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Abstract

This paper presents an efficient method for solving the economic dispatch problem (EDP) through combination of genetic algorithm (GA), the
sequential quadratic programming (SQP) technique, uniform design technique, the maximum entropy principle, simplex crossover and non-uniform
mutation. The proposed hybrid technique uses GA as the main optimizer, the SQP to fine tune in the solution of the GA run. Based on the maximum
entropy principle, the cost function of EDP is approximated by using a smooth and differentiable function to improve the performance of the SQP.
An initial population obtained by using uniform design exerts optimal performance of the proposed hybrid algorithm. The effectiveness of the
proposed method is validated by carrying out extensive tests on two different EDP with incremental fuel-cost function taking into account the
valve-point loadings effects. The result shows that the proposed hybrid genetic algorithm improves the solution accuracy and reliability compared

to other techniques for EDP considering valve-point effects.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Economic dispatch is one of the most important problems
to be solved in the operation of a power system. Improvements
in scheduling the unit outputs can lead to significant cost sav-
ings. The primary objective of the economic dispatch problem
(EDP) of electric power generation is to schedule the committed
generating unit outputs so as to meet the required load demand
at minimum operating cost while satisfying all unit and system
equality and inequality constraints [1]. This makes the EDP a
large-scale highly non-linear constrained optimization problem.

The input—output characteristics of large units are inherently
highly non-linear because of valve-point loadings, generating
unit ramp rate limits, etc. Furthermore they may generate mul-
tiple local minimum points in the cost function. In light of the
non-linear characteristics of the units, there is a demand for tech-
niques that do not have restrictions on the shape of the fuel-cost
curves. To obtain accurate dispatch results, approaches with-
out restriction on the shape of incremental fuel-cost functions
are needed. Whereas both lambda-iterative and gradient tech-
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nique methods in conventional approaches to the problems are
calculus-based techniques, and require a smooth and convex cost
function and strict continuity of the search space. Dynamic pro-
gramming (DP) [2] imposes no restrictions on the nature of the
cost curves and therefore it can solve EDP with inherently non-
linear and discontinuous cost curves. This method, however,
suffers from the “curse of dimensionality” or local optimality
[1].

GA is a stochastic optimization technique, which is based
on the principle of natural selection and genetics [3,4]. It com-
bines solution evaluation with randomized, structured exchanges
of genetic information between solutions to obtain optimality.
Also it searches multiple solutions simultaneously in contrast to
conventional optimal algorithms. Therefore, the possibility of
finding global optimal solution is increased. The main advan-
tage of GA is that it finds near optimal solution in relatively
short time compared with other random searching methods.

Inrecent years, the interest in these algorithms has been rising
fast, for that they provide robust and powerful adaptive search
mechanisms [5]. GA has an immense potential for applications
in the field of power systems and it has been successfully applied
to solve various problems in electric power systems such as eco-
nomic dispatch [6,7], unit commitment, reactive power control,
hydrothermal scheduling, and distribution system planning, etc.

%ranArz’g


mailto:hedakuo@mail.neu.edu.cn
dx.doi.org/10.1016/j.epsr.2007.05.008

D.-k. He et al. / Electric Power Systems Research 78 (2008) 626633 627

When compared with the foregoing conventional techniques,
GA is well appreciated for their global optimality in complex
search space (multiple local optima, multi-objective, non-linear,
discontinuous and highly constrained space). Despite the afore-
mentioned success, GA is only capable of identifying the high
performance region at an affordable time and displays inherent
difficulties in performing local search for numerical applications
[8].

To overcome premature convergence and speed up the search
process, a hybrid method that integrates the GA with a gradient
search algorithm called SQP [9] is proposed to take advantage
of both GA and the local search techniques. GA is capable of
exploring a large space, yet is slow in fine tuning local search. In
contrast, SQP techniques can climb hills rapidly; however, they
are blind to the potential hills in the neighbourhood area and
sensitive to the initial starting points. The hybrid GA uses a GA
to identify the potential hill within a reasonably short period of
time, while SQP technique subsequently takes over and rapidly
climbs the remaining hill. Therefore, this algorithm increases
the possibility of finding global optimal point and improves the
convergence speed. The proposed hybrid technique uses GA as
a base level search towards the optimal region and SQP method
as optimization to do the fine tuning.

In general, the hybrid method offers an exact solution only
when the function is smooth and its gradient information are
known [8]. The method is proposed to approximate EDP by
using a smooth and differentiable function based on the max-
imum entropy principle. In this way, the performance of the
hybrid method is improved. At the same time, to improve
rationality of the distribution of initial population, the hybrid
technique integrating the uniform design with the genetic algo-
rithm (UHGA) is proposed.

In order to validate the performance of the proposed UHGA,
two economic dispatch problems with incremental fuel-cost
functions taking into account the valve-point loading effects
were tested and the results obtained were compared with those
reported in literatures [1,10].

2. EDP formulation

The classic EDP minimizes the following incremental fuel-
cost function associated to dispatchable units:

Np
min F:min{ZF,-(Pi)} )]

i=1

where F;(P;) is the fuel-cost function of the unit and ith is the
power generated by the ith unit, P; subject to power balance
constraints:

Np
ZPiZPD+Ploss (2)
i=1

where Pp is the system load demand and P is the transmission
loss, and generating capacity constraints:

Pimin < P; < Pimax, fori=1,2,...,Np 3)

where P;pin and Pjmax are the minimum and maximum power
outputs of the ith unit.

The inclusion of valve-point loading effects makes the model-
ing of the incremental fuel-cost function of the generators more
practical. This increases the non-linearity as well as number of
local optima in the solution space. Also the solution procedure
can easily trap in the local optima in the vicinity of optimal value.
The incremental fuel-cost function of the generating units with
valve-point loadings is represented as follows [9,11]:

Fi(P) = a; P? + b P; + ci + le; sin(fi(Pi min — P;) )

where, a;, b; and ¢;, are the fuel-cost coefficients of the unit, ¢;
and f; are the fuel-cost coefficients of the unit with valve-point
effects.

The economic dispatch of generation of real power of the
generating units is to be done to the required load demand by
satisfying the above constraints. The incremental fuel-cost func-
tion can be modeled in a more practical fashion by including
the valve-point effects [12]. The generating units with multi-
valve steam turbines exhibit a greater variation in the fuel-cost
functions. The valve-point effects introduce ripples in the heat-
rate curves, thereby the number of local optima is increased.
Hence, a technique that overcomes these complexities has to be
evolved.

3. Entropic smoothing approximation function

Let¥;:R"—>R,i=1,2, ..., m,be differentiable and define
a max-type function ¥: R" — R, i=1,2,...,mby

U(x) = max ;(x) Q)

Given any p >0, consider the following entropy-type func-
tion as a smoothing approximation function of ¥,

Y(x, )= In Zexp (lI/,-(x)) (6)
i=1 H

Note that, for >0,
Y(x) — ¥i(x
[ (x) ( )] 7

m
U(x, u) =¥(x)+ u In Z exp "

i=1
Moreover,

U(x) <W(x,uw) <¥x)+pulnm, VxeR'andu >0 (8)

Therefore, ¥(x, u) — ¥(x) as u — 0. This fact allows us
to solve the problem without facing the non-differentiability
problem of ¥(x). Since the function (6) can be derived from
the dual problem of an entropy optimization problem, we call
function (6) an entropic smoothing approximation function. Li
[13] discovered a few properties of this function and named
it as the aggregate function. Related work can be found in
[14-17].

To EDP, the incremental fuel-cost function of the generat-
ing units with valve-point loadings (1) are represented as the
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following function:
F(P,) = a; P} + b P; + ¢; + |e; sin(f;(P; min — P)|
= a; P? 4 b; P; + ¢; + max({e; sin(fi(P; min — P)),
—e; sin(f; P min — P)} 9

Based on the maximum entropy principle the incremental
fuel-cost function can be approximated by entropic smoothing
approximation function:

W(P;, 1) = i P} + biP; + ¢ + p In[e Ui Frmn= PO/
e sin(fi(P; min*P[')/IL] (10)

The function ¥ (P;, i) provides a good approximation to the
function F;(P;) in the sense that

0<¥(P,p)— Fi(P)<puh2 and u>0 Y

It is clear that this function uniformly approximates the
maximum function F;(P;) when a parameter u tends to infinites-
imal and is greater than F;(P;) with an error bound less
than p In 2.

Because of approximation, the result obtained by SQP
method is approximation of exact result. To handle this prob-
lem, the hybrid method proposed in this paper only uses SQP
method to find approximation solution not optimum cost. In
other word, entropic smoothing approximation function is only
used in SQP method not in whole HGA. Thus, approximation
does not influence accuracy of HGA.

4. Uniform design

The distribution of the individuals of initial population
directly influences the globe convergence and searching effi-
ciency. Therefore, the reasonable setting of initial population
is an important problem in the application of GA to per-
form optimization calculation. Because of introducing SQP
method, if the distribution of the individuals of initial pop-
ulation is not reasonable, the HGA sometimes converges to
local optima and cannot reach the global optimal point. There-
fore, initial population is more important to the HGA proposed
in this paper. In order to exert optimal performance of GA,
the initial population of GA must reflect the information of
solution space scientifically. However, it is difficult to eval-
uate the distribution of the individuals of initial population.
The uniform design is an effective method to solve this
problem. It is employed to obtain initial population in this
paper.

Because the dimensionality of EDP is large, it is difficult to
obtain optimal generating vector of the usable tables of uniform
design. So the following method is used in this paper.

Theorem 1. If (12) and (13) are satisfied, the optimal gen-
erating vector of n dimensionalities and (1/2)p(n+ 1) factors
uniform design is composed of natural numbers which are prime
numbers with n+ 1 [18].

hi#hj (i #)) 12)

(G ) 13)

where @(n+1) is the Euler function of n+1; h; and h; are the
different generating elements in generating vector.

hi#n+1—h;

Theorem 2. If (12) and (13) are satisfied, the optimal gen-
erating vector of uniform design with n dimensionalities and
(172)p(n+ 1) — 1 factors is composed of natural numbers which
are prime numbers with n+ 1 in [1, n+ 1/2) with any one taken
out.

Based on Theorems 1 and 2, for the uniform designs with
(172)p(n+1) or (1/2)p(n+ 1) — 1 factors, the usable tables can
be obtained immediately without any measurement for its uni-
formity. The good lattice point method is employed to obtain
the usable table with optimal generating vector. For the uniform
designs with certain factors, n is calculated by formula of Euler
function.

5. Hybrid genetic algorithm
5.1. Selection operator

After the evaluation of the initial population, the GA begins
the creation of the new generation. The selection used in this
paper depends on individual fitness. The best individuals of the
present population are kept for the next population. The fitness
value in this paper contains the penalty function and does not
represent the true objective function.

5.2. Simplex crossover operator

The primary genetic operator is the crossover operator. The
purpose of crossover operator is to produce new chromosomes
that are distinctly different from their parents, yet remain some
of their parents characteristics. It has important function in the
capability of searching the optimal solution.

Simplex algorithm is a method which finds optima through
improving inferior point by searching from inferior point
towards the pivot of n + 1 initial points of the Simplex for the n-
dimensional problem. Simplex algorithm is similar to crossover
operator of GA in utilizing information of multi-points. Based
on aforementioned analysis, simplex crossover operator [19] is
employed in this paper to improve convergence speed and lead
the population to the global optimum because of the character-
istic of improving inferior point.

5.3. Non-uniform mutation operator [20]

Non-uniform mutation operator is employed in this paper.
This operator is described below.

If P' =[P}, P}, ..., P.]isapower output chromosome vec-
tor and P! is ith unit’s output that is chosen to be mutated, the
new output P™" will be after mutation

ifr=20

prut _ P} + A(t, Pi max — P)), (1)
’ ifr =1

Pit_A(tvP,'t_Pimin),
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where r is a random bit, and function A(z, y) returns a value in
the range [0, y] such that the probability of the value returned is
close to O increases with ¢

At y) =y x (1 — gd=1/een’) (15)

where £ is a random floating-point number in the interval [0, 1]; ¢
the current generation; gen the maximum number of generations;
b is a parameter that determines the degree of dependence on
the number of generations. In this way, the operator makes a
uniform search at the beginning of the evolution and in later
stages narrows the search around the local area of the parameter
resembling a hill-climbing operator. For our experiments, b was
chosen equal to 2.

5.4. Sequential quadratic programming operator [9,21]

SQP method seems to be the best non-linear programming
methods for constrained optimization. It outperforms every
other non-linear programming method in terms of efficiency,
accuracy, and percentage of successful solutions over a large
number of test problems. The method resembles closely to New-
ton’s method for constrained optimization just as is done for
unconstrained optimization. At each iteration an approxima-
tion is made by the Hessian of the Lagrangian function using
a Broyden—Foldfarb—Shanno (BFGS) quasi-Newton updating
method. This is then used to generate a quadratic programming
(QP) sub-problem whose solution is used to form a search direc-
tion for a line search procedure. In this paper, SQP is used as
a local optimizer to fine-tune the region explored by GA in its
run.

First let us formulate the QP sub-problem for the problem as
stated by (1) subject to (2) and (3).

min VFr(P) dy + %d,?dek (16)
subject to

c(P)+Ve(P)d =0 (17)
Prin < Pr + di < Pmax (13)

where, Hy, is the Hessian matrix of the Lagrangian function at the
kth iteration, d the search direction at the kth iteration, P the
real power vector at the kth iteration, and c(Py) is the constraint
given by Eq. (2)

L(P, %) = Fr(P) + c(P)"x (19)

and is constructed from a quasi-Newton update formula given
by:

Hiesi(si) T Hy k()T
Hi1 = Hi — T ? qT (20)
(sx)" Hisi (qr)” sk
where
Sk = Pry1 — Pk (2D
qk = VL(Pry1, Ag+1) — VL(P, Ag+1) (22)

For each iteration of the QP sub-problem the direction dy is
calculated using the above Eq. (16). The solution obtained is
used to form a new iterate given by:

Pry1 = P+ agdy (23)

The step length value o is determined to produce a consid-
erable reduction in an augmented Lagrangian merit function:

LA(P, A, p) = Fr(P)— AT(P) + §c<P)Tc(P) (24)

where, A is the vector of Lagrangian multiplier and p is a non-
negative scalar. The procedure will be repeated until the value
of s has reached some tolerance value.

6. Solution methodology

The proposed HGA for EDP with valve-point effects can be
summarized as follows:

Step 1: Get the data for the system.

Step 2: Initialize parameter of algorithm and count ¢.

Step 3: Generate initial population by the usable tables of uni-
form design.

Step 4: Evaluate the objective function and update count ¢.

Step 5: Identify the Fityeg(?) of the current run z.

Step 6: If Fitpeg(f) < Fitpesi(t — 1) replace Fitpeg(r — 1) with
Fitpest(7), otherwise go to Step 7.

Step 7: Generate selection offspring using selection operation.

Step 8: Generate crossover offspring using simplex crossover
operation.

Step 9: Generate mutation offspring using non-uniform muta-
tion operation.

Step 10: Take the individuals selected randomly as the initial
starting point for the SQP and generate SQP offspring
by the final solution obtained using the SQP.

Step 11: Generate whole offspring with selection offspring,
crossover offspring, mutation offspring and SQP off-
spring.

Step 12: While (termination criterion not met).

The termination is done when a specified number of iterations
met.

7. Simulation results

The proposed UHGA approach was tested with two test cases
of EDP with valve-point effects. The software was written in
MATLAB 7.0 and executed on a Pentium-IV 2.99 GHz personal
computer. Hereinafter, the results represent the average of 30
runs of the proposed method for both the two test cases.

Since @28+ 1)=¢(29)=28=¢(13+1) and ¢(82+1)=
©(83)=82=2(40+ 1), the optimal generating vector of uniform
design with 28 dimensionalities and 13 factors and the optimal
generating vector of uniform design with 82 dimensionalities
and 40 factors are composed of natural numbers which are
prime numbers with 29 in (1, 14.5) with any one taken out and
83in[1, 41.5) with any one taken out, respectively, by Theorem
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2. In this paper, the optimal generating vector of uniform design
with 28 dimensionalities and 13 factors are all natural numbers
in [1, 13]. The optimal generating vector of uniform design with
82 dimensionalities and 40 factors are all natural numbers in [1,
40]. Then the good lattice point method is employed to obtain
the usable table with optimal generating vector. Hence the
population size was chosen as 28 for test case 1 and 82 for test
case 2.

The selection ‘crossover’ SQP and mutation operation pro-
portions were chosen as 5:8:8:7 for test case 1 and 10:20:20:32
for test case 2. The simulation parameters of the UHGA for
the two test systems are fixed as follows, b=2, u=1, and
itermax = 30. To validate the comparison of results obtained using
the proposed technique with the results obtained using the EP,
EP-SQP, PSO and PSO-SQP techniques, solution procedure of
the UHGA technique is terminated when the maximum number
of iterations is reached.

The fitness function Fit(P;) is given as

) F, if P; is feasible
Fit(P;) = . (25)
F £+ F X gmax, otherwise

where F is the value of objective function, symbol ‘£’ is used
to keep penalty, gmax 1S given as

gmax = maX{O, gl(P)s |h](P)|1l: 1527 -~'1ml’j
=1,2,...,mp} (26)

where g;(P) are the inequality constraints, /;(P) the equality con-
straints, m and my are the number of the inequality constraints
and the equality constraints, respectively.

7.1. Case ]

This test case comprises of thirteen generating units, the com-
plexity and non-linearity to the solution procedure is increased.
The expected power demands to be met by the all thirteen gener-
ating units is 1800 [1] and 2520 MW [22]. The system data can
be found from [1]. The problem has a number of local optimum

Table 1
Comparison of fuel costs for Pp = 1800 MW for case 1

Method Mean time (s)  Best cost (US$h™')  Best cost (US$h~1)
EP [1] 157.43 17,994.07 18,127.06

EP-SQP [9] 121.93 17,991.03 18,106.93

PSO [9] 77.37 18,030.72 18,205.78
PSO-SQP [9] 33.97 17,969.93 18,029.99

UHGA 15.33 17,964.81 17,992.92

Table 2

Best result obtained for Pp = 1800 MW for case 1 using UHGA

Power Generation Power Generation
1 628.21 8 60.00

2 223.94 9 109.71

3 149.30 10 40.00

4 109.71 11 40.00

5 109.71 12 55.00

6 109.71 13 55.00

7 109.71

points as there are more possibilities for any method to stick on
any one of the local optimum points.

The final fuel costs obtained using the EP, EP-SQP, PSO,
PSO-SQP and the proposed method for power demand of
1800 MW were summarized in Table 1. The best results obtained
for solution vector, with UHGA with minimum cost of US$
17,964.81 h~! is given in Table 2. Table 3 reports the dispatch
results of the various methods [23], EP-SQP, PSO-SQP and the
proposed method for a load demand of 2520 MW. The prob-
lem is solved for two different power demands in order to show
the effectiveness of the proposed method in producing quality
solutions.

Itis clear from the Tables 1 and 3, minimum cost and the mean
cost value obtained by the proposed method is comparatively less
compared to all the other methods. To show the effectiveness
of UHGA, the test problems were also experimented using the
HGA without initial population obtained by the uniform design.

Table 3
Dispatch results for a Pp =2520 MW for case 1
Generator Unit generation (MW)
GA-SA [9] EP-SQP [9] PSO-SQP [9] UHGA
1 628.23 628.3136 628.3205 628.2330
2 299.22 299.1715 299.0524 299.0288
3 299.17 299.0474 298.9681 299.0288
4 159.12 159.6399 159.4680 159.6077
5 159.95 159.6560 159.1429 159.6077
6 158.85 158.4831 159.2724 159.6077
7 157.26 159.6749 159.5371 159.6077
8 159.93 159.7265 158.8522 159.6077
9 159.86 159.6653 159.7845 159.6077
10 110.78 114.0334 110.9618 77.1613
11 75.00 75.0000 75.0000 77.1613
12 60.00 60.0000 60.0000 89.5992
13 92.62 87.5884 91.6401 92.1414
Total cost (US$h~1) 24,275.71 24,266.44 24,261.05 24,172.25
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1.81

1.8

1_70 1 1 1 1
0 5 10 15 20 25 30

Number of iterations

Fig. 1. Convergence characteristics of the UHGA and HGA for case 1 for a
Pp =1800MW.

Fig. 1 shows the convergence characteristics of the UHGA
and HGA method for power demand of 1800 MW. Fig. 2 shows
the convergence characteristics of the UHGA and HGA method
for power demand of 2520 MW. The average number of iter-
ations to reach the optimum solution of the UHGA for power
demand of 1800 MW is 8-12 and 2520 MW is 7-10 in all the
30 trial runs.

7.2. Case 2

This test case comprises of 40 generating units. This is a
larger system. The number of local optima, complexity and non-
linearity to the solution procedure is enormously increased. The
required power demand to be met by all the forty generating
units is 10,500 MW. The system data can be found from [1].
The final fuel costs obtained using the EP, EP-SQP, PSO, PSO-

25

- HGA
UHGA

249t

2.48}

247}

246}

245}

Total cost($/h)

244}

243}

—_—

2421 N

2'41 ! 1 ! L 1
5 10 15 20 25 30

Number of iterations

Fig. 2. Convergence characteristics of the UHGA and HGA for case 1 for a
Pp =2520MW.

Table 4
Comparison of fuel costs for case 2
Method Mean time Best cost Mean cost
(s) (US$h~1) (US$h™h
EP [1] 1167.35 122,624.35 123,382.00
EP-SQP [9] 997.73 122,323.97 122,379.63
MPSO [24] - 122,252.27 -
PSO [9] 933.39 123,930.45 124,154.49
PSO-SQP [9] 733.97 122,094.67 122,245.25
DEC(2)-SQP(1) [25] 14.26 121,741.98 122,295.13
UHGA 333.68 121,424.48 121,602.81
Table 5
Best result obtained for case 2 using UHGA
Power Generation Power Generation
1 110.8056 21 523.2789
2 110.8000 22 523.2799
3 97.4052 23 523.2799
4 179.7314 24 523.2832
5 87.8939 25 523.2823
6 140.0000 26 523.2884
7 259.6016 27 10.0000
8 284.6084 28 10.0000
9 284.6046 29 10.0000
10 130.0000 30 97.0000
11 94.0000 31 190.0000
12 168.8002 32 190.0000
13 214.7600 33 190.0000
14 304.5239 34 164.8113
15 394.2796 35 200.0000
16 394.2790 36 200.0000
17 489.2820 37 110.0000
18 489.2799 38 110.0000
19 511.2804 39 110.0000
20 511.2803 40 511.2803

SQP, MPSO, DEC(2)-SQP(1) and the proposed method were
summarized in Table 4. It is clear from Table 4, UHGA has the
best probability of the mean cost value and the minimum cost
amongst all the methods in this test case. It is noticeable that the
mean cost value obtained using UHGA is less than the minimum
cost obtained using other methods. Though the solution time
of UHGA in case 2 is higher than DEC(2)-SQP(1), it offered
better solution quality as compared to DEC(2)-SQP(1). The best
results obtained for solution vector, with UHGA with minimum
cost of US$ 121,424.48h~! is given in Table 5. Fig. 3 shows
that the UHGA performed better than HGA in the convergence
characteristics. The average number of iterations to reach the
optimum solution of the UHGA is 16-18 in all the 30 trial runs.
Hence, for power system ELD problems of greater size with
more non-linearities, the proposed method is proved to be the
best algorithm amongst all the methods.

8. Discussion and conclusion

Traditionally, to solve the EDP effectively, conventional tech-
niques require convex cost function and strict continuity of the
search space. But practically the incremental fuel-cost curves
of the generating units are inherently highly non-linear and
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Fig. 3. Convergence characteristics of the UHGA and HGA for case 2 for a
P=10,500 MW.

non-continuous. GA is an important tool for solving complex
optimization problems, being applied to solve various problems
in various diverse fields. It was also effectively used in solving
complex problems in the power system field such as EDP.

GA is faster in finding the high performance region but
displays difficulties in performing local search for complex func-
tions. It leads to premature convergence and also has a poor fine
tuning of the final solution. To overcome these drawbacks, GA
was integrated with SQP. This technique is used to solve the EDP
with incremental fuel-cost functions taking valve-point effects
into account. SQP proves itself as a best non-linear programming
method to solve the constrained optimization problem. The SQP
can explore the search space quickly with a gradient direction
and guarantee a local optimum solution. But the method is sensi-
tive to the initial point. The hybrid approach for solving the EDP
of units with value-point effects produces quality solutions as
compared to the one produced by these techniques when applied
separately.

It is advantaged to improve the performance of the SQP that
the cost function of EDP is approximated by using a smooth
and differentiable function based on the maximum entropy prin-
ciple. An initial population obtained by using uniform design
reflects the information of solution space scientifically and exerts
optimal performance of the proposed hybrid algorithm.

The performance of the hybrid method was tested for two
EDP test cases with valve-point effects included and compared
with the results obtained using the methods reported in recent
literature. The results show that the proposed UHGA performed
much better than other methods compared in terms of conver-
gence performance, minimum cost and probability of attaining
better solutions.
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Appendix A. List of symbols

b parameter that determines the degree of dependence on
the number of generations

F total production cost (US$)

Fi(P;) incremental fuel-cost function (US$h~1)

gen the maximum number of generations

Np number of generating units

Pp the system load demand (MW)

P; real power output of the ith unit (MW)

Pimin/Pimax minimum/maximum limit of the real power of the
ith unit (MW)

P™ jth unit’s new output after mutation (MW)

P! ith unit’s output that is chosen to be mutated (MW)

Ploss transmission loss (MW)

r a random bit

t the current generations

Greek letters
¢(n+1) Euler function of n+ 1
& a random floating-point number in the interval [0, 1]
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