
International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 03 57

 118903-4646 IJECS-IJENS © June 2011 IJENS I J E N S

Abstract— Monitoring is the act of collecting information
concerning the characteristics and status of resources of
interest. The Grid Monitoring Architecture (GMA) based on
simple Consumer/ Producer architecture with an integrated
system registry and distinguishes transmission of monitoring
data and data discovery logically. We propose grid monitoring
system based on GMA. The proposed grid monitoring system
consists of producers, registry, consumers, and failover
registry. The registry is used to match the consumer with one
or more producers, so it is the main monitoring tool. The
failover registry is used to recover any failure in the main
registry. The structure of proposed grid monitoring system
depends on java Servlet and SQL query language. Load
balancing (LB) should be added to the system to overcome the
message overloaded. Load balancing algorithms can be static
or dynamic. This paper evaluates the four types of static load
balancing algorithms; Randomized, Round Robin, Threshold,
and Central Manager algorithms. We evaluate the
performance of the system by measuring the response time,
and throughput. Central Manager algorithm introduces the
smallest response time and the highest throughput.

Index Terms— Grid computing, monitoring system, load
balancing, response time, Security, throughput.

I. INTRODUCTION

rid computing has emerged as an important new field.
It focuses on large-scale resource sharing, innovative

applications, and high-performance orientation. The
distinguished advantage of Grid against traditional
distributed computing is that it can integrate a large number
of computing resources as well as data resources to solve
some kind of challenges. As more and more web service
applications, Grid computing has extended its territory from
traditional computing Grid to public and provides Grid
services. The purpose of Grid is to realize coordinated
resource sharing and problem in dynamic virtual
organizations (VOs) [1]. In this environment, the security
problem is a hot topic in Grid research due to the dynamics
and uncertainty of Grid system. The Grid security issues can
be categorized into three main categories: architecture
related issues, infrastructure related issues, and management
related issues [8].

This paper is focused on Grid management. The different

1,3 Graduate School of Advanced Integration Science,
 Chiba University, Japan 263-8522
2 Faculty of Computers and Information, Mansoura University, Egypt
Emails: 1,2sherihan@graduate.chiba-u.jp,

 3 kitakami@faculty.chiba-u.jp

management issues that Grid administrators are worried
about are credential management, trust management, and
monitoring related issues. The ability to monitor and
manage distributed computing components is critical for
enabling high performance distributed computing.
Monitoring data is needed to determine the source of
performance problems and to tune the system for better
performance [9]. Monitoring is the act of collecting
information concerning the characteristics and status of
resources of interest. Monitoring is also crucial in a variety
of cases such as scheduling, data replication, accounting,
performance analysis and optimization of distributed
systems or individual applications, self-tuning applications,
and many more [8]. The functions of monitoring are
correctness checking, performance enhancement,
dependability or fault tolerance, performance evaluation,
debugging and testing, control or management, and security.

Most existing monitoring systems work with network or
cluster systems. There are several research systems
implementing the Grid Monitoring Architecture (GMA) [6]:
Autopilot, R-GMA, MDS, etc. Autopilot [11] is a
framework for enabling applications to dynamically adapt to
changing environments. It aims to facilitate end-users in the
development of application. R-GMA [12] combines grid
monitoring and information services based on the relational
model. Although the robustness of R-GMA, it has three
drawbacks: flow of data, loss of control message, and single
point of failure. The Monitoring and Discovery System
(MDS) [3] of the Globus Toolkit (GT) is a suite of
components for monitoring and discovering Grid resources
and services. It has many problems such as it is too difficult
to install.

In this paper, we focus on monitoring management in
Grid system. The proposed Grid monitoring system is also
based on the GMA [6]. GMA is the basis of most of
monitoring system. The goal of GMA is to provide a
minimal specification that will support required
functionality and allow interoperability. We design a simple
Grid monitoring system. The proposed system components
are producers, registry, consumers, and failover registry.
The goals of this system are to provide a way for consumers
to obtain information about Grid resources as quickly as
possible, and to recover any faults in the system. There is
no direct relationship between producer and consumer. The
monitoring tool is registry. It manages and controls the
relationship between all producers and consumers existing

Performance Analysis of Static Load Balancing
in Grid

Sherihan Abu Elenin1,2 and Masato Kitakami3

G

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 03 58

 118903-4646 IJECS-IJENS © June 2011 IJENS I J E N S

in the system. Failover registry is responsible of taking place
of main registry in case of failure.

In the proposed Grid monitoring system, we observe that
there may be overloaded in Registry if the number of
requests is large. So load balancing should be added to the
proposed Grid monitoring system in order to get better
performance. Load balancing is not a new concept in the
server or network space. Load balancing is a technique
applied in parallel system that is used to reach optimal
system condition, which is workloads are evenly distributed
amongst computers, and as its implication will decrease
programs execution time. Load balancing is dividing the
amount of work that a computer has to do between two or
more computers so that more work gets done in the same
amount of time and, in general, all users get served faster.
Load balancing can be implemented with hardware,
software, or a combination of both [5].

Load balancing can be static or dynamic [14]. Static load
balancing algorithms are Round Robin algorithm,
Randomized algorithm, Central Manager algorithm, and
Threshold algorithm. Dynamic load balancing algorithms
are Central Queue algorithm, and Local Queue algorithm. In
this paper, we apply the static load balancing algorithms in
the proposed system to get better performance. Based on
Table 1 [14], the dynamic load balancing algorithms aren’t
suitable for the proposed Grid monitoring system. In the
end, we compare the four static load balancing algorithms to
select the best one that can work well with the proposed
system.

Table 1: Parametric Comparison of Load Balancing Algorithms

P
ar

am
et

er
s

R
ou

n
d

R
ob

in

R
an

do
m

L
oc

al

Q
u

eu
e

C
en

tr
al

Q

u
eu

e

C
en

tr
al

M

an
ag

er

T
h

re
sh

ol
d

Overload
Rejection

No No Yes Yes No No

Fault
Tolerant

No No Yes Yes Yes No

Forecasting
Accuracy

More More Less Less More More

Stability Large Large Small Small Large Large

Centralized/
Decentralized

D D D C C D

Dynamic/
static

S S Dy Dy S S

Cooperative No No Yes Yes Yes Yes

Process
Migration

No No Yes No No No

Resource
Utilization

Less Less More Less Less Less

II. STATIC LOAD BALANCING ALGORITHMS

In static load balancing, the performance of the processors
is determined at the beginning of execution. Then depending
upon their performance the work load is distributed in the
start by the master processor [4]. The slave processors
calculate their allocated work and submit their result to the
master. A task is always executed on the processor to which
it is assigned that is static load balancing methods are non-
preemptive. The goal of static load balancing method is to
reduce the overall execution time of a concurrent program
while minimizing the communication delays. A general
disadvantage of all static schemes is that the final selection
of a host for process allocation is made when the process is
created and cannot be changed during process execution to
make changes in the system load. There are four types of
static load balancing: - Round Robin algorithm,
Randomized algorithm, Central Manager algorithm, and
Threshold algorithm.

Round Robin algorithm [13] distributes jobs evenly to all
slave processors. All jobs are assigned to slave processors
based on Round Robin order, meaning that processor
choosing is performed in series and will be back to the first
processor if the last processor has been reached. Processors
choosing are performed locally on each processor,
independent of allocations of other processors. Advantage of
Round Robin algorithm is that it does not require inter-
process communication. In general Round Robin is not
expected to achieve good performance in general case.

Randomized algorithm [13] uses random numbers to
choose slave processors. The slave processors are chosen
randomly following random numbers generated based on a
statistic distribution. Randomized algorithm can attain the
best performance among all load balancing algorithms for
particular special purpose applications.

Central Manager algorithm [14], in each step, central
processor will choose a slave processor to be assigned a job.
The chosen slave processor is the processor having the least
load. The central processor is able to gather all slave
processors load information, thereof the choosing based on
this algorithm are possible to be performed. The load
manager makes load balancing decisions based on the
system load information, allowing the best decision when of
the process created. High degree of inter-process
communication could make the bottleneck state.

In Threshold algorithm [14], the processes are assigned
immediately upon creation to hosts. Hosts for new processes
are selected locally without sending remote messages. Each
processor keeps a private copy of the system’s load. The
load of a processor can characterize by one of the three
levels: underloaded, medium and overloaded. Two threshold
parameters t_under and t_upper can be used to describe
these levels. Under loaded: load < t_under , Medium :
t_under ≤ load ≤ t_upper , and Overloaded: load > t_upper.
Initially, all the processors are considered to be under
loaded. When the load state of a processor exceeds a load
level limit, then it sends messages regarding the new load
state to all remote processors, regularly updating them as to

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 03 59

 118903-4646 IJECS-IJENS © June 2011 IJENS I J E N S

the actual load state of the entire system.

III. PROPOSED GRID MONITORING SYSTEM

A. Overview

Most of Grid monitoring and information service have
shortcomings and not easy to use [10]. First, they are too
large and too difficult to install, to configure and to deploy.
For example, to use MDS4 you need configure third party
monitoring tools such as Ganglia or Hawkeye. Second,
some functions they provide may be limited to some specific
projects; these functions may be useless to another project
and may reduce the performance of this project. Finally,
some protocols these tools rely on also have defects.

We design a simpler model after we analyze the
requirements of Grid monitoring and information service,
and implement it. The proposed Grid Monitoring System is
based on the Grid Monitoring Architecture (GMA) [6] as
shown in Fig. 1.

Fig. 1. Grid Monitoring Architecture (GMA)

In order to satisfy the requirement of Grid monitoring,
Global Grid Forum (GGF) recommend Grid Monitoring
Architecture (GMA) as Grid monitoring mechanism [6].
The GMA specification sets out the requirements and
constraints of any implementation. It is based on simple
Consumer/ Producer architecture with an integrated system
registry and distinguishes transmission of monitoring data
and data discovery logically. In GMA, all of monitoring data
are events which are based on timestamp for storing and
transferring. For example, CPU usages, memory usage,
thread status and error information. The Grid Monitoring
Architecture consists of three types of components:
Directory Service (Registry), Producer and Consumer.

The architecture of proposed Grid monitoring system and
the Communications between the Producer and the
Consumer is shown in Fig. 2. The proposed Grid monitoring
system consists of producers (P), registry, consumers (C),
and failover registry. The main aim of proposed system is to
provide a way for consumers to obtain information about
Grid resources as quickly as possible. It also provides fault

tolerance system supported by failover registry. The solid
line is the normal communication between consumer and
registry. The dotted line is the replacement communication
in case of registry failure. The structure of proposed Grid
monitoring system depends on java Servlet and SQL query
language. Java servlets are more efficient, easier to use,
more powerful, more portable, and cheaper than traditional
Common Gateway Interface (CGI). Structured Query
Language (SQL) is a database computer language designed
for managing data in relational database management
systems (RDBMS), and originally based upon relational
algebra. Users are offered all the flexibility that SQL query
language brings.

Fig. 2. Proposed Grid Monitoring System

B. Components of Proposed Grid Monitoring System

Producers are Grid services which register themselves in
registry, describe the type and structure of information by
SQL CREATE TABLE and SQL INSERT TABLE, and
reply to the query of consumer as shown in Fig. 3. So the
producers in our Grid monitoring system are source of data.
Each producer has interface and Servlet. Producer interface
communicates with producer Servlet to build data base. The
functions that are supported by the producer are creating
tables, inserting data into tables, deleting data from tables,
and updating data in tables.

Registry acts as a discovery Grid service to find relevant
producers matching the query of a consumer. Registry
schema consists of four layers: register layer, data layer,
service layer, and republish layer. Register layer is
responsible of registering all producers and consumers in the
system. Data layer as shown in Fig. 4 contains the
description of data base exist in all producers. As the
example in Fig. 4, The Registry index contains the table
name and description of it. For example, if the table
“customer” in Fig. 3 exists in producer1, then Data layer in
Registry contains “Producer1 has ‘customer table’ with
description {First_Name, Last_Name, Address, Country,
Age}. Service layer and republish layer take request and get
reply, respectively. The functions that are supported by the
registry are registering both producers and consumers,

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 03 60

 118903-4646 IJECS-IJENS © June 2011 IJENS I J E N S

adding entry from producers, updating entries from
producers, removing entries from producers, and searching
about suitable producer for consumer. The overall purpose
of the registry is to match the Consumer with one or more
Producers. This is achieved by that Producers publish
information about themselves and then Consumers search
through the registry until they find the relevant match and
then the two communicate directly with each other. The
registry is not responsible for the storage of database, but
only the index of it.

Fig. 3. SQL Example

Failover registry is a backup version of all layers in
registry. It acts like registry in the situation of failure of
registry. It also has all the functions of registry.

Consumers can be software agents or users that query the
Registry to find out what type of information is available
and locate Producers that provide such information. The
function of consumer is sending request to registry to find
data by SQL SELECT statement in browser interface.

Fig. 4. Registry Schema

C. The Overall System

Our Grid system is divided into Grid domains (GDs). GD

consists of application domain (AD), resource domain (RD),
client domain (CD), and Trust Manager (TM). TM’s
operations consist of Trust Locating, Trust Computing, and
Trust Updating. This system was proposed and tested in [7].
We add another operation to TM. This operation is Registry
to manage the relationship between producers and
consumers.

Every domain can have any number of producers and
consumers. But it has one TM with Registry; this makes
management, and one failover registry node; this makes
failure recovery. The domain can have any number of nodes
that is intersection with other domains or not.

After analyzing the architecture of proposed Grid
monitoring system, we observe that there may be overloaded
in Registry or Producers if the number of requests is large.
So Load Balancing (LB) should be added to the proposed
Grid monitoring system to get better performance. It is
important in order to get optimal resource utilization,
maximize throughput, minimize response time, and avoid
overload.

IV. EVALUATION RESULTS

To evaluate the performance of the proposed Grid
monitoring system, we pay more attention to the following
parameters: response time, and throughput. We measure
these two performance metrics twice. One depends on the
message sizes in the system, and the other depends on the
number of users.

A. Experimental Platform

Our Grid platform consists of: 1) Hardware Components:
Nodes: 5 PCs (Intel Pentium4 2.2 GHz processor, Intel
RAM 256 MB) and 10 PCs (Intel Atom 1.66 GHz
processor, Intel RAM 2 GB), and Interconnection Network:
Gigabit Ethernet 1000Mbps. 2) Grid Middleware: Globus
Toolkit 4.2.1. 3) Software Components: Operating System:
Linux Fedora 10, and Tools: Programs written in Java,
Apache Ant for Java- based build tool, and Microsoft SQL
server 2008.

B. Domains Structure in the Experimental

The system is divided into two domains (Domain1 and
Domain2) as shown in Fig. 5. Domain1 consists of G1, G2,
G3, G4, G5, G6, G7, and G8. Domain2 consists of G1, G2,
G3, G4, G5, G6 and G7. Trust Manger (TM) with registry
(R1) of Domain1 is existed in G1 and there is back up
version called failover registry existed in G8. In Domain2,
Trust Manger (TM) with registry (R2) is existed in G1 and
there is back up version called failover registry existed in
G6. We have two nodes that exist in the two domains; G5
and G7. In the system, always every node is called with its
domain name such as G5: Domain2.

Failover registry is an important tool to recovery the
failure. For example in Domain2, if G1:Domain2 failed, the
request will go to G6:Domain2 (Failover Registry), and it
works all functions of Registry. The algorithm will be:

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 03 61

 118903-4646 IJECS-IJENS © June 2011 IJENS I J E N S

IF (G1:Domain2 == Fail)
THEN Goto (G6:Domain2)
ELSE Get the request from consumer.

Fig. 5. Domains structure in the experiment

C. Response Time

Response time (RT) is the average amount of time from
the point a consumer sends out a request till the consumer
gets the response. We measure response time twice; one as
a function of message size as shown in Fig. 6 and one as a
function of number of users as shown in Fig. 7.

We measure response time depending on message size
with fixed number of requests; 15 requests. In Fig. 6,
Randomized algorithm gives the highest response time in all
message sizes. This is because there is no steps or any
calculations of loaded in the system. It depends on choosing
the producer in random manner. So the response time takes
long time. Round Robin algorithm introduces results near to
Randomized algorithm. Central Manager algorithm is the
best in all results because it introduces the smallest response
time and it increases very simply; especially when message
size is less than or equal 512KB. When message size is
more than 512KB, response time is increased in huge
manner. So we recommended working in this proposed
system with message size less than 512KB.

In Fig. 7, when number of users is one, all algorithms
show the same response time. When number of users is 10,
the difference between response times from the four
algorithms is slightly small. This is because the number of
users is less than the number of nodes in the system. In the
remaining results, Randomized algorithm introduces the
biggest response time and Central Manager algorithm gives
the smallest response time. So Central Manager algorithm is
also the best algorithm. Threshold and Round Robin
algorithms give mediate results. We observe that the
response time in all four algorithms until 300 users is small.

When number of users is more than 300, the response time
in all algorithms are largely increased. If the number of
nodes in the system is increased, the system can serve many
users. So we recommended working in this proposed system
with number of users less than 300.

Fig. 6. Comparing Response Time for 4 static load balancing algorithms
depending on the message size

Fig. 7. Comparing Response Time for 4 static load balancing algorithms

depending on the number of users

0

100

200

300

400

500

600

700

800

900

1000

16 32 64 128 256 512 1024 2048

R
es

po
ns

e
T

im
e

(m
s)

Message size (KB)

RT with Cenral Manager
RT with Threshold
RT with Round Robin
RT with Random

0

2

4

6

8

10

12

14

16

18

1 10 50 100 200 300 400 500 600

R
es

po
ns

e
T

im
e

(s
)

Number of users

RT with Cenral Manager

RT with Threshold

RT with Round Robin

RT with Random

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 03 62

 118903-4646 IJECS-IJENS © June 2011 IJENS I J E N S

D. Throughput

Throughput is the amount of data transferred in one
direction over a link divided by the time taken to transfer it,
usually expressed in bits or bytes per second. People are
often concerned about measuring the maximum data
throughput rate of a communications link. A typical method
of performing a measurement is to transfer a large file and
measure the time taken to do so. The throughput is then
calculated by dividing the file size by the time to get the
throughput in megabits, kilobits, or bits per second. We
measure the throughput as a function of data (message size)
in Mega Bytes Per Second (MBPS) as shown in Fig. 8 and
as a function of number of users as shown in Fig. 9.

Fig. 8. Comparing Throughput for 4 static load balancing algorithms

depending on the message size

In Fig. 8, Round Robin and Randomized algorithms give
the smallest throughput. Low throughput means low data
flow. Round Robin algorithm depends on Round Robin
order, so there is no strategy to know the best loaded node.
Randomized algorithm is the same story. We think they can
be good in the specific projects. On the other hand, Central
Manager algorithm introduces the highest throughput. High
throughput means high data flow. This algorithm depends
on choosing the producer with smallest load so it chooses
the minimal one. We observe that the throughput is
increased when message size is less than or equal 512KB in
all algorithms. But it decreased when message size is more
than 512KB in all algorithms. So we recommended using
message size with less than 512 KB when working with the
proposed Grid monitoring system to get high performance.

In Fig. 9, when number of users is one, all algorithms
show the same throughput. This is because the system is not
worked in parallel. When number of users is 10, Central
Manager and Threshold algorithms give the same result, and
Randomized and Round Robin give the same throughput. In
Central Manager algorithm, throughput is increased with
number of users until 300 users. It is constant after 300
users. In Threshold algorithm, throughput is increased with
number of users until 400 users. It is decreased after 400
users. In Round Robin algorithm, throughput is increased
with number of users until 400 users. It is decreased after
400 users. In Randomized algorithm, throughput is
increased with number of users until 300 users. It is
decreased after 400 users. These show the capacity of each
algorithm in number of users.

Fig. 9. Comparing Throughput for 4 static load balancing algorithms

depending on the number of users

V. CONCLUSIONS AND FUTURE WORK

The monitoring system in distributed system is new topic.
Previous works over monitoring system is interested in
cluster computing, network, or P2P systems. In Grid
systems, most of monitoring system is under development
and isn’t executed in real projects. In the proposed Grid
monitoring system, we focus in the system management by
controlling the relationship between the producers,
consumers, and registry, and its fault tolerance by adding
failover registry in every domain. The overloaded is a big
problem in the system, so load balancing should be added.
The load balancing algorithms are two types: static or
dynamic. The performance of four types of static load

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5

16 32 64 128 256 512 1024 2048

T
hr

ou
gh

pu
t (

M
B

P
S

)

Message size (KB)

Throughput with Central Manager
Throughput with Threshold
Throughput with Round Robin
Throughput with Random

0

5

10

15

20

25

30

35

1 10 50 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

Q
ue

ri
es

/S
)

Number of users

Throughput with Central Manager
Throughput with Threshold
Throughput with Round Robin
Throughput with Random

International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 03 63

 118903-4646 IJECS-IJENS © June 2011 IJENS I J E N S

balancing is evaluated by measuring the response time, and
throughput. Round Robin, Randomized, Central Manager,
and Threshold algorithms are evaluated in the proposed Grid
monitoring system twice from point of view of message
sizes and number of users. Central Manager algorithm is the
best and has introduced good performance. Randomized
algorithm has introduced bad results.

For future work, the dynamic load balancing algorithms
should be modified to be suitable with Grid systems. The
complete evaluation should be made between all load
balancing algorithms in Grid.

ACKNOWLEDGMENT

The authors are grateful to Prof. Hideo Ito for his
discussions and advices.

REFERENCES
[1] I. Foster, C. Kesselman, S. Tuecke: “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations”. International Journal of
High Performance Computing Applications, 15(3):200-222, 2001.

[2] Yuanzhe Yao, Binxing Fang, Hongli Zhang, and Wie Wang, “PGMS:
A P2P-Based Grid Monitoring System” , Third International
Conference of Grid and Cooperative Computing(GCC 2004) China,
2004.

[3] Globus Toolkit: http://www.globus.org/
[4] Derek L. Eager, Edward D. Lazowska , John Zahorjan, “Adaptive

load sharing in homogeneous distributed systems”, IEEE Transactions
on Software Engineering, v.12 n.5, p.662-675, May 1986.

[5] http://www.cyquator.com/Html/load.html
[6] Brian Tierney, R.Aydt, D.Gunter etc. “A Grid Monitoring

Architecture”. http://www-didc.lbl.gov/ GGF-
PERF/GMAWG/papers/GWD-GP-16-2.pdf, 2004.

[7] Sherihan Abu Elenin and Masato Kitakami,” Trust Management of
Grid System Embedded with Resource Management System”, IEICE
Transaction Information System, vol. E94-D, No.1, 2011, pp. 42-50.

[8] Anirban Chakrabarti, Grid Computing Security, Springer, 1 edition
2007, pages 33-45.

[9] Brian Tierney, Brian Crowley, Dan Gunter, Mason Holding, Jason
Lee, Mary Thompson, “A Monitoring Sensor Management System for
Grid Environments”, Cluster Computing Volume 4, Number 1, March
2001, pp:19-28.

[10] Weibin Pei, Zhongliang Chen, Chunhao Feng, Zhi Wang, "Design
and Implementation of a Plain Grid Monitoring and Information
Service", Fifth IEEE International Symposium on Network
Computing and Applications (NCA'06) 2006, PP: 277-284.

[11] R.L. Ribler, J.S. Vetter, H. Simitci, D.A. Reed, “Autopilot: adaptive
control of distributed applications”, in: Proceedings of the Seventh
IEEE Symposium on High-Performance Distributed Computing,
1998, pp. 172–179.

[12] P. Bhatti, A. Duncan, S. M. Fisher, M. Jiang, A. O. Kuseju, A.
Paventhan and A. J. Wilson, “Building a robust distributed system:
some lessons from R-GMA “, international Conference on Computing
in High Energy and Nuclear Physics (CHEP '07) September 2007,
Victoria, Canada.

[13] Hendra Rahmawan, Yudi Satria Gondokaryono, “The Simulation of
Static Load Balancing Algorithms”, 2009 International Conference on
Electrical Engineering and Informatics, Malaysia.

[14] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma,
“Performance Analysis of Load Balancing Algorithms”, academy of
science, engineering and technology, issue 38, February 2008, pp.
269-272.

