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bstract

This paper presents an efficient method for solving the economic dispatch problem (EDP) through combination of genetic algorithm (GA), the
equential quadratic programming (SQP) technique, uniform design technique, the maximum entropy principle, simplex crossover and non-uniform
utation. The proposed hybrid technique uses GA as the main optimizer, the SQP to fine tune in the solution of the GA run. Based on the maximum

ntropy principle, the cost function of EDP is approximated by using a smooth and differentiable function to improve the performance of the SQP.
n initial population obtained by using uniform design exerts optimal performance of the proposed hybrid algorithm. The effectiveness of the

roposed method is validated by carrying out extensive tests on two different EDP with incremental fuel-cost function taking into account the
alve-point loadings effects. The result shows that the proposed hybrid genetic algorithm improves the solution accuracy and reliability compared
o other techniques for EDP considering valve-point effects.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Economic dispatch is one of the most important problems
o be solved in the operation of a power system. Improvements
n scheduling the unit outputs can lead to significant cost sav-
ngs. The primary objective of the economic dispatch problem
EDP) of electric power generation is to schedule the committed
enerating unit outputs so as to meet the required load demand
t minimum operating cost while satisfying all unit and system
quality and inequality constraints [1]. This makes the EDP a
arge-scale highly non-linear constrained optimization problem.

The input–output characteristics of large units are inherently
ighly non-linear because of valve-point loadings, generating
nit ramp rate limits, etc. Furthermore they may generate mul-
iple local minimum points in the cost function. In light of the
on-linear characteristics of the units, there is a demand for tech-
iques that do not have restrictions on the shape of the fuel-cost

urves. To obtain accurate dispatch results, approaches with-
ut restriction on the shape of incremental fuel-cost functions
re needed. Whereas both lambda-iterative and gradient tech-

∗ Corresponding author.
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ique methods in conventional approaches to the problems are
alculus-based techniques, and require a smooth and convex cost
unction and strict continuity of the search space. Dynamic pro-
ramming (DP) [2] imposes no restrictions on the nature of the
ost curves and therefore it can solve EDP with inherently non-
inear and discontinuous cost curves. This method, however,
uffers from the “curse of dimensionality” or local optimality
1].

GA is a stochastic optimization technique, which is based
n the principle of natural selection and genetics [3,4]. It com-
ines solution evaluation with randomized, structured exchanges
f genetic information between solutions to obtain optimality.
lso it searches multiple solutions simultaneously in contrast to

onventional optimal algorithms. Therefore, the possibility of
nding global optimal solution is increased. The main advan-

age of GA is that it finds near optimal solution in relatively
hort time compared with other random searching methods.

In recent years, the interest in these algorithms has been rising
ast, for that they provide robust and powerful adaptive search
echanisms [5]. GA has an immense potential for applications
n the field of power systems and it has been successfully applied
o solve various problems in electric power systems such as eco-
omic dispatch [6,7], unit commitment, reactive power control,
ydrothermal scheduling, and distribution system planning, etc.

mailto:hedakuo@mail.neu.edu.cn
dx.doi.org/10.1016/j.epsr.2007.05.008
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hen compared with the foregoing conventional techniques,
A is well appreciated for their global optimality in complex

earch space (multiple local optima, multi-objective, non-linear,
iscontinuous and highly constrained space). Despite the afore-
entioned success, GA is only capable of identifying the high

erformance region at an affordable time and displays inherent
ifficulties in performing local search for numerical applications
8].

To overcome premature convergence and speed up the search
rocess, a hybrid method that integrates the GA with a gradient
earch algorithm called SQP [9] is proposed to take advantage
f both GA and the local search techniques. GA is capable of
xploring a large space, yet is slow in fine tuning local search. In
ontrast, SQP techniques can climb hills rapidly; however, they
re blind to the potential hills in the neighbourhood area and
ensitive to the initial starting points. The hybrid GA uses a GA
o identify the potential hill within a reasonably short period of
ime, while SQP technique subsequently takes over and rapidly
limbs the remaining hill. Therefore, this algorithm increases
he possibility of finding global optimal point and improves the
onvergence speed. The proposed hybrid technique uses GA as
base level search towards the optimal region and SQP method
s optimization to do the fine tuning.

In general, the hybrid method offers an exact solution only
hen the function is smooth and its gradient information are
nown [8]. The method is proposed to approximate EDP by
sing a smooth and differentiable function based on the max-
mum entropy principle. In this way, the performance of the
ybrid method is improved. At the same time, to improve
ationality of the distribution of initial population, the hybrid
echnique integrating the uniform design with the genetic algo-
ithm (UHGA) is proposed.

In order to validate the performance of the proposed UHGA,
wo economic dispatch problems with incremental fuel-cost
unctions taking into account the valve-point loading effects
ere tested and the results obtained were compared with those

eported in literatures [1,10].

. EDP formulation

The classic EDP minimizes the following incremental fuel-
ost function associated to dispatchable units:

in F = min

{
NP∑
i=1

Fi(Pi)

}
(1)

here Fi(Pi) is the fuel-cost function of the unit and ith is the
ower generated by the ith unit, Pi subject to power balance
onstraints:

NP

i=1

Pi = PD + Ploss (2)
here PD is the system load demand and Ploss is the transmission
oss, and generating capacity constraints:

i min ≤ Pi ≤ Pi max, for i = 1, 2, . . . , NP (3)

i
[

i
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here Pi min and Pi max are the minimum and maximum power
utputs of the ith unit.

The inclusion of valve-point loading effects makes the model-
ng of the incremental fuel-cost function of the generators more
ractical. This increases the non-linearity as well as number of
ocal optima in the solution space. Also the solution procedure
an easily trap in the local optima in the vicinity of optimal value.
he incremental fuel-cost function of the generating units with
alve-point loadings is represented as follows [9,11]:

i(Pi) = aiP
2
i + biPi + ci + |ei sin(fi(Pi min − Pi)| (4)

here, ai, bi and ci, are the fuel-cost coefficients of the unit, ei

nd fi are the fuel-cost coefficients of the unit with valve-point
ffects.

The economic dispatch of generation of real power of the
enerating units is to be done to the required load demand by
atisfying the above constraints. The incremental fuel-cost func-
ion can be modeled in a more practical fashion by including
he valve-point effects [12]. The generating units with multi-
alve steam turbines exhibit a greater variation in the fuel-cost
unctions. The valve-point effects introduce ripples in the heat-
ate curves, thereby the number of local optima is increased.
ence, a technique that overcomes these complexities has to be

volved.

. Entropic smoothing approximation function

Let Ψ i: Rn → R, i = 1, 2, . . ., m, be differentiable and define
max-type function Ψ : Rn → R, i = 1, 2, . . ., m by

(x) = max
i

Ψi(x) (5)

Given any μ > 0, consider the following entropy-type func-
ion as a smoothing approximation function of Ψ ,

(x, μ) = μ ln
m∑

i=1

exp

(
Ψi(x)

μ

)
(6)

Note that, for μ > 0,

(x, μ) = Ψ (x) + μ ln
m∑

i=1

exp

[
Ψ (x) − Ψi(x)

μ

]
(7)

Moreover,

(x) ≤ Ψ (x, μ) ≤ Ψ (x) + μ ln m, ∀x ∈ Rn and μ > 0 (8)

Therefore, Ψ (x, μ) → Ψ (x) as μ → 0. This fact allows us
o solve the problem without facing the non-differentiability
roblem of Ψ (x). Since the function (6) can be derived from
he dual problem of an entropy optimization problem, we call
unction (6) an entropic smoothing approximation function. Li
13] discovered a few properties of this function and named

t as the aggregate function. Related work can be found in
14–17].

To EDP, the incremental fuel-cost function of the generat-
ng units with valve-point loadings (1) are represented as the
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ollowing function:

i(Pi) = aiP
2
i + biPi + ci + |ei sin(fi(Pi min − Pi)|

= aiP
2
i + biPi + ci + max{ei sin(fi(Pi min − Pi),

− ei sin(fiPi min − Pi)} (9)

Based on the maximum entropy principle the incremental
uel-cost function can be approximated by entropic smoothing
pproximation function:

(Pi, μ) = aiP
2
i + biPi + ci + μ ln[eei sin(fi(Pi min−Pi)/μ

+ e−ei sin(fi(Pi min−Pi)/μ] (10)

The function Ψ (Pi, μ) provides a good approximation to the
unction Fi(Pi) in the sense that

≤ Ψ (Pi, μ) − Fi(Pi) ≤ μ ln 2 and μ > 0 (11)

It is clear that this function uniformly approximates the
aximum function Fi(Pi) when a parameter μ tends to infinites-

mal and is greater than Fi(Pi) with an error bound less
han μ ln 2.

Because of approximation, the result obtained by SQP
ethod is approximation of exact result. To handle this prob-

em, the hybrid method proposed in this paper only uses SQP
ethod to find approximation solution not optimum cost. In

ther word, entropic smoothing approximation function is only
sed in SQP method not in whole HGA. Thus, approximation
oes not influence accuracy of HGA.

. Uniform design

The distribution of the individuals of initial population
irectly influences the globe convergence and searching effi-
iency. Therefore, the reasonable setting of initial population
s an important problem in the application of GA to per-
orm optimization calculation. Because of introducing SQP
ethod, if the distribution of the individuals of initial pop-

lation is not reasonable, the HGA sometimes converges to
ocal optima and cannot reach the global optimal point. There-
ore, initial population is more important to the HGA proposed
n this paper. In order to exert optimal performance of GA,
he initial population of GA must reflect the information of
olution space scientifically. However, it is difficult to eval-
ate the distribution of the individuals of initial population.
he uniform design is an effective method to solve this
roblem. It is employed to obtain initial population in this
aper.

Because the dimensionality of EDP is large, it is difficult to
btain optimal generating vector of the usable tables of uniform
esign. So the following method is used in this paper.

heorem 1. If (12) and (13) are satisfied, the optimal gen-
rating vector of n dimensionalities and (1/2)ϕ(n + 1) factors

niform design is composed of natural numbers which are prime
umbers with n + 1 [18].

i �= hj (i �= j) (12)

n

P

s Research 78 (2008) 626–633

i �= n + 1 − hj (i �= j) (13)

here ϕ(n + 1) is the Euler function of n + 1; hi and hj are the
ifferent generating elements in generating vector.

heorem 2. If (12) and (13) are satisfied, the optimal gen-
rating vector of uniform design with n dimensionalities and
1/2)ϕ(n + 1) − 1 factors is composed of natural numbers which
re prime numbers with n + 1 in [1, n + 1/2) with any one taken
ut.

Based on Theorems 1 and 2, for the uniform designs with
1/2)ϕ(n + 1) or (1/2)ϕ(n + 1) − 1 factors, the usable tables can
e obtained immediately without any measurement for its uni-
ormity. The good lattice point method is employed to obtain
he usable table with optimal generating vector. For the uniform
esigns with certain factors, n is calculated by formula of Euler
unction.

. Hybrid genetic algorithm

.1. Selection operator

After the evaluation of the initial population, the GA begins
he creation of the new generation. The selection used in this
aper depends on individual fitness. The best individuals of the
resent population are kept for the next population. The fitness
alue in this paper contains the penalty function and does not
epresent the true objective function.

.2. Simplex crossover operator

The primary genetic operator is the crossover operator. The
urpose of crossover operator is to produce new chromosomes
hat are distinctly different from their parents, yet remain some
f their parents characteristics. It has important function in the
apability of searching the optimal solution.

Simplex algorithm is a method which finds optima through
mproving inferior point by searching from inferior point
owards the pivot of n + 1 initial points of the Simplex for the n-
imensional problem. Simplex algorithm is similar to crossover
perator of GA in utilizing information of multi-points. Based
n aforementioned analysis, simplex crossover operator [19] is
mployed in this paper to improve convergence speed and lead
he population to the global optimum because of the character-
stic of improving inferior point.

.3. Non-uniform mutation operator [20]

Non-uniform mutation operator is employed in this paper.
his operator is described below.

If Pt = [Pt
1, P

t
2, . . . , P

t
n] is a power output chromosome vec-

or and Pt
i is ith unit’s output that is chosen to be mutated, the

mut
ew output Pi will be after mutation

mut
i =

(
Pt

i + �(t, Pi max − Pt
i ), if r = 0

Pt
i − �(t, Pt

i − Pi min), if r = 1
(14)



ystem

w
t
c

�

w
t
b
t
u
s
r
c

5

m
o
a
n
t
u
t
a
m
(
t
a
r

s

m

s

c

P

w
k
r
g

L

a
b

H

w

s

q

c
u

P

e

L

w
n
o

6

s

S

S

S

m

7

o
M
c
r

ϕ

d

D.-k. He et al. / Electric Power S

here r is a random bit, and function �(t, y) returns a value in
he range [0, y] such that the probability of the value returned is
lose to 0 increases with t

(t, y) = y × (1 − ξ(1−t/gen)b ) (15)

here ξ is a random floating-point number in the interval [0, 1]; t
he current generation; gen the maximum number of generations;

is a parameter that determines the degree of dependence on
he number of generations. In this way, the operator makes a
niform search at the beginning of the evolution and in later
tages narrows the search around the local area of the parameter
esembling a hill-climbing operator. For our experiments, b was
hosen equal to 2.

.4. Sequential quadratic programming operator [9,21]

SQP method seems to be the best non-linear programming
ethods for constrained optimization. It outperforms every

ther non-linear programming method in terms of efficiency,
ccuracy, and percentage of successful solutions over a large
umber of test problems. The method resembles closely to New-
on’s method for constrained optimization just as is done for
nconstrained optimization. At each iteration an approxima-
ion is made by the Hessian of the Lagrangian function using

Broyden–Foldfarb–Shanno (BFGS) quasi-Newton updating
ethod. This is then used to generate a quadratic programming

QP) sub-problem whose solution is used to form a search direc-
ion for a line search procedure. In this paper, SQP is used as
local optimizer to fine-tune the region explored by GA in its

un.
First let us formulate the QP sub-problem for the problem as

tated by (1) subject to (2) and (3).

in ∇FT (Pk)Tdk + 1

2
dT
k Hkdk (16)

ubject to

(Pk)+∇c(Pk)Tdk = 0 (17)

min ≤ Pk + dk ≤ Pmax (18)

here, Hk is the Hessian matrix of the Lagrangian function at the
th iteration, dk the search direction at the kth iteration, Pk the
eal power vector at the kth iteration, and c(Pk) is the constraint
iven by Eq. (2)

(P, λ) = FT (P) + c(P)Tλ (19)

nd is constructed from a quasi-Newton update formula given
y:

k+1 = Hk − Hksk(sk)THk

(sk)THksk
+ qk(qk)T

(qk)Tsk
(20)
here

k = Pk+1 − Pk (21)

k = ∇L(Pk+1, λK+1) − ∇L(Pk, λK+1) (22)

g
a
p
8
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For each iteration of the QP sub-problem the direction dk is
alculated using the above Eq. (16). The solution obtained is
sed to form a new iterate given by:

k+1 = Pk + αkdk (23)

The step length value αk is determined to produce a consid-
rable reduction in an augmented Lagrangian merit function:

A(P, λ, ρ) = FT (P) − λT(P) + ρ

2
c(P)Tc(P) (24)

here, λ is the vector of Lagrangian multiplier and ρ is a non-
egative scalar. The procedure will be repeated until the value
f sk has reached some tolerance value.

. Solution methodology

The proposed HGA for EDP with valve-point effects can be
ummarized as follows:

Step 1: Get the data for the system.
Step 2: Initialize parameter of algorithm and count t.
Step 3: Generate initial population by the usable tables of uni-

form design.
Step 4: Evaluate the objective function and update count t.
Step 5: Identify the Fitbest(t) of the current run t.
Step 6: If Fitbest(t) < Fitbest(t − 1) replace Fitbest(t − 1) with

Fitbest(t), otherwise go to Step 7.
Step 7: Generate selection offspring using selection operation.
Step 8: Generate crossover offspring using simplex crossover

operation.
Step 9: Generate mutation offspring using non-uniform muta-

tion operation.
tep 10: Take the individuals selected randomly as the initial

starting point for the SQP and generate SQP offspring
by the final solution obtained using the SQP.

tep 11: Generate whole offspring with selection offspring,
crossover offspring, mutation offspring and SQP off-
spring.

tep 12: While (termination criterion not met).

The termination is done when a specified number of iterations
et.

. Simulation results

The proposed UHGA approach was tested with two test cases
f EDP with valve-point effects. The software was written in
ATLAB 7.0 and executed on a Pentium-IV 2.99 GHz personal

omputer. Hereinafter, the results represent the average of 30
uns of the proposed method for both the two test cases.

Since ϕ(28 + 1) = ϕ(29) = 28 = ϕ(13 + 1) and ϕ(82 + 1) =
(83) = 82 = 2(40 + 1), the optimal generating vector of uniform
esign with 28 dimensionalities and 13 factors and the optimal

enerating vector of uniform design with 82 dimensionalities
nd 40 factors are composed of natural numbers which are
rime numbers with 29 in (1, 14.5) with any one taken out and
3 in [1, 41.5) with any one taken out, respectively, by Theorem
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Table 1
Comparison of fuel costs for PD = 1800 MW for case 1

Method Mean time (s) Best cost (US$ h−1) Best cost (US$ h−1)

EP [1] 157.43 17,994.07 18,127.06
EP-SQP [9] 121.93 17,991.03 18,106.93
PSO [9] 77.37 18,030.72 18,205.78
PSO-SQP [9] 33.97 17,969.93 18,029.99
UHGA 15.33 17,964.81 17,992.92

Table 2
Best result obtained for PD = 1800 MW for case 1 using UHGA

Power Generation Power Generation

1 628.21 8 60.00
2 223.94 9 109.71
3 149.30 10 40.00
4 109.71 11 40.00
5 109.71 12 55.00
6
7
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. In this paper, the optimal generating vector of uniform design
ith 28 dimensionalities and 13 factors are all natural numbers

n [1, 13]. The optimal generating vector of uniform design with
2 dimensionalities and 40 factors are all natural numbers in [1,
0]. Then the good lattice point method is employed to obtain
he usable table with optimal generating vector. Hence the
opulation size was chosen as 28 for test case 1 and 82 for test
ase 2.

The selection ‘crossover’ SQP and mutation operation pro-
ortions were chosen as 5:8:8:7 for test case 1 and 10:20:20:32
or test case 2. The simulation parameters of the UHGA for
he two test systems are fixed as follows, b = 2, μ = 1, and
termax = 30. To validate the comparison of results obtained using
he proposed technique with the results obtained using the EP,
P-SQP, PSO and PSO-SQP techniques, solution procedure of

he UHGA technique is terminated when the maximum number
f iterations is reached.

The fitness function Fit(Pi) is given as

it(Pi) =
{

F, if Pi is feasible

F ± F × gmax, otherwise
(25)

here F is the value of objective function, symbol ‘±’ is used
o keep penalty, gmax is given as

max = max{0, gi(P), |hj(P)|, i = 1, 2, . . . , m1, j

= 1, 2, . . . , m2} (26)

here gi(P) are the inequality constraints, hi(P) the equality con-
traints, m1 and m2 are the number of the inequality constraints
nd the equality constraints, respectively.

.1. Case 1

This test case comprises of thirteen generating units, the com-

lexity and non-linearity to the solution procedure is increased.
he expected power demands to be met by the all thirteen gener-
ting units is 1800 [1] and 2520 MW [22]. The system data can
e found from [1]. The problem has a number of local optimum

c
c
o
H

able 3
ispatch results for a PD = 2520 MW for case 1

enerator Unit generation (MW)

GA-SA [9] EP-S

1 628.23 628.3
2 299.22 299.1
3 299.17 299.0
4 159.12 159.6
5 159.95 159.6
6 158.85 158.4
7 157.26 159.6
8 159.93 159.7
9 159.86 159.6
0 110.78 114.0
1 75.00 75.00
2 60.00 60.00
3 92.62 87.58

otal cost (US$ h−1) 24,275.71 24,26
109.71 13 55.00
109.71

oints as there are more possibilities for any method to stick on
ny one of the local optimum points.

The final fuel costs obtained using the EP, EP-SQP, PSO,
SO-SQP and the proposed method for power demand of
800 MW were summarized in Table 1. The best results obtained
or solution vector, with UHGA with minimum cost of US$
7,964.81 h−1 is given in Table 2. Table 3 reports the dispatch
esults of the various methods [23], EP-SQP, PSO-SQP and the
roposed method for a load demand of 2520 MW. The prob-
em is solved for two different power demands in order to show
he effectiveness of the proposed method in producing quality
olutions.

It is clear from the Tables 1 and 3, minimum cost and the mean
ost value obtained by the proposed method is comparatively less

ompared to all the other methods. To show the effectiveness
f UHGA, the test problems were also experimented using the
GA without initial population obtained by the uniform design.

QP [9] PSO-SQP [9] UHGA

136 628.3205 628.2330
715 299.0524 299.0288
474 298.9681 299.0288
399 159.4680 159.6077
560 159.1429 159.6077
831 159.2724 159.6077
749 159.5371 159.6077
265 158.8522 159.6077
653 159.7845 159.6077
334 110.9618 77.1613
00 75.0000 77.1613
00 60.0000 89.5992
84 91.6401 92.1414

6.44 24,261.05 24,172.25
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Table 4
Comparison of fuel costs for case 2

Method Mean time
(s)

Best cost
(US$ h−1)

Mean cost
(US$ h−1)

EP [1] 1167.35 122,624.35 123,382.00
EP-SQP [9] 997.73 122,323.97 122,379.63
MPSO [24] – 122,252.27 –
PSO [9] 933.39 123,930.45 124,154.49
PSO-SQP [9] 733.97 122,094.67 122,245.25
DEC(2)-SQP(1) [25] 14.26 121,741.98 122,295.13
UHGA 333.68 121,424.48 121,602.81

Table 5
Best result obtained for case 2 using UHGA

Power Generation Power Generation

1 110.8056 21 523.2789
2 110.8000 22 523.2799
3 97.4052 23 523.2799
4 179.7314 24 523.2832
5 87.8939 25 523.2823
6 140.0000 26 523.2884
7 259.6016 27 10.0000
8 284.6084 28 10.0000
9 284.6046 29 10.0000

10 130.0000 30 97.0000
11 94.0000 31 190.0000
12 168.8002 32 190.0000
13 214.7600 33 190.0000
14 304.5239 34 164.8113
15 394.2796 35 200.0000
16 394.2790 36 200.0000
17 489.2820 37 110.0000
18 489.2799 38 110.0000
1
2

ig. 1. Convergence characteristics of the UHGA and HGA for case 1 for a

D = 1800 MW.

Fig. 1 shows the convergence characteristics of the UHGA
nd HGA method for power demand of 1800 MW. Fig. 2 shows
he convergence characteristics of the UHGA and HGA method
or power demand of 2520 MW. The average number of iter-
tions to reach the optimum solution of the UHGA for power
emand of 1800 MW is 8–12 and 2520 MW is 7–10 in all the
0 trial runs.

.2. Case 2

This test case comprises of 40 generating units. This is a
arger system. The number of local optima, complexity and non-
inearity to the solution procedure is enormously increased. The

equired power demand to be met by all the forty generating
nits is 10,500 MW. The system data can be found from [1].
he final fuel costs obtained using the EP, EP-SQP, PSO, PSO-

ig. 2. Convergence characteristics of the UHGA and HGA for case 1 for a

D = 2520 MW.

S
s
b
a
m
c
o
b
r
c
t
c
o
H
m
b

8

n
s
o

9 511.2804 39 110.0000
0 511.2803 40 511.2803

QP, MPSO, DEC(2)-SQP(1) and the proposed method were
ummarized in Table 4. It is clear from Table 4, UHGA has the
est probability of the mean cost value and the minimum cost
mongst all the methods in this test case. It is noticeable that the
ean cost value obtained using UHGA is less than the minimum

ost obtained using other methods. Though the solution time
f UHGA in case 2 is higher than DEC(2)-SQP(1), it offered
etter solution quality as compared to DEC(2)-SQP(1). The best
esults obtained for solution vector, with UHGA with minimum
ost of US$ 121,424.48 h−1 is given in Table 5. Fig. 3 shows
hat the UHGA performed better than HGA in the convergence
haracteristics. The average number of iterations to reach the
ptimum solution of the UHGA is 16–18 in all the 30 trial runs.
ence, for power system ELD problems of greater size with
ore non-linearities, the proposed method is proved to be the

est algorithm amongst all the methods.

. Discussion and conclusion
Traditionally, to solve the EDP effectively, conventional tech-
iques require convex cost function and strict continuity of the
earch space. But practically the incremental fuel-cost curves
f the generating units are inherently highly non-linear and
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[
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[13] X.-S. Li, An aggregate function method for nonlinear programming, Sci.
ig. 3. Convergence characteristics of the UHGA and HGA for case 2 for a
= 10,500 MW.

on-continuous. GA is an important tool for solving complex
ptimization problems, being applied to solve various problems
n various diverse fields. It was also effectively used in solving
omplex problems in the power system field such as EDP.

GA is faster in finding the high performance region but
isplays difficulties in performing local search for complex func-
ions. It leads to premature convergence and also has a poor fine
uning of the final solution. To overcome these drawbacks, GA
as integrated with SQP. This technique is used to solve the EDP
ith incremental fuel-cost functions taking valve-point effects

nto account. SQP proves itself as a best non-linear programming
ethod to solve the constrained optimization problem. The SQP

an explore the search space quickly with a gradient direction
nd guarantee a local optimum solution. But the method is sensi-
ive to the initial point. The hybrid approach for solving the EDP
f units with value-point effects produces quality solutions as
ompared to the one produced by these techniques when applied
eparately.

It is advantaged to improve the performance of the SQP that
he cost function of EDP is approximated by using a smooth
nd differentiable function based on the maximum entropy prin-
iple. An initial population obtained by using uniform design
eflects the information of solution space scientifically and exerts
ptimal performance of the proposed hybrid algorithm.

The performance of the hybrid method was tested for two
DP test cases with valve-point effects included and compared
ith the results obtained using the methods reported in recent

iterature. The results show that the proposed UHGA performed
uch better than other methods compared in terms of conver-

ence performance, minimum cost and probability of attaining
etter solutions.
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ppendix A. List of symbols

parameter that determines the degree of dependence on
the number of generations
total production cost (US$)

i(Pi) incremental fuel-cost function (US$ h−1)
en the maximum number of generations
P number of generating units
D the system load demand (MW)
i real power output of the ith unit (MW)
i min/Pi max minimum/maximum limit of the real power of the

ith unit (MW)
mut
i ith unit’s new output after mutation (MW)
t
i ith unit’s output that is chosen to be mutated (MW)
loss transmission loss (MW)

a random bit
the current generations

reek letters
(n + 1) Euler function of n + 1

a random floating-point number in the interval [0, 1]
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