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A meshfree method and its applications to elasto-plastic problems 
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Abstract:    Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of 
large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods developed to overcome 
the ineffectiveness, Reproducing Kernel Particle Method (RKPM) has demonstrated its great suitability for structural analysis. 
This paper presents applications of RKPM in elasto-plastic problems after a review of meshfree methods and an introduction to 
RKPM. A slope stability problem in geotechnical engineering is analyzed as an illustrative case. The corresponding numerical 
simulations are carried out on an SGI Onyx3900 supercomputer. Comparison of the RKPM and the FEM under identical condi-
tions showed that the RKPM is more suitable for problems where there exists extremely large strain such as in the case of slope 
sliding. 
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INTRODUCTION 

Geotechnical engineering’s well-developed fi-
nite element methods (FEMs) for geometrical and 
material nonlinearities facilitated much of the work 
accomplished. Nevertheless, standard finite element 
approaches are still ineffective in handling extreme 
material deformation, such as cases of large defor-
mations and moving discontinuities due to severe 
mesh distortion. In order to overcome the ineffec-
tiveness, some FEMs, such as Arbitrary Lagrangian 
Eulerian (ALE) method, which allow continuous 
remeshing during computation, were introduced (Hirt, 
1974) and developed (Hughes et al., 1981; Be-
lytschko et al., 1982; Donea, 1983). However, more 
effort is still required to go around the problem of the 
oscillation caused by the convective effect (Chen et 
al., 1996). To deal with these disadvantages, a new 
family of numerical methods was developed. 

All methods in this family, such as Smooth Par-
ticle Hydrodynamics (SPH) (Lucy, 1977; Monaghan, 
1982), Particle in Cell Methods (PIC) (Harlow, 1964; 
Brackbill, 1986; Sulsky et al., 1994), Diffuse Element 

Methods (DEM) (Nayroles et al., 1992), Element Free 
Galerkin Methods (EFG) (Belytschko et al., 1994; Lu 
et al., 1994) and Reproducing Kernel Particle Meth-
ods (RKPM) (Liu et al., 1995; 1997), share a common 
feature in that no mesh is required and shape functions 
are formulated based on nodes, which distribute in the 
domain we want. More detailed classification and 
overview of meshfree methods, with their advantages 
and disadvantages, are presented in Fries and Mat-
thies (2003). 

Among these methods, the EFG and the RKPM 
have been demonstrated as most suitable for structural 
analysis. Taking into account that the RKPM provides 
a general formulation for the construction of shape 
functions for meshfree methods, with specific discre-
tization of the reproduced equation, so that the SPH 
and the EFG methods can be recovered. We present 
only the implementation of RKPM in this paper. Chen 
et al.(1997) extended RKPM to hyper-elasticity with 
large deformation.  

In the present paper, after a brief introduction to 
the RKPM, we present a meshfree discretization 
method for elasto-plastic problems with the Drucker- 
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Prager and Mohr-Coulomb models that had been 
tested and proved suitable for geotechnical materials. 
A slope stability problem in geotechnical engineering 
is chosen as a sample case to demonstrate the advan-
tages of the meshfree methods. 

REVIEW OF THE RKPM 

We begin with the integral transformation of 
function u(x) by 

( ) ( ; ) ( )da
au x x x s u s s

Ω
= Φ −∫               (1) 

in which ua(x) is called as the reproduced function of 
u(x), and ( ; )a x x sΦ −  the modified kernel function, 
that is expressed as 

( ; ) ( ; ) ( )a ax x s C x x s x sΦ − = − Φ −             (2) 

1( )a
x sx s

a a
− Φ − = Φ 

 
(3) 

where a is the dilation parameter of kernel function 
Φa(x−s), and C(x; x−s) is called as the correction 
function, which is constructed to avoid the difficulties 
resulting from finite domain effects and to minimize 
the amplitude and phase error. The correction func-
tion is expressed by an Nth order polynomial in (x−s), 
that is 
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and bi(x) are functions of x, which are determined 
through satisfying the reproducing conditions. From 
Taylor series expansion, one can obtain 
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Finally, the modified kernel function 
( ; )a x x sΦ −  is obtained as 
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The discretized reproducing equation is obtained 
by performing numerical integration in Eq.(1). By 
discretizing the reproducing equation with the trape-
zoidal rule, we get: 

1 1

( ) ( ; ) ( ) ( )
n n

a a
a i i i i i

i i

u x x x x u x x x d
= =

≅ Φ − ∆ ≡ Ψ∑ ∑       (9) 

and 
( ) ( ; )a

i a i ix x x x xΨ = Φ − ∆    (10) 

where n is the total number of particles, and ( )a
i xΨ  

can be interpreted as the shape functions of ua(x). In 
principle, we take Φa(x−xi) to be positive and set its 
maximum value at x=xi. The function should rapidly 
approach zero after |x=xi| exceeds a small value so that 
the shape function ( )a

i xΨ associated with node i has 
an influence on only a small group of surrounding 
nodes to provide computational efficiency. 

The extension of Φa to a multi-dimensional case 
can be achieved by using tensor products of the 
one-dimensional kernel functions 

3
0

1

1( ) i
a i

i i i

x x
x x

a a=

 −
Φ − = Φ 

 
∏ (11) 

In this construction, the supports of kernel func-
tions are rectangular and hexahedral in geometries, 
each with a center xi and dimensions 2a1×2a2 and 
2a1×2a2×2a3, in two- and three-dimensional problems, 
respectively. 

The correction function for the multi-dimen-
sional case is expressed as 
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31 2

1 2 3 1 1 2 2 3 3
| | 0

( ; )

( )( ) ( ) ( )

i

N

i i i

C x x x

b x x x x x x x αα α
α α α

α =

−

= − − −∑
    (12)     

where 
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The coefficients 
1 2

( )
nsd

b xα α α…  are determined 

from the reproducing conditions. Finally, the 
multi-dimensional RKPM interpolation is obtained as 

1 1
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n n
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i i

u x x x x u x V x d
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where 
( ) ( ; )a

i a i ix x x x VΨ = Φ − ∆ (14) 

and ∆Vi is the volume associated with particle i. 

RKPM FOR ELASTO-PLASTIC PROBLEMS 

Different from those in the FEM, the shape 
functions in the RKPM do not possess the Kronecker 
delta properties, i.e., ( )i j ijxα δΨ ≠ . This will cause 

difficulties in numerical implementation while deal-
ing with kinetic constraints on the geometrical 
boundaries of a model. A modified RKPM shape 
function that possesses Kronecker delta properties is 
required for numerical implementation. 

Recall that 
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By substituting Eq.(16) into Eq.(15), one can 
obtain 
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and  
( )a

ji j id u x≡ (19) 

are nodal values. ua and δua satisfy the following 
boundary conditions: 
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where η
ig denotes a particle numbers set in which the 

associated particles are located on .Γ ig
x  From Eq.(18), 

we directly obtain: 

( ),    0,    δ η=  =  ∀ ∈
iji j i ji gd g x d I (21) 

By using the expressions obtained above, we can 
discretize the weak forms of the elasto-plastic prob-
lems. As we known well, the equilibrium equation of 
the small strain elasto-plastic problem can be written 
as 

 , 0,    ,    ji j i ji j i i if n h u gσ σ+ =  =  =    (22) 

Its weak form based on virtual displacement principle 
can be written as 

T T Td d d 0
V V S

V V S
σ

δ δ δ− − =∫ ∫ ∫ε σ u f u t     (23)

with the constitutive relations 
d dep=σ εD   or  d dep=ε σC (24) 

Similar to those in finite element methods, the fol-
lowing expressions must hold theoretically  

T Td d
Ω Ω

Ω − Ω − =∫ ∫ 0σB b fΨ    (25) 

in  which  BT  and  Ψ  are  defined  as  u= ,∑Ψd δu=



Zhang et al. / J Zhejiang Univ SCI   2005 6A(2):148-154 151

,δ∑Ψ d ε= ,∑Bd  δε= ,δ∑B d  respectively. B has 

a well known relation with Ψ as 

=B LΨ (26) 

in which L is a differential operator between strains 
and displacements. However, different from that in 
finite element methods, volume integration of Eq.(25) 
over the domain Ω is not the sum of the individual 
elements, but the points. 

In addition, though Eq.(25) hold theoretically, it 
will not generally be satisfied at any stage of nu-
merical computation, owing to the nonlinearities of 
elasto-plastic problems. Namely, the residual force 
vector is 

T Td d
Ω Ω

= Ω − Ω − ≠∫ ∫ 0σB b fΦ Ψ    (27) 

for evaluating the material tangent stiffness matrix. 
At any stage, the incremental form of Eq.(25) 

has to be employed. This implies that, for an incre-
ment of load, we have 

T T d
Ω

∆ = − ∆ Ω − ∆∫K d b fΦ Ψ      (28) 

Based on this equation, the numerical procedure, 
such as Newton-Raphson Method and Tangential 
Stiffness Method (sometimes named as Generalized 
Newton-Raphson Method), can be directly applied.  

CASE STUDY 

For the frictional materials such as soil and rock 
in geotechnical engineering, a non-associated or as-
sociated Drucker-Prager (and Mohr-Coulomb) plas-
ticity model is appropriate for modeling its constitu-
tive behavior. This can be described generally as 
follows (Drucker and Prager, 1952). 

A quadratic stored energy function Ψ(εe, ξ), 
which results in linear elasticity and linear hardening, 
is defined as 

1 1( , ) : : :
2 2

e e e e= + ⋅ ⋅ε ξ ξ ξe c e HΨ               (29)  

where ce and H are constant modulus tensors. Note 

that Ψ(εe, ξ) could be defined such that nonlinear 
elasticity and/or hardening would have resulted. The 
fourth-order tensor ce is a tensor of isotropic elastic 
tangent modulus defined as 

12 ( )
3

e K µ= ⊗ + − ⊗1 1 1 1c I          (30) 

where 2
3

K λ µ= +  is the elastic bulk modulus, λ  

and µ are the Lame parameters, (1)ij=δij is the Kron-
eker delta, and (I)ijkl=(δikδji+δilδjk)/2 is the 
fourth-order identity tensor. 

Let the strain-like vector of plastic internal 
variables ξ : Ω×[0,T]→ℜ2 have a volumetric compo-
nent and a deviatoric component 

:
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ξ (31) 

where     2( );      ;       
3

υ =  =  = −� � � �� �p p p p p ptr eε εe e  

1
3

υ 
 
 

1� p   and  
0 0

d ,  dυ υ=  =∫ ∫� �
T Tp p p pt e e t . 

The hardening/softening modulus matrix H is 
defined as 

0
:

0
′ 

=  ′ 

K
H

H
(32) 

where ′K  and ′H  are the bulk and shear harden-
ing/softening modulo, respectively. The stress-like 
vector of plastic internal variables α is defined as 

1

2

:
α
α

 
= = − ⋅ 

 
α ξH (33) 

A Drucker-Prager yield function takes the form 

3( , ) 3( ) 0
2

pφ κ β= + + =σ α s               (34) 

with derivatives 
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2 3 1

φ φ ββ
 ∂ ∂  = + =  

∂ ∂   
1   

σ α
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where 1 ˆ( ),  ,  / ,
3

p tr p=  = − =s n s s1σ σ and 

1 2
1:
3

κ α βα α= − + + , in which .ij ijs s=s  Note 

that for the continuum mechanics convention used 
throughout this paper, compression implies p<0. The 
above material constants α  and β may be defined in 
terms of the cohesion c  and friction angle φ  used to 
describe a Mohr-Coulomb material (Owen and Hin-
ton, 1980) 

( ) ( )
6 cos 6sin, , 1 1

3 3 sin 3 3 sin
c A

A A
φ φα β

φ φ
=  =  − ≤ ≤

+ +

      (35) 

The value A=−1 coincides with a cone that 
circumscribes the Mohr-Coulomb envelope−passing 
through its outer apexes−in three-dimensional stress 
space, and A=1 coincides with a cone that passes 
through the inner apexes of the Mohr-Coulomb en-
velope. Because of the form of κ in Eq.(34), standard 
bulk and shear hardening/softening through α1 and α2 

cause the size of the yield cone to change, and not its 
shape. Incorporating additional hardening/softening 
through β would allow frictional hardening/softening 
that is appropriate for modeling a cohesionless 
granular material, such as sand, thus the change of 
slope of the yield cone would be possible. 

A plastic potential function ϕ(σ, α) is defined 
similar to the yield function φ(σ, α) as 

3( , ) 3( ) 0
2

bpϕ κ= + + =σ α s                (36) 

with derivatives 

3 1 3ˆ ,
2 3 1

bbϕ ϕ  ∂ ∂  = + =  
∂ ∂   

1    
σ α

n                 (37) 

where b is the material dilation constant. Associated 
plasticity results if β=b, but typically for soil and rock, 
this is not the case. Usually there exists β>b with b>0 
for a dilatant material, and b<0 for a contractant ma-
terial. By setting β=b=0, the J2 flow (von Mises) 
plasticity model is recovered, which is useful for 
modeling the undrained conditions in a cohesive soil. 

With the plastic potential function ϕ(σ, α) as 

defined in Eq.(36), the evolution of ξ then becomes 

3
1

bϕξ λ λ
 ∂  = =  

∂   
�

α
   (38) 

Note that b takes the form 

3

p

p
b

e
υ

=
�
�

(39) 

which is analogous to the dilatancy factor used by 
Rudnicki (1977) and Rudnicki and Rice (1975). 

There are many kernel functions proposed. Here 
we employ a cubic spline function as the kernel 
function of Eq.(11) 

2 3

2 3

2 / 3 4( / ) 4( / )
  for   0 / 1/ 2

4 / 3 4( / ) 4( / ) 4( / ) /3 
  for   1/ 2 / 1
0      otherwise       (40)
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   ≤ ≤


I I

I

I
a I I I

I

d a d a
d a

d d a d a d a
a

d a

where 

I Id = −x x    (41) 

As an illustrative case, we study a plane strain 
problem of slope stability in geotechnical engineering. 
The geometrical model of the slope is shown as Fig.1 
with a slope of 5/3 and is discretized with 3029 points 
(Fig.3). The constitutive relation is Mohr-Coulomb 
model. Under self-gravity, the slide will happen while 
the friction and cohesive strength of soil decreases.  

During the numerical computation, the cubic 
spline function is chosen as kernel function Eq.(40), 
with the cohesive-like strength parameter of 0.015, 
friction-like parameter of 0.04, dilation and hardening 
parameter of zero. As a result, the maximum relative 
and maximum absolute errors are 10−10 and 10−12, 
respectively. The deformed shape of the slope is de-
picted in Figs.4 and 6. In order to compare with 
mesh-based methods, such as the finite element 
method, the computed results by the meshfree method 
is shown with and without a mesh as Figs.5 and 2, 
respectively. The extremely deformed part near the 
slope-toe is outlined with a mesh in Figs.7 and 8. 
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 Fig.1  Geometrical model with a grid showing coordinates

Fig.6  Deformed shape showing strain energy densityFig.5  Deformed shape of a slope with a mesh

Fig.4  Deformed shape of a slope Fig.3  Meshfree discretization 

Fig.2  Deformed shape with a grid showing coordinates

Fig.7  Deformed shape with a mesh shown Fig.8  Zoom-in of the part in Fig.7 

Fig.8 
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CONCLUSION 

The numerical computation shows that, while 
the deformation is not sufficiently large, such as in an 
elastic stage, the FEM and the RKPM will produce 
almost the same results, but the meshfree method 
costs more computation time. However, while the 
deformation is large enough, even with the same dis-
cretization and allowable errors, the FEM would re-
sult in divergence with RKPM resulting in conver-
gence. As to the situation of extreme deformation, for 
example the case of slope sliding we are discussing 
here, the FEM cannot deal with it due to the 
non-positiveness of the Jacobian, which is caused by 
the severe mesh distortion. The conclusion can be 
drawn that for extreme deformation, the meshfree 
method RKPM is more appropriate.  

In addition, it should be mentioned that parallel 
computation was used for complete comparison be-
tween FEM and RKPM on an SGI Onyx3900 super-
computer with 1, 2, 4, 8 and 16 processors utilized. 
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