increased in the

last ten years. A contributing factor may be the increasing

trend in investigating control engineering solutions for the

problems in application domains such as data centers and

virtual machine environments (See Figure 5e). Figure 5f

illustrates increasing trends in performance variables such as

response time and power utilization. The increasing demand

for delivery of quality of service attributes such as response

time, the inclusion of such requirements in the service level

agreements and penalties involved in violations of these

requirements may have affected this trend. Furthermore, the

costs of power and demands for green computing may have

triggered the investigation of control solutions to manage

performance variables such as power utilization. There are

increasing trends in the application of adaptive, LQR and

MPC control schemes (see Figure 5g). It is hard to decide

on the trends of other complex control schemes because of

the lack of applications (data). Compared to SISO solutions,

investigation of MIMO solutions have gathered momentum

in the recent years according to Figure 5h. It is an interesting

statistic that indicates a shortcoming in the efficiency of

earlier attempts at SISO solutions. In the case of valida-

tion category there is no significant treads in both of the

subcategories.

1The statistics of year 2011 were excluded because the publications of
the entire year were not covered by this survey.

41

F. Limitations of the Survey

The search process of the papers was a manual process

based on the title, key words and abstract. There may be

cases where some papers were not included in the search

results because of the lack of standards in such attributes of

the paper. Consequently, this survey may not have exhaus-

tively covered the entire literature. Hence, the quantitative

results provided by this survey are really only valid based on

the 161 papers included in the survey. Another challenging

task was to remove the duplication of contributions across

several papers. This is also a subjective process which may

have introduced bias in some areas of the survey. Finally,

as with all categorical schemes, the taxonomy developed is

also, to some extent, subjective. To mitigate this limitation

we started off with a basic structure and then extended the

taxonomy during the data extraction process.

VI. CONCLUSIONS

In the existing literature many self-adaptive software sys-

tems have been implemented based on control engineering

methodologies. This paper provides the details of a system-

atic survey of such control engineering approaches proposed

in 161 papers in the literature. A classification model was

built to capture and represent the information about each

paper at a high-level of abstraction. The quantitative results

were also presented and analyzed, providing an insight

into the scope, extent and trends of research based on the

categories of the classification model.

REFERENCES

[1] T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, and X. Zhu,
“Introduction to control theory and its application to comput-
ing systems,” in International Conference on Measurement

and Modeling of Computer Systems, 2008.

[2] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu,
“Feedback performance control in software services,” IEEE
Control Systems, vol. 23, no. 3, pp. 74 – 90, 2003.

[3] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, “Software
engineering for self-adaptive systems.” Springer-Verlag,
2009, ch. Engineering Self-Adaptive Systems through Feed-
back Loops, pp. 48–70.

[4] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee,
el al., “Software engineering for self-adaptive systems.”
Springer-Verlag, 2009, ch. Software Engineering for Self-
Adaptive Systems: A Research Roadmap, pp. 1–26.

[5] T. Dybå and T. Dingsøyr, “Empirical studies of agile soft-
ware development: A systematic review,” Inf. Softw. Technol.,
vol. 50, pp. 833–859, 2008.

[6] J. Guitart, J. Torres, and E. Ayguadé, “A survey on per-
formance management for internet applications,” Concurr.
Comput. : Pract. Exper., vol. 22, pp. 68–106, 2010.

[7] R. Gullapalli, C. Muthusamy, and V. Babu, “Control systems
application in Java based enterprise and cloud environments-a
survey,” International Journal of Advanced Computer Science
and Applications, vol. 2, pp. 103 –113, 2011.

[8] J. Hellerstein, S. Singhal, and Q. Wang, “Research challenges
in control engineering of computing systems,” IEEE Trans-
actions on Network and Service Management, vol. 6, no. 4,
pp. 206 –211, december 2009.

[9] J. Hellerstein, “Challenges in control engineering of com-
puting systems,” in American Control Conference, vol. 3, 30
2004-july 2 2004, pp. 1970 –1979 vol.3.

[10] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
Feedback Control of Computing Systems. John Wiley and
Sons, 2004.

[11] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing-degrees, models, and applications,” ACM Comput.
Surv., vol. 40, pp. 7:1–7:28, 2008.

[12] B. Kitchenham and S. Charters, “Guidelines for perform-
ing Systematic Literature Reviews in Software Engineering,”
Keele University and Durham University Joint Report, Tech.
Rep. EBSE 2007-001, 2007.

[13] T. Patikirikorala, “A systematic survey on the design of
self-adaptive software systems using control engineering
approaches,” Tech. Rep., 2012, http://www.ict.swin.edu.au/
personal/tpatikirikorala/Research.htm.

[14] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A multi-
model framework to implement self-managing control sys-
tems for QoS management,” in International symposium on
Software engineering for adaptive and self-managing systems,
2011, pp. 218–227.

[15] M. Salehie and L. Tahvildari, “Self-adaptive software: Land-
scape and research challenges,” ACM Trans. Auton. Adapt.
Syst., vol. 4, pp. 14:1–14:42, May 2009.

[16] M. Shaw, “Beyond objects: a software design paradigm based
on process control,” SIGSOFT Softw. Eng. Notes, vol. 20, pp.
27–38, January 1995.

[17] K. J. strom and B. Wittenmark., Adaptive Control. Addison-
Wesley Publishing Company, 1995.

[18] M. Turner, B. Kitchenham, P. Brereton, S. Charters, and
D. Budgen, “Does the technology acceptance model predict
actual use? a systematic literature review,” Information and
Software Technology, vol. 52, pp. 463 – 479, 2010.

[19] L. Wang, Model Predictive Control System Design and Imple-
mentation Using MATLAB. Springer Publishing Company,
Incorporated, 2009.

[20] C. A. Yfoulis and A. Gounaris, “Honoring SLAs on cloud
computing services: a control perspective,” in European Con-
trol Conference, ser. ECC09, 2009.

[21] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
P. Padala, and K. Shin, “What does control theory bring to
systems research?” SIGOPS Oper. Syst. Rev., vol. 43, pp. 62–
69, January 2009.

42

