COMPUTER-AIDED
DESIGN

ELSEVIE Computer-Aided Design 34 (2002) 321-336

www.elsevier.com/locate/cad

Embedding visual cognition in 3D reconstruction from multi-view
engineering drawings

Weidong Geng®™*, Jingbin Wang®, Yiyang Zhang"

*Media Arts Research and Study, Institute for Media Communication, GMD, D-53754, St Augustin, Germany
“Artificial Intelligence Institute, Department of Computer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China

Received 6 June 2000; revised 15 December 2000; accepted 29 December 2000

Abstract

In this paper we discuss how to reconstruct 3D models from multi-view engineering draws by employing human engineers’ approaches.
Human’s ‘divide and conquer’ interpretation strategy in visual cognition is simulated, and successfully carried out on the basis of spatial
division of 3D object space. At first, a volume-oriented method is utilized to decompose the 3D object space in a set of 3D ‘cell-boxes’ whose
three-view bounding rectangles will isolate its related sub-projections from input projections views, and in every cell-box a cell primitive is
implied. Then, a 3D model of each cell primitive is ‘locally’ generated from its ‘sub-projection’ views by wire-frame oriented algorithms.
The final interpretation result of the overall projection-views is a ‘Union’ of these cell primitives. To deal with the ambiguity, a visual
reasoning engine is implemented on the basis of principles from Gestalt psychology. It will be activated to pick out the most reasonable
interpretation, when ambiguities are generated during the reconstruction process. The section views are also incorporated in getting rid of the
ambiguity. Moreover, we design a natural and convenient interaction way to encourage the user to be involved in the process while
interpreting complex projections. The key steps of this human-like reconstruction approach are presented in detail. © 2002 Elsevier Science
Ltd. All rights reserved.
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1. Introduction excellent surveys are given by Wang and Grinstein [2]
and Naendra and Gujar [3]. These algorithms can be cate-

Multi-view engineering drawings are used widely and gorized into two main types [2—4].

play an essential role in traditional engineering. 2D ortho-

graphic views are not only a powerful representation of 3D 1. Wire-frame-oriented approach or B-rep methods.

objects, but also standard media between design and manu- 2. Volume-oriented approach or CSG methods.

facture. Most existing products are represented in ortho-

graphic projections. Since most engineering tasks involve Other recent noteworthy advances are included in Refs.

modification of existing designs presented on paper, an auto- [5—14,24], which mostly focused on the efficiency and

matic system for constructing a 3D model of a multiple-view practicality of the algorithms. However, while compar-

engineering drawing would make full use of old designs, able with the ability of human understanding of multiple

and have a number of practical applications in addition to projections, these algorithms are still in the lab phase,

being of theoretical interest. and could not fully satisfy the anticipated practical
The interpretation of engineering drawings by computer requirements. These disadvantages mainly embody the

is a challenging task. Its main objective is to enable the following aspects:

computer to have human engineers’ ability to understand

engineering drawings. Up to now, researchers have come 1. While multiple interpretations exist, the engineers can

up with a number of algorithms to generate 3D objects from make use of its intrinsic shape features and context-

user-specified orthographic projections (or views). Some dependent knowledge to give a suitable ‘conjecture’

by reasoning, and obtain the expected interpretation.

* Corresponding author. Tel: +49-224-114-1510; fax: +49-224-114- Most existing algorithms lack this ability. Sometimes
2449. there is only one interpretation in an engineer’s eyes,
E-mail address: weidong.geng@gmd.de (W. Geng). but ambiguity will arise in a machine’s reconstruction.
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Fig. 1. Definition of 3D object space—S_Box.

2. 3D geometry and topology are usually generated
simultaneously when human engineers interpret 2D
engineering drawings, but this 3D recovering mechan-
ism is seldom taken into account either in current B-
rep or CSG approaches. ‘Ghost’ elements (some
pathological or surplus edges), which make sense in
projection but fail to satisfy topological properties of
3D objects, are generated in the wire-frame-oriented/
B-rep approach [2,3]. It is not easy to eliminate all of
them in complicated cases. The volume-oriented
approach assumes that each 3D solid object can be
hierarchically built from certain primitives. However,
it is difficult to recognize special patterns of primi-
tives from complicated engineering drawings.

3. Section views play an important role in getting rid of
the ambiguity of hidden parts in 3D models.
However, it is often ignored in existing approaches.
In fact, section views are a useful complement of the
three-view projections representation, being very effi-
cient in conveying the interior structure of 3D
models.

As an attempt to solve these problems, here we propose
a ‘human-like’ multiple-view reconstruction approach,
which is a hybrid of wire-frame and volume-oriented
scheme for automatic interpretation of engineering
drawings. A prototype system, AUTOBUILD, is also
presented.

2. Algorithm framework for 3D reconstruction
2.1. Algorithmic description of human engineer’s approach

Human engineers usually adopt a ‘divide and conquer’
strategy to do the interpretation of engineering drawings
[15]. This tactic in three-view reconstruction could be
summarized as three major steps [16,17]: ‘partitioning the
object space’; ‘extracting the sub-projections’; and ‘figuring-
out the solid shape’. In the first step, an engineer decom-
poses the 3D object space (Fig. 1b) in his or her mind based

on experience, preference, and background knowledge, and
‘mark’ their division in multi-view projections using 2D
rectangles. That is, the 3D object space is at first divided
into a set of ‘cell’-boxes that are described by its three-view
2D rectangles (a regular decomposition sample is shown
in Fig. 2b). Then, ‘extracting the sub-projections’ will
try to isolate the sub-projection views in related 2D rec-
tangles, purge unrelated drawings, check the consistency,
resolve their conflicts, and accordingly get cell-box’s sub-
projections in each view. In each cell-box, ‘figuring-out the
solid shape’ is to recover 3D geometry and topology from
the sub-projection drawings included in the corresponding
rectangles, and create its 3D model inside the cell-box. If it
is still too complicated to be understood, it could be divided
recursively into sub-cell-boxes. Finally, all these 3D models
will be combined together into the resulting solid.

From the point of view of 3D modeling, the 3D
object space can be defined as a minimal 3D bounding
box of the resulting solid. It could be directly formed
from bounding rectangles of top, front and side views.
In a normal three-view case, let Rect_Top, Rect_Side,
Rect_Front, respectively, be the bounding rectangle of
top view, side view and front view. Then the 3D object
space (abbreviated as S_Box hereafter) is the 3D box
formed from the triple rectangles (Rect_Top, Rect_Side,
Rect_Front) (Fig. 1).

An example of regular decomposition of 3D object
space is shown in Fig. 2b. We can see that each cell-
box could be re-projected to the 2D input views and
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Fig. 2. Subspace division and cell-box partition in S_Box.
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generate corresponding 2D rectangles in projection
views. This can explain why the human engineer can
use 2D rectangles to directly construct cell-boxes and
partition the 3D object space.

In 3D modeling, a lot of available methods can be
employed to decompose the 3D object space, S_Box, into
regular cell-boxes. However, it is observed that partition
from human engineers is intentional and smart. The
mechanical experts [16,17] say that normally they will try
to avoid unnecessary partitions in 3D object space. That is to
say, one general principle behind a human engineer’s 3D
object space division is to generate as few cell-boxes as
possible. We can assume that the 3D object space could
be respectively divided into K, M and N sub-space along
the X, Y and Z axes (Fig. 2a), and K X M X N cell-boxes
(Fig. 2b) are further generated from them by split opera-
tions. Let us see how this minimizes the number of cell-
boxes in the 3D object space in mathematics.

Theorem 1. If K, M, N are integers, and +o0 > K, M,
N =1, then

K XM XN = maximum of (K,M,N)

where K X M X N = maximum of (K, M, N) if and only if
at least two of (K, M, N) are equal to 1.

What does this mathematical conclusion tell us? It
obviously says that, if human engineers intend to ‘minimize’
the number of cell-boxes in S_Box, one reasonable approach is
that they would like prefer to partition the 3D object space
based on tactics of ‘storey by storey’ (the ‘storey’ here is the
subspace division along one specific projection direction,
shown in Fig. 2a), rather than ‘room by room’ (the room
here is the cell-box in 3D object space, shown in Fig. 2b).
That is to say, if human engineers can understand and recon-
struct the 3D object in ‘storeys’, they will not further divide it
into ‘rooms’. This adaptive tactic is technically sound and
consistent with phenomena observed in reality.

In order to show how it works at algorithm level, we give
a reasonable non-recursive algorithmic description of the
human approach using C-like pseudo code in Appendix A.
Understand_Engineering_Draws() describes the main
reconstruction pipeline of human engineers. The try-until
block clauses mimic human engineers’ ‘trying to do’ activ-
ities. Cell_reconstruction()simulates human engineers’
basic understanding ability of engineering drawings. The
core activities of Partition&Reconstruction() and Further_
Partition&Reconstruction() are both to partition the 3D
object space/subspace into cell-boxes and reconstruct the
3D objects in them. They are given separately here because

the non-recursive description is expected. However, it
should be addressed here that the pseudo code in Appendix
A is just to explain the main idea of the human approach. It
does not mean that human engineers always fulfill recon-
struction task exactly that way.

2.2. Algorithm idea

According to the pseudo code in Appendix A, the key
issues in mimicking human interpretation approaches lie
in the following aspects,

1. How to ‘divide’ S_Box. The 3D object space partition
should make sense by simplifying the 3D object in
cell-boxes, as one obvious purpose of division is to
make sure that the 3D solid in the cell-box can be
reconstructed more easily than that in S_Box. Human
engineers can accomplish the object space division
easily, as they have sophisticated intelligence including
commonsense, experience, and learning skills. Is it pos-
sible to find a general and domain-independent way to
partition the 3D object space, and can the computer do
this automatically?

2. How to ‘conquer’ the interpretation in cell-boxes. Human
engineers are very smart in interpreting engineering
drawings, as they can take non-geometric constraints
(commonsense, experience, background knowledge,
etc.) into consideration. Can we find such an effective
algorithmic mechanism to do Cell_Reconstruction()
similarly? How to design a better algorithmic mechanism
that could well simulate the interpretation ability of
human engineers? Fortunately a lot of work [1-14,18—
24] about 3D reconstruction from multi-views has been
done so far. They will help us find reasonable solutions
for these crucial points in simulation of the human inter-
pretation approach.

The major principle behind the object space partition is that
the 3D object in the cell-box should be simpler than that in
the overall S_Box, and can be more easily reconstructed.
According to the pseudo code in Appendix A, the key point
of S_Box partition is how to automatically figure out
X_Partition, Y_Partition, and Z_Partition by computer.
Comparing Fig. 2a with Fig. 1b, we find that the subspace
division in 3D object space, S_Box, can be converted into
partition of the bounding rectangles, Rect_Top, Rect_Front
and Rect_Side, of the partition.

Considering a typical bottom-up wire-frame/B-rep pipeline
shown Fig. 3, it starts from the 2D points in projections, and
ends with the 3D object. It obviously shows that the complex-
ity of the resulting 3D object is mostly controlled by 2D points

2D Points in 3D

Projection Views Vertices

iD 3D 3D
Edges I’ Faces B Object

Fig. 3. A typical pipeline of wire-frame/B-rep approach.
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in projection views. That is to say, the 3D object in the cell-box
will probably be simplified if we try to decompose the object
space by 2D points in projection views. We manage to design
such an automatic sub-space division method according to all
2D points in multi-view projections. Its major steps of how
to generate X_Partition, Y_Partition, and Z_Partition are as
follows.

Algorithm for generating X_Partition, Y_Partition and
Z_Partition.

1. Collect all 2D points in projection views, and form a set
of these points, Point_Set.

2. For each element in Point_Set: extract the X component
(if it exists) of its coordinates, and insert it into one
specific set, X_Set = {ala is X component of coordinates
among all 2D points in projection views}. Therefore, we
obtain X_Set in which the X components of all the2D
points in projection views are included. We can respec-
tively generate the Y_Set = {b|b is Y component of coor-
dinates among all 2D points in projection views} and
Z_Set = {c|c is Z component of coordinates among all
2D points in projection views} in a similar way.

3. Sort and purge the elements in X_Set (no duplications are
allowed), then create a new set of halfspace descriptions
(plane equations), X_Split = {X = k|k € X_Set}, whose
elements accordingly correspond to each element in
X_Set. It is obvious that X_Split will form a subspace
partition of the 3D Object space along the X axis.

4. Similarly, we can sort and purge Y_Set and Z_Set, and
accordingly create the halfspace description set,
Y_Split={Y=m|m € Y_Set}, and Z_Split={Y =
m|m € Z_Set}.

5. Create the subspace description along the X, Y, Z axes,
X_Partition, Y_Partition, Z_Partition, on the basis of
X_Split, Y_Split and Z_Split.

About how to ‘conquer’ the interpretation in cell-box, one of
its key points is how to effectively make use of the specialized
features of cell primitives, and take more constraints into
account in Cell_Reconstruction(). One significant specialty
of cell primitives comes from the assumption that the 3D
object in the cell-box is simpler than that in the overall
S_Box. It means that we can give some general prerequisite

restrictions to describe ‘how simple is simple’ for 3D objects
in cell-boxes, and incorporate some commonsense
constraints into reconstructing them. We learn from the
CSG approach that a usual way to include additional
constraints into interpreting engineering drawings is to
assign primitive types such as box and cylinder to the 3D
objects in cell-boxes. In our case, the S_Box has already
been divided into cell-boxes, if we can specify types for
cell primitives, which can describe the 3D object in almost
any cell-box, our reconstruction algorithm will be able to
take ‘extra’ non-geometric constraints into consideration.

At the algorithm level, the sub-task of understanding
engineering views in a cell-box is to restore geometric and
topologic information lost during the process of projection
from 3D object to 2D. Human engineers are often reported
to simultaneously recover 3D geometry and topology from
projection views, instead of B-rep’s using geometric infor-
mation to decide topologic information in a 3D object,
which might be the main cause of generating ‘ghost’
elements in the B-rep approach. Can we find a new
human-like mechanism to create the 3D model like this?

Considering modeling operations in 3D solid modeling
[22], we find that the translational sweeping operations have
the advantage of ‘simultaneously’ generating 3D geometry
and topology based on its 2D baseface. So, in Fig. 4 we
propose such a reconstruction pipeline for cell primitives.
‘Ghost’ elements might be greatly reduced, as its 3D model
creation makes full use of 2D topological information (loops)
in input views by employing general translational sweeping.

Therefore, we combine the aforementioned requirements
together, and fortunately ‘discover’ such a primitive type,
cell primitive, which is defined as its 3D object that could
be generated by general translational sweeping operation.
Its formal definition is given in Section 2.3.

After the core issues of how to make the algorithm work
have been resolved, the rest is how to improve the algorithm
performance including efficiency, robustness and reliability,
etc. On the basis of the pseudo code in Appendix A, the
following interaction options are further added to optimize
algorithm performance, although the algorithm itself can
work automatically.

1. Explicit order/sequence specification of try-clauses. The
user can explicitly change the default sequence of try-
clauses by interactively specifying main/secondary

2D points in 3D Vertices 3D Edges I
input views > (Trajectory) 3D
model of
I cell
2D loops in o - - primitive
input views 2D basefaces with 3D plane equation T

General Translational
Sweeping

Fig. 4. Cell primitive reconstruction.
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reconstruction direction. From the pseudo code in
Appendix A we see that on average three try-clauses
will be executed for a fixed order/sequence of try-
clauses. However, if the user can re-define the order of
try-clauses for each individual task, one trial will usually
lead to the resulting interpretation. This will significantly
improve algorithm efficiency.

. ‘Smart’ partition. The user is allowed to interactively
partition the3D object space by drawing 2D rectangles
in input views, and related cell-boxes will be constructed
directly from these 2D rectangles. It is very helpful to
deal with some special cases in the partition of the 3D
object space (see discussion in Section 7).

. Result verification when ambiguity exists. When ambi-
guity arises during interpreting cell primitives, the user
can confirm or rectify the most possible interpretation by
answering ‘Yes/No’ questions, or directly picking up the
desired result from a list of candidates. This makes the
result be more reliable, and ensure that the resulting
solid will be more consistent with a human engineer’s
interpretations.

In addition to the aforementioned interactive options,
section-views processing and visual reasoning, which are
especially designed for dealing with multiple interpreta-
tions, are also introduced in our algorithm. The reconstruc-
tion pipeline and major algorithm steps are described in the
next section.

2.3. Algorithm pipeline and major steps

The terminology in 3D reconstruction from multi-view task

could be generated by a general translational sweeping
modeling operation.

Baseface— A baseface is the bottom face of the cell primi-
tive that could be swept translationally to construct a 3D
model of the cell primitive. It is a 2D face that lies in a 3D
plane.

Trajectory—The trajectory is a 3D edge vector that defines
the sweeping movement of every vertex in the baseface.
Reconstruction direction—1It is a normalized vector that
indicates the translational sweeping direction. The potential
reconstruction directions are input views’ projection direc-
tion and its opposite. It can be interactively specified by the
user.

Horizontal plane (HP)—A horizontal plane is a projection
whose view direction is parallel to the reconstruction
direction.

Vertical plane (VP)—Vertical planes are the projections
whose view directions are perpendicular to the reconstruc-
tion definition.

Reconstruction context—It is a composite data structure
that describes all the related information related to the
current interpretation task, including reconstruction direc-
tion, HP, VPs, section views, half-space partition, current
baseface and the 3D model of the cell primitives.

An overall interpretation process to carry out the algorithm
idea in Section 2.2 is shown in Fig. 6. It is based on our
previous work on multi-view reconstruction [23].

Considering the characteristics of a general translational
sweeping operation, the major steps of 3D reconstruction in
AUTOBUILD are given as follows.

varies among different papers. Some terminologies related to Step 1  Reconstruction direction is optionally picked up
our approach are first defined here (shown in Fig. 5). from positive or negative projection directions of
all input views. A secondary reconstruction direction
e Cell primitive—Cell primitive refers to the 3D object in the can also be specified if necessary. A default one is the
cell-box. Here, it is further specified as the 3D solid that negative projection direction of the top view. The
o Y
Mpting 1) Partition of Generation Have all ™. Yes [ pssemble primitives
Engmesring | primitives of primitives possible primitives and get the result solid
drawings been handled
ambigurty or
inconsistence —=
occurs

Users' Interaction

Fig. 6. An overall pipeline of reconstruction in AUTOBUILD.



326 W. Geng et al. / Computer-Aided Design 34 (2002) 321-336

system will try to do its interpretation task first from
this reconstruction direction. In the extreme case, all
six potential reconstruction directions will be put into
trial by the system.

Step 2 According to the reconstruction direction and the
2D points in the relevant views, the 3D object
space is divided into cell-boxes, and in each cell-
box its sub-projections are extracted from the
source input views. The cell-boxes can also be
directly created from 2D rectangles drawn in engi-
neering views by the user.

Step 3 In each cell-box, the pipeline in Fig. 4 is employed
to recover geometric and topologic information of
cell primitives. Its corresponding baseface and
trajectories of each vertex in the baseface are
reconstructed from multiple subviews, and then
the general translational sweeping operation is
performed to generate its 3D model. If there are
ambiguities or inconsistencies, section view
processing and visual reasoning will be activated
to help select a reasonable result. Users are also
permitted to interactively eliminate unsuitable
interpretations if the system could not solve these
ambiguities automatically.

Step 4 After 3D models of all possible primitives are
generated, the assembly operations, i.e. face-glue,
Union, etc., are executed to compose the resulting
solid step by step. The resulting solid will be
checked to see whether it could interpret the
input views consistently and completely. If true,
the resulting model is successfully returned as
both CSG tree and boundary representation based
on a half-edge data structure [22], otherwise, the
user is required to intervene in the interpretation
process, and re-interpret it again in an interactive
manner.

In the rest of the paper, the partition of the 3D object space
will be discussed in Section 3, and Section 4 covers the
creation of a 3D model for cell primitives, including genera-
tion of baseface and calculation of sweeping trajectory. The

wvertical piane of

interpretation of section views and visual reasoning engine
are discussed in Sections 5 and 6, respectively, and finally
some discussions and future work are presented.

3. The partition of 3D object space

According to the pseudo code in Appendix A, the major
task of 3D object space partition is to figure out X_Partition,
Y_Partition and Z_Partition, and isolate cell primitives’
sub-projections by cell-boxes. The assumption behind our
space division is that the complexity of the3D resulting
object is mainly dependent on the 2D points in projection
views. Of course, we can directly utilize the partition algo-
rithmic steps in Section 2.2 to decompose the 3D object
space. Unfortunately, in most cases it is redundancy to
generate all subspace partitions in advance. In AUTO-
BUILD, the 3D object space decomposition is refined by
reconstruction direction, and classified as two main cases:
single-direction partition and multi-direction partition.

The single direction partition works as follows.

P1: All points in VPs are sorted incrementally according
to their vertical (height) component. This is similar to Y-
Bucket sorting, and height layers along the reconstruction
direction are generated, as shown in Fig. 7.

P2: At each height in sorted bucket, plane equations are
created by setting its normal as the reconstruction direc-
tion. These planar surfaces will split the 3D object space
into subspaces along the reconstruction direction, and the
loops contained in the VPs will be further checked to
merge some adjoining subspaces, and accordingly form
a more suitable half-space description.

P3: Isolate the sub-projections, purge unrelated drawings
and check the consistency. Finally, a reconstruction
context is created to store the 3D object space partition
including split-plane equations, subviews of HP and VPs,
etc.

This partition process can automatically be accomplished in
AUTOBUILD. The cell primitives of Fig. 7 are shown in
Fig. 8. Its reconstruction direction is +y. HP is the x—z
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\ reconsiruction
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€ H H
¥ all bl el 11 y . ghi_hl o =T
|« 0 500 L o
ik Side view L (23,13, ¢3} ” The
i half-space
’—Z_“ - : A 100 description
F {22,b2,c2,d2,e2 12 one
£2,g2,h2,i2,j2 } segment
-, "
Layer 1 - {al,hl,cl,dl, rl ]
el,fl,gl,hl} z

\
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Fig. 7. Generation of half-space description.
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plane. Its partition consists of three subspaces, i.e. [0, 100],
[100, 175], [175, 200], along the +y direction.

If one direction is not sufficient to clearly and
completely partition the resulting solid into cell primi-
tives, multiple reconstruction directions will be specified
to split the 3D object space, and the system will try to
figure out their corresponding subspaces based on the
loops information in projections. Along each reconstruc-
tion direction, the subspaces are further partitioned in
the same way as that in single direction partition. The
system will isolate the subdivided projection drawings
by different reconstruction directions and create a root
context for multi-direction partition. The related recon-
struction sub-contexts are created for each reconstruc-
tion direction. The interpretation processes will be
recursively performed in reconstruction sub-contexts,
and the resulting models are a ‘union’ of 3D objects
reconstructed from reconstruction sub-contexts. Fig. 9 is
an example of multi-direction partition.

If the user interactively specifies the 3D object space
partition by 2D rectangles, then cell-boxes will be directly
built from these 2D rectangles, and accordingly generate the
reconstruction context.

4. 3D model creation for cell primitives

According to the definition of cell primitives and the
pipeline in Fig. 4’s, if the baseface has been formed and
the trajectory of each vertex in the baseface has been deter-
mined, the 3D model of the cell primitive could be directly
created by a general translating sweeping operation. Its
major steps are as follows.

C1: Create the baseface of the cell primitive from the

loops in the HP and bounding information of VPs.

vertical plane of
reconstruction(¥P)

f 175
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T
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180 500 d
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C2: Calculate the trajectory of each vertex in the baseface
on the basis of HP and VPs.

C3: Generate the 3D model of the cell primitive by
general translational sweeping operation.

Steps 1-3 will be repeated in each cell-box until all 3D
models of primitives are created.

4.1. Generation of baseface

In general, the baseface of cell primitives consists of one
out-loop and a group of inner-loops. The out-loop describes
the boundary of the baseface, and the inner-loops form its
inner holes. We must identify these related loops, and
accordingly form the baseface from them. In AUTOBUILD,
its algorithm steps are as follows.

1. Based on the boundary vertices of VPs in the cell-box, a
bounding rectangle for candidate outer-loops of current
baseface is created in the HP.

2. The algorithm in Ref. [11] is employed here to look for
all loops in HP. The loops whose bounding rectangles are
the same as the current bounding rectangle are picked out
as the candidate out-loops. These candidate out-loops are
further checked with the constraint of VPs. All unsuitable
loops will be discarded.

3. For each candidate out-loop, the loops inside it are all
selected as candidates for inner-loops. The candidate
inner-loops will also be similarly checked by constraints
from VPs.

4. The baseface is initially constructed from the out-loop by
Euler operation [22], and the holes in the baseface are
further created according to the inner-loops.

These steps are illustrated in Fig. 10 by four phases.
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Fig. 8. Partition by single direction.
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Fig. 9. Partition by multiple directions.

Normally, the baseface will be acquired uniquely after these
steps. However, ambiguity sometimes appears during this
process, and then section views processing and visual
reasoning (Sections 5 and 6) will be fired to deal with
them. In some complicated steps, users are also required
to verify the resulting loops for the baseface.

In general, this algorithm works effectively, and the
baseface could be directly obtained from the HP.
However, the 3D object space partition algorithm does
not guarantee that the loops of the baseface could always
be directly found in HP. Fortunately, it could be reason-
ably assumed that at least one cell primitive’s baseface
can be formed directly from the loops in the HP at the
beginning of interpretation. After the first primitive is
reconstructed, its top face will be re-projected to the
HP, and create ‘virtual’ loops in the HP to ensure that
the baseface of the next primitive could be successfully
generated from the HP. In AUTOBUILD, three proce-
dures are respectively developed to deal with different
cases in constructing the baseface. ‘FindStartFace’ is
for the case that the loops matched with the baseface
of the current cell primitive are all contained in the
HP. ‘FindNextFace’ is to find the baseface of the next
cell primitive after the top faces of the previously recon-

structed cell primitives have been re-projected to the HP.
‘FindMidFace’ handles the other special cases in forming
the baseface.

4.2. Calculation of sweeping trajectory for baseface

From Fig. 4, we see that most B-rep algorithms could be
employed here to calculate the sweeping trajectory for
vertices in the baseface. The relevant algorithms can be
found in Refs. [1-3]. In AUTOBUILD, all possible 3D
edges that could interpret vertices in the baseface are speci-
fied as candidate sweeping trajectories (the curves need to
be handled specially here). Then, unsuitable trajectories will
be eliminated step by step based on the qualitative analysis
of the attributes (visibility, etc.) of the vertex in the baseface
and the modeling principles of manifold solid [22]. The
trajectory calculation steps in AUTOBUILD are as follows.

1. All 2D edges of VPs in the current cell-box are checked
to find all 2D candidate edges corresponding to vertices
in the baseface.

2. The 2D candidate edges are purged according to some
basic rules. For example, if a vertex in the baseface is
visible in a VP, then 2D edges that interpret it in this VP
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Fig. 10. Generation of the baseface.

should also be visible. So, the dashed candidate edges in
this VP should be deleted from the 2D candidate edges
list.

. 3D vertices are calculated from triplets of end points of
2D candidate edges. If the coordinates of 2D points in
the front, top and side views are Pu(x;, yy), P(x, 2,
Py(ys, z5), respectively, and they satisfy x;=x, yf= s,
7=z, then the 3D vertex is (xg, y; z). 3D edges are
further generated by examining the connectivity of two
3D vertices.

. The curves in the baseface are tackled specially. At
present AUTOBUILD allows circles and arcs to appear
in input views. These curves should be kept as a whole
in computing the sweeping trajectory. However,
AUTOBUILD’s translational sweeping operation is
performed on the half-edge data structure [22], in
which circles and arcs have been converted into
discrete edge segments. So, some necessary assemble
operation is needed to revert them to their original type
during trajectory calculation. If other types of curves
exist in the baseface, they should be handled in a
similar way.

. Post-processing. Normally, only one sweeping trajec-
tory is permitted to be assigned to one specific vertex
in the baseface. However, sometimes more than one
trajectory can be potentially assigned to the same
vertex in the baseface, or there is no corresponding
trajectory to it at all. In these cases, we should split
the vertex in the baseface by inserting ‘null’ vertices,

or ‘merge’ it to its neighboring vertices during sweep-
ing. The user could also interactively decide the corre-
sponding trajectory if the automatic splitting or
merging fails.

An example of trajectory calculation is shown in Fig. 11.
Fig. 11a is the input three-view drawing. Its baseface is
shown in Fig. 11b. In front view, both L1 and L2 could
interpret the vertex e or f in the baseface, but according to
the rules in step 2, it is obvious that only L2 can interpret
vertex f. C1 and g—h in the baseface are treated as circles
and arcs. Post-processing is also needed here. The result-
ing solid is shown in Fig. 1lc.

4.3. A typical reconstruction example

As a brief summary of this section, a typical interpretation
process is shown in Fig. 12.

5. The interpretation of section view

From a pragmatic viewpoint, an effective mechanism of
coping with multiple interpretation is necessary, as multi-
view projections are imperfect in conveying 3D models.
Information is somewhat lost when 3D objects are projected
into engineering drawings. Although the invisible features
of a simple object usually may be described on a three-view
drawing by the use of hidden lines, it is unwise to depend on
such a perplexing representation to describe the interior of a
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complicated object. At this point, the section view plays an
important role in representing the internal structure and
eliminating the ambiguities. So, it is reasonable to introduce
the section view into the interpretation process and enhance
the capability of handling ambiguities in 3D reconstruction.

From the standpoint of interpreting engineering drawings
by machine, the section view is different from the ortho-
graphic projection view. It indicates the critical cues for
interior shape structure, and the shape patterns presented
in a section view are somewhat more important than pure
geometric constraints. Normally, their interpretation is
based on the partial 3D model. That is to say, the related
3D models are needed while interpreting the section view.
In AUTOBUILD, section views are handled as an additional
virtual partition of 3D object space. This makes section
views be ‘naturally’ included in our human-like approach.

For the time being, AUTOBUILD only has the ability of
processing full sections (one main type of section view),
which includes two main types: longitudinal section and
crosswise section. Longitudinal section can help check
candidate loops in baseface generation, or confirm the
trajectory selection. As shown in Fig. 13a, the shape patterns
are employed to rectify the inner loops (holes in the solid).
Its processing steps are as follows.

1. The section views are stored together with orthographic

views in the reconstruction context, and registered as a
virtual partition with the cell-boxes that it passes through.
. If ambiguity arises during the construction of the base-
face, shape patterns extracted from the section view will
help select candidate loops. The boundary shapes are
contributory to picking up out-loops, and non-boundary
patterns are helpful to match the holes in the baseface.
3. If multiple interpretations exist in the trajectory calcula-
tion of the baseface, all possible 3D models from the
multi-interpretation are generated first, then a virtual
plane (cut-face) based on the section view will split
these candidate 3D models in the current cell-box, and
compare the shape patterns in the cut-face with that in the
section views. 3D candidate models which do not match
the shape patterns in section views will be thrown away.

In crosswise section, the cut-face in the section view
usually indicates the contour of the baseface. Shape
patterns such as loops can be directly used to determine
candidate loops of the baseface (the candidate loops of
the baseface shown in Fig. 13b are shown in Fig. 14). In
AUTOBUILD, it works as follows: at first, the relation-
ship of crosswise section views and the current cell-box
is inspected. If the section view and the baseface are in
the same 3D plane, then the loops in the section views
will be utilized to identify the candidate loops for the
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Fig. 14. Candidate basefaces.

out-loop and inner-loops of the baseface. If they are
not in the same plane, the intersection points between
section planes and the candidate trajectories are com-
puted. Those candidate trajectories whose intersection
points collide with that in section views will be con-
sidered as ‘unsuitable’ ones. It is also useful to decide
the mapping between candidate trajectories and vertices
in the baseface.

6. The visual reasoning engine

Visual reasoning is designed to help the user deal with
multiple interpretations. It makes the interpretation gener-
ated by computer mostly be the same as that from human
engineers. It is based on the following facts: experienced
engineers sometimes can understand engineering drawings
although there are ambiguities; they can speculate the most
probable results based on their experience including the
principles of visual cognition, commonsense, and back-
ground knowledge. The visual reasoning engine is proposed
here to simulate this capability of experienced engineers,
and the desire to enable the computer have similar ability
to that of human engineers.

The visual cognition principles are an abstract
description of the psychological mechanism by which
humans fulfill visual cognitive tasks such as understand-
ing and recognizing visual shapes. In AUTOBUILD,
three well-known cognitive principles derived from the
Gestalt Psychology are employed to determine which
one has the maximum possibility when multiple inter-
pretations are generated.

1. The principle of symmetry (SYP): the candidate shape
which includes most symmetry will have more possi-
bility of becoming the anticipated interpretation.

2. The principle of tendency (TP): the candidate shape
which could continue the movement tendency indi-
cated by most sweeping trajectories will become the
most possible interpretation.

3. The principle of simplicity (SIP): the shape which is
the simplest among the candidates will have the
maximum possibility as expected interpretation.

In AUTOBUILD, SYP and SIP principles are mainly
applied to evaluate the candidate loops of the baseface
and directly pick out the most probable interpretation.
The ‘symmetry’ and ‘simplicity’ of candidate loops are

calculated and sorted in descending order. For each
candidate loop, let Iy, and I, be the sorted index of
‘symmetry’ and ‘simplicity’, respectively, Wy, and Wy,
the weights of ‘symmetry’ and ‘simplicity’, are speci-
fied by the users. Then its synthesized possibility I is
(Wym/Iym + Wanm/lim) The candidate loop, which has the
largest I, will be chosen as the most probable antici-
pated loop. The pseudo code to calculate the ‘symme-
try’ and ‘simplicity’ of loops are given in Appendix B.

The TP principle is helpful to get rid of multiple
mappings between candidate trajectories and vertices in
the baseface, and select the one that best keeps the move-
ment tendency of the trajectory. The intersection angle
between the vector of the previous trajectory and the current
candidate are calculated as the weight of keeping movement
tendency. The candidate trajectory, whose intersection
angle is smallest, will be selected as the most probable
trajectory. An example of applying visual reasoning is
shown in Fig. 15.

7. Discussion and conclusion

We have implemented the prototype system, AUTO-
BUILD, using VisualC/C++ 6.0 in MS-Windows 98/NT
environment, in which we successfully simulate human
engineers’ ‘divide and conquer’ strategy of 3D reconstruc-
tion from multiple views. Its resulting solids are represented
as both CSG tree and boundary representation on half-edge
data structure [22]. As box, cylinder, cone, sphere could be
generated by general translational sweeping operations,
currently, AUTOBUILD has the ability of recovering a
3D object which is composed of planar (polyhedral), cylin-
drical, conical, or spherical surfaces.

From the point of view of algorithm, we successfully
bring B-rep and CSG approaches together in context of
3D reconstruction from multiple views. In such an inte-
grated solution, our major contributions are as follows.

1. We present a general way to partition the resulting solid
into primitives, instead of current CSG approaches,
recognizing primitives from projections. It is obvious
that primitive partition is easier to be realized than primi-
tive recognition.

2. We propose an innovative sweep-based 3D model crea-
tion method that makes full use of 2D topology (loops)
explicitly represented in input views, and directly ‘gener-
ate’ 3D topology in the 3D object, instead of the existing
B-rep approach, using geometry to decide topology. It
significantly reduces ‘ghost’ elements. Even if the
‘ghost’ elements do exist, the principles from existing
B-rep algorithms are more effective to eliminate them,
as cell primitives here are relatively simple.

3. One significant ‘by-product’ of our approach is that pro-
cessing of section views are easily and naturally incor-
porated into the reconstruction process by treating
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section view as an additional virtual partition of the 3D
object space.

. Visual reasoning engine is introduced to cope with the
problem of multiple interpretations in multi-view 3D
reconstruction.

. At the algorithm implementation level we designed a
human—machine cooperation mechanism in which a
natural and convenient interaction is provided. The stand-
point to let the reconstruction process be open to human
engineers is that, with some potential assistance from the
user, the system can to some extent individually incorporate
domain knowledge and commonsense into its current
reconstruction task. It can also compulsorily correct any

inconsistency that appears in the projection views. It is
very useful to help achieve the main objective of enabling
the computer to have human engineers’ ability to under-
stand engineering drawings.

The major limitations of our approach include the following.

1. The 3D object space partition is based on half-space
description, and normally no superposition is allowed
between cell-boxes. Unfortunately, such partition means
does not always ‘reduce’ the complexity of the 3D object
in a cell-box for a few curvilinear objects such as the cross-
intersection of two cylinders (shown in Fig. 16a). Our
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current solution is to let the user interactively draw two
intersecting 2D rectangles (Fig. 16b) in projection views,
and directly create two intersecting cell-boxes for them.
The resulting solid is still the union of 3D models in cell-
boxes (Fig.16c).

2. For the time being, only one primitive type is allowed in a
cell-box, and it sometimes is not sufficient to describe all 3D
objects in cell-boxes. For example, the torus, which is diffi-
cult to generate by general translational sweeping opera-
tions, is excluded for now. A potential solution is to include
more primitive types. Thatis, Cell_Reconstruction() can try
to re-interpret the 3D object in a cell-box according to
another primitive type if the interpretation based on the
current primitive type fails to get a result. However, such
are-interpretation will sacrifice algorithm efficiency. In our
current implementation, we do little for this, as we have not
yet found an acceptable domain-independent tradeoff
between algorithm efficiency and reconstruction ability.

The future work we are planning to do is to ‘customize’/
‘specialize’ this approach according to a specific applica-
tion domain. The continuing extension work includes the
following.

1. ‘Intelligent’ partition and specification of reconstruction
direction. The first step is to try to automatically generate
intersecting cell-boxes from some predefined subviews
by similar extrusion techniques [24]. The other is to re-
represent cell-box partitions of the 3D object space by
binary tree data structure, and try to heuristically search
the most economical path of S_Box division by mature
Al techniques such as backtracking and branch pruning.

2. Enhancing the interpretation ability of Cell_Reconstruc-
tion(). The overall reconstruction ability is heavily depen-
dent on the interpretation ability of Cell_Reconstruction().
More curvilinear primitive types such as torus, which do
make sense to one specific domain, are desired to be
included in Cell_Reconstruction(). The system will auto-
matically try to re-interpret the 3D object in cell-boxes
according to these new primitive types after its first try of
interpretation is failed. Some related work [6,10] can also
be integrated into the reconstruction of curvilinear objects.

3. Powerful mechanism of handling ambiguity. One way is to
improve its ability of processing section views by intro-
ducing more types of section views. The other is to let the
reasoning engine generate a more reasonable result by
adding more background knowledge (rules) and conven-
tions, which are acquired from the specific application
domain, to its knowledge base.
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Appendix A. Algorithmic pseudo codes of human
engineer’s approach

/I Global variables for the task of understanding engineer-

ing drawings

BoundingBox S_Box; //the 3D object space

ViewList InputViews; //a list of projection views and

section views

//at least two projection views are required

Subspace_Partition X_Partition; //subspace partitions

along the X axis

Subspace_Partition Y_Partition; //subspace partitions

along the Y axis

Subspace_Partition Z_Partition; //subspace partitions

along the Z axis

SolidList ResultSolids; //a list of solids recovered from

cells or subspace

Boolean bUnderstood; //indicates whether the task is

completed successfully or not

Boolean bFurther; //indicates whether the further try of

subtask is successful or not

//the main subroutine of human’s reconstruction pipeline

Task Understand_Engineering_Draws()

{

bUnderstood = FALSE; //initialize the global Boolean

values

Find the bounding rectangles of projection views in the

InputViews, and accordingly create the 3D object space,

S_Box;

If (Cell_Reconstruction(S_Box) = = TRUE) {
bUnderstood = TRUE; //the human engineer has
understood the input views
}

else {

Respectively figure out X_Partition, Y_Partition and
Z_Partition, in which include the half-space descrip-
tion of subspace division along each axis etc;

Try {//the actual sequence (order) of following try-
clauses are dependent on human

/lengineers’ preferences, experience, skills etc.

Partition&Reconstruction(S_Box, X_Partition,
Y_Partition, Z_Partition);
Partition&Reconstruction(S_Box, X_Partition,
Y_Partition, Z_Partition);
Partition&Reconstruction(S_Box, Y_Partition,
X_Partition, Z_Partition),
Partition&Reconstruction(S_Box, Y_Partition,
Z_Partition, X_Partition);
Partition&Reconstruction(S_Box, Z_Partition,
X_Partition, Y_Partition),
Partition&Reconstruction(S_Box, Z_Partition,

Y_Partition, X_Partition);
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} Until (bUnderstood = = TRUE} or (all clauses
have been tried);
}
If (bUnderstood = = TRUE) {
Create the result solid based on the list of ResultSolids,
or just represent it as CSG tree;
Return ‘I have understood it’;
{
else {
Return ‘I need help’ or ‘something goes wrong’;
}
}//end of Understand_Engineering_Draws()
//this subroutine is to mimic humans’ basic understanding
ability
Boolean Cell_Reconstruction(Bounding_Box,
Cell_Box) {
Extract the sub-projection views from the InputViews
according to Cell_Box;
If engineers can ‘easily’ recover the 3D model based on
the sub-projection views {
Create its 3D model and insert it into the list of Result-
Solids;
Return TRUE;

}
else Return FALSE;

}
//Partition the 3D object space and recover the solid based
on Cell_Reconstruction()
Subtask Partition&Reconstruction(BoundingBox
Sub_Box, //the current subspace
Subspace_Partition firstPartition,
Subspace_Partition secondPartition,
Subspace_Partition thirdPartition)
{
Integer n, i;
n = the number of subspaces in firstPartition;
Divide the Sub_Box into n cell-boxes: celly, cell;, ...,
cell, y;
Fori=0ton—1do {
If (Cell_Reconstruction(cell;) = = FALSE) {
bFurther = = FALSE;
Try {//the sequence (order) of following try-clauses
are dependent on human
/lengineers’ preferences, experience, skills etc.
Further_Partition&Reconstruction(cell;, secondPar-
tition, thirdPartition);
Further_Partition&Reconstruction(cell;, thirdParti-
tion, secondPartition);
} Until (bFurther = = TRUE) or all clauses have
been tried;
If (bFurther = FALSE)) {
bUnderstood = FALSE;
Delete all 3D solids inside Sub_Box from the list
of ResultSolids;
Return;
} //lend of bFurther = = FALSE

} //lend of if Cell_Reconstruction(cell;}) = = FALSE
} /lend of For...do
bUnderstood = TRUE;
Return;
}
//The core activity of this subroutine is the same as that in
Partition&Reconstruction(). It is
/lgiven separately here just because the non-recursive
requirement
Subtask  Further_Partition&Reconstruction(Boun-
dingBox Sub_Box,
Subspace_Partition firstPartition,
Subspace_Partition secondPartition)
{
Integer m, n, i, j;
n = the number of subspaces in firstPartition;
Divide the Sub_Box into n cell-boxes: celly, cell;, ...,
cell, 1,
Fori=0ton—1do {
If (Cell_Reconstruction(cell;) = = FALSE) {
m = the number of subspaces in secondPartition;
Divide the cell; into m sub-cell-boxes: subcell,
subcell,, ..., subcell,,_;
Forj=0tom — 1 do {
If (Cell_Reconstruction(subcell)) = = FALSE) {
bFurther = FALSE;
Delete all 3D solids inside Sub_Box from the
list of ResultSolids;
Return;
} /lend of If
(Cell_Reconstruction(subcell}) = = FALSE)
} //lend of For j=0tom — 1 do
} /lend of If (Cell_Reconstructionlcell;) = FALSE)
FALSE)
} /lend of Fori=0ton —1do
bFurther = TRUE;
Return;

}

Appendix B. Pseudo codes for calculation of ‘symmetry’
and ‘simplicity’

Float Calculate_Symmetry_of_Loop(CL)
Loop *CL;
{
Loop *Temp_Loop;
Temp_Loop = MaximizedLoop(CL);
// Temp_Loop is the same as CL except that the neighbor-
ing vertices
// and edges are merged if they share the same position or
line equation
If the lengths of all Temp_Loop’s edges are the same
Return Symmetry of CL as 10
Else if (Temp_Loop is symmetric in vertical or horizontal
direction)
Return Symmetry of CL as 5
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Else if (Temp_Loop is similar to parallelogram)
Return Symmetry of CL is assigned as a value
between 2 and 3 based on their similarity
Else Return Symmetry of CL as 1

}

Float Calculate_Simplicity_of_Loop(CL)

Loop *CL;

{

Loop *Temp_Loop;

Int Edge_Number;

Temp_Loop = MaximizedLoop(CL);

/I Temp_Loop is the same as CL except that the neighbor-
ing vertices

// and edges are merged if they share the same position or
line equation

Edge_Number = Count_Edges_In_Loop(Temp_Loop);
/I the number of edges in Temp_Loop is assigned to
Edge_Number

Return Simplicity of CL as (1/Edge_Number);

}
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