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Abstract. In this paper we present a genetic-algorithm-based
fuzzy-logic approach for computer-aided diagnosis scheme in medi-
cal imaging. The scheme is applied to discriminate myocardial heart
disease from echocardiographic images and to detect and classify
clustered microcalcifications from mammograms. Unlike the con-
ventional types of membership functions such as trapezoid, triangle,
S curve, and singleton used in fuzzy reasoning, Gaussian-
distributed fuzzy membership functions (GDMFs) are employed in
the present study. The GDMFs are initially generated using various
texture-based features obtained from reference images. Subse-
quently the shapes of GDMFs are optimized by a genetic-algorithm
learning process. After optimization, the classifier is used for dis-
ease discrimination. The results of our experiments are very prom-
ising. We achieve an average accuracy of 96% for myocardial heart
disease and accuracy of 88.5% at 100% sensitivity level for micro-
calcification on mammograms. The results demonstrated that our
proposed genetic-algorithm-based fuzzy-logic approach is an effec-
tive method for computer-aided diagnosis in disease classification.
© 2004 SPIE and IS&T. [DOI: 10.1117/1.1786607]

1 Introduction

Research in computer-aided diagnosis~CAD! is a rapidly
growing, dynamic field with new computer techniques, n
imaging modalities, and new interpretation tasks. CAD
defined as a diagnosis made by a radiologist who uses
output from a computerized analysis of medical images a
second opinion in detecting lesions, assessing extent of
ease, and making diagnostic decisions.1 So far most CAD
papers have involved either mammograms2–10 or chest
radiographs.11–17 Recent reports show that CAD resear
has extended to other fields such as echocardiography18 and
colonography.19,20

In this paper, we present a generalized CAD sche
based on our previously reported CAD scheme.18 The pro-
posed CAD scheme, containing four stages: image pre
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cessing, feature extraction, classifier training, and clas
cation, can be applied to various imaging modalities a
diseases with minor modification. In our system, we ba
cally employ fuzzy logic for classification. Unlike the con
ventional types of fuzzy membership functions such as
angle and trapezoid, Gaussian-distributed members
functions ~GDMFs! are used in the system. The GDMF
are initially generated using various features obtained fr
image data sets. Subsequently, the shapes of the GD
are optimized using a genetic-algorithm~GA! learning pro-
cess. After optimization, the system is used for discrimin
tion of disease. To our knowledge, this is the first time su
a CAD system has been described using the GA-ba
fuzzy approach. In the present study, we apply our CA
method to discriminate myocardial heart disease fr
echocardiographic images and to detect and classify c
tered microcalcification from mammograms. The perf
mance of our CAD method is evaluated in terms of ac
racy, sensitivity, and specificity.

2 Methods

2.1 Fuzzy Membership Functions and Fuzzy Rules

The major components of the fuzzy-logic decision-maki
system are fuzzy sets, fuzzy membership functions,
fuzzy rules. Each fuzzy set has a corresponding fu
membership function. The value of the membership fu
tion ranges from 0 to 1 and can be considered a degre
truth. The current study uses simplified fuzzy rules as f
lows:

rule i : If x1 is ci1 and ,..., andxM is ciM ,

then y is wi , ~1!

where i ( i 51,2,...,M ) are rule numbers,x1 ,...,xM are in-
put variables to the fuzzy reasoning,y is the output,
ci1 ,...,ciM are fuzzy labels corresponding to the input va

3;
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Medical image classification . . .
ables, andwi is a real number of the consequent part of t
fuzzy rule. While almost any type of fuzzy membersh
functions such as trapezoid, triangle, S curve, and single
can be used, the GDMFs were employed in this study.
optimal shape of a membership function may vary depe
ing on the issue being dealt with. In this study, we intend
to automatically generate membership functions using v
ous features obtained from a specific category of im
data for recognition and classification. We considered t
if the number of image data base is large, Gaussian di
bution function can be used to appropriately describe
age’s features. These are the main reasons why GD
were used.

Consider a specific feature valuex that can be measure
from an image. Let the mean value ofx from a set of
images belonging to the same category bem and the stan-
dard deviation of the feature values bes. Define a fuzzy set
with a GDMF having the maximum value of unity~normal-
ized!. The normalized membership function can be e
pressed as

f ~x!5expF2
1

2 S x2m

s D 2G ~2!

When the value ofx for an image ism, the membership
value should be one. Whenx is gradually apart from the
value ofm, the membership value should become smal
If the number of sample images is limited, the value ofs
may not accurately reflect the characteristic of all images
the same category. Therefore, in this study we propos
method to use a GA at a training phase for determining
optimal membership function.

2.2 Optimization of the Fuzzy Membership Function
Using Genetic Algorithms

As shown in Eq.~3!, by varying the value of standard de
viation s with a coefficientc, the shape of the GDMF ca
be optimized using GA-based learning

f ~x!5expF2
1

2 S x2m

cs D 2G . ~3!

If N fuzzy rules are present and each fuzzy rule cons
of M premise-part~antecedent! membership functions in a
fuzzy system, a total ofM3N chromosomes~or genes!
line up to generate an individual~see Fig. 1!. As shown in
Fig. 2~a!, it is assumed that an individual comprises tw

Fig. 1 Configuration of an individual consisting of N fuzzy rules. If
each fuzzy rule is composed of M premise-part membership func-
tions, a total of M3N chromosomes line up to generate an indi-
vidual.
n
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fuzzy rules. Each fuzzy rule consists of four GDMFs wi
various coefficientsci j and standard deviationss i j ( i 51, 2,
and j 51, 2, 3, 4!. The ci j s i j are optimized by the GA.
Since the values ofs11, s12, s13, s14, s21, s22, s23,
and s24 are constant when the data set is determined
practice only the coefficients are used in the phase of o
mization. As shown in Fig. 2~b! the string having eight
variables is treated as an individual. The shape of
consequent-part membership functions employed in
present study is a right isosceles triangle with the maxim
value of unity~normalized!.

A simple GA that has given good results in a variety
engineering problems is composed of three operators:
lection ~reproduction!, crossover, and mutation. These o
erators are implemented by performing the basic tasks
copying strings, exchanging portions of strings, and gen
ating random numbers. The GA begins by randomly gen
ating a population of individuals~strings!. Each individual
is a possible solution to the optimization problem. In ge
eral, the population is initialized at random to a bit string
0’s and 1’s. The selection operation mimics the natural
lection process by selecting which individuals will be us
to create a new generation, where the fittest individu
reproduce most often. Usually a fitness function is used
rate individuals in terms of how good they are in solvin
the optimization problem. The crossover operation refers
the exchange of substrings of two individuals to gener
two new individuals. The third operator, mutation, e
hances the ability of the GA to find near-optimal solution
Mutation is the occasional alternation of the binary value
a particular string position.

The procedure of how to optimize the membership fun
tions using the GA is described as follows.

1. A total of 200 individuals are randomly determine
Each individual ~string! consists of eight variables a
shown in Fig. 2~b!.

2. The fitness values of each individual are compute
3. The individuals are rearranged in ranking order a

cording to the fitness value.
4. Out of 200 randomly generated initial strings, th

first 140 high-ranked parent strings are selected for cro
over and mutation to produce the same number of child
strings. Next, the first high-ranked 60 parent strings
gether with the 140 children are treated as the strings of
next generation. Single-point crossover is used in t
study. It should be emphasized here that the crossove
performed for each variable having eight-digit binary num
ber, namely, the crossover are simultaneously performe
eight positions. A probability of 10% is used for mutatio

Fig. 2 (a) Chromosomes of an individual presented by two fuzzy
rules. Each fuzzy rule consists of four GDMFs with various coeffi-
cients cij and standard deviations s i j ( i51, 2, and j51, 2, 3, 4). (b)
Each individual consists of eight coefficients.
Journal of Electronic Imaging / October 2004 / Vol. 13(4) / 781
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5. Operations 2–4 are treated as one generation.
number of generation employed is 50. On the completion
50 iterations~generations!, the individual having the high-
est ranking is finally selected, the eight variables cor
sponding to the eight coefficients of GDMFs are conside
as optimal, and the training process is finished, followed
the classification phase.

2.3 Defuzzification

While many kinds of defuzzification approaches could
used, the MIN-MAX compositional rule of fuzzy inferenc
is employed in this study.21 However, a modified ‘‘height
method’’ rather than center-of-gravity method is employ
for defuzzification. The MIN-MAX compositional heigh
method is described as follows.

First, assuming thatmnor(Q1), mnor(Q2), mnor(Q3), and
mnor(Q4) are the respective fuzzy GDMF values for th
normal case~or benignancy!, and mab(Q1), mab(Q2),
mab(Q3), andmab(Q4) are the respective fuzzy GDMF va
ues for the abnormal case~or malignancy!. Then, the mini-
mum value of mnor(Q1), mnor(Q2), mnor(Q3) and
mnor(Q4), and that ofmab(Q1), mab(Q2), mab(Q3) and
mab(Q4) are given by

mnor5MIN @mnor~Q1!,mnor~Q2!,mnor~Q3!,mnor~Q4!# ~4!

and

mab5MIN @mab~Q1!,mab~Q2!,mab~Q3!,mab~Q4!#. ~5!

This is usually called MIN~minimum! operation. Finally,
the larger value is taken from the two. It is called MA
~maximum! operation and is given by

mnorUab5MAX @mnor,mab#. ~6!

The classification scheme in our applications is

if mnorUab5mnor→normal case~or benignancy), ~7!

if mnorUab5mab→abnormal case~or malignancy). ~8!

In the case ofmnor5mab, the classification becomes unce
tain and is regarded as misclassification in this study.

As shown in Fig. 3, suppose that the minimum valu
for rules 1 and 2 are 0.4 and 0.2~absolute value!, respec-
tively. Since 0.4~fuzzy rule 1 for normal case! is greater
than 0.2~fuzzy rule 2 for abnormal case!, the output of the
fuzzy inference is ‘‘it is a normal case.’’ The result is su
sequently compared to the teacher signal, which is alre
known through the diagnosis made by the highly train
physician. If the result is identical to the diagnostic res
made by the physician, then the case is correctly classi

3 Applications

3.1 Classification of Myocardial Heart Disease from
Ultrasonic Images

Echocardiography is one of the best tools for diagnos
cardiomyopathy. However, since the clinical interpretat
process and the results largely depend on the physici
subjective point of view and experience, the criteria of
782 / Journal of Electronic Imaging / October 2004 / Vol. 13(4)
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agnosis are somewhat indeterminate. If a computer-ai
technique, which provides a second opinion for the phy
cian, can be developed, then this subjectivity may be
duced and in turn the accuracy in diagnosis is expected
increase.

3.1.1 Data set

In this application, a total of 90 samples of echocard
graphic images from 45 subjects~two sample images pe
subject: an end-diastole image and an end-systole ima!
were collected at the Hospital of Gifu University School
Medicine. The images were captured from a Toshiba SS
160A device with a 2.5 MHz~central frequency! trans-
ducer. The state when the ventricles of the heart are m
mally filled just before the heart contracts is calledend
diastole. The other extreme state—when the ventricles
maximally emptied—is calledend systole. Hence, one car-
diac cycle can be represented by these two extreme stat
give a fair idea of the heart’s condition. Physicians usua
use the end-diastole and end-systole images in the diag
tic process. Of the 45 subjects, 23 subjects were diagno
in advance by a highly trained~15 year experienced! clini-
cian as normal and 22 were as abnormal~dilated cardiomy-
opathy or hypertrophic cardiomyopathy!. Each image was
digitized at the resolution of 2563256 pixels. Since the
original echocardiographic images have 64 gray levels,
scanned images were quantized to the same level. In
previous studies we noted that the use of composite ima
could provide higher recognition rate compared to that
individual images at end systole and end diastole.22,23

Therefore, in the present application we used compo
imagesh(x,y), which are obtained as follows:

h~x,y!5max@m~x,y!,n~x,y!#, ~9!

wherem(x,y) andn(x,y) refer to the images at end-systo
and end-diastole states, respectively. Figure 4 shows an
ample of the normal case. The images at end-systole
end-diastole states are shown in Figs. 4~a! and 4~b!, and the
composite image is shown in Fig. 4~c!.

3.1.2 Feature extraction

We generated a gray-level co-occurrence matrix from e
of composite images. The gray-level co-occurrence ma

Fig. 3 Illustration of defuzzification employed in our CAD scheme.
Eight Gaussian-distributed membership functions are used in the
CAD scheme. The MIN-MAX compositional rule of fuzzy inference is
employed in this study.
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Medical image classification . . .
is a matrix used to express the correlation of spatial lo
tion and gray-level distribution of an image. From it, th
local variation of gray levels on an image can be statis
cally investigated, which in turn enable us to know t
manner of change in gray level as a whole. In the curr
application, we used the following conditions to genera
gray-level co-occurrence matrices:~a! Number of gray lev-
els: A co-occurrence matrix of 64364 size can be obtained
from a 64 gray-level image. In order to save computat
time, we compress the gray level to 16 in this applicatio
since our experiments showed that the matrix size
16316 was adequate.~b! Direction: In general the gray-
level co-occurrence matrices from 0°, 45°, 90°, and 13
directions are used. Since the differences of the results f
the four directions are insignificant in our preliminary in
vestigation, only the direction of 0° was used in the stu
~c! Distance: The length of five pixels was used, beca
we experimentally found that the value to be optimal. Fro
the generated gray-level co-occurrence matrices, a tota
14 statistical features for each image can be calculate24

We experimentally evaluated all of these features on th
ability to discriminate between normal and abnormal cas
Of the 14 features, we found that the following 4 have t
most powerful discrimination ability as texture features
the composite images.

Angular second moment (Q1):

Q15(
f 1

(
f 2

P~ f 1 , f 2!2, ~10!

where f 1 and f 2 are the gray-level values of two pixels a
different locations,P( f 1 , f 2) is the probability obtained by
dividing the number of (f 1 , f 2) pairs in the matrix by the
total number of occurrence in the co-occurrence matrix

Contrast (Q2):

Q25(
f 1

(
f 2

~ f 12 f 2!2P~ f 1 , f 2!. ~11!

Correlation (Q3):

Q35
( f 1

( f 2
f 1f 2P~ f 1 , f 2!2m1m2

s1s2
, ~12!

where,

Fig. 4 Examples of echocardiograms: (a) end-systole, (b) end-
diastole, and (c) composite images. The composite image h(x,y) is
obtained using h(x,y)5max@m(x,y),n(x,y)#, where m(x,y) and
n(x,y) refer to the images at end-systole and end-diastole states,
respectively.
-

t

f

f

r
.

m15(
f 1

f 1(
f 2

P~ f 1 , f 2!,

m25(
f 2

f 2(
f 1

P~ f 1 , f 2!,

s1
25(

f 1

~ f 12m1!2(
f 2

P~ f 1 , f 2!,

s2
25(

f 2

~ f 22m2!2(
f 1

P~ f 1 , f 2!.

Entropy (Q4):

Q452(
f 1

(
f 2

P~ f 1 , f 2!ln@P~ f 1 , f 2!#. ~13!

The featureQ1 represents the uniformity of textures. Th
more the number of specific gray-level pairs appears,
higher the value ofQ1 . The featureQ2 represents the mea
of the gray-level differences of various gray-level pa
( f 1- f 2). The value ofQ2 increases with the increase o
image contrast. The featureQ3 represents pattern periodic
ity of specific directions. The featureQ4 represents the con
trary property ofQ1 . It is still not very clear that these
features completely describe what kinds of physical pr
erties of the tissue, respectively. However, in the sense
different tissue or different quality of image provides d
ferent feature values, these statistic values can be use
represent texture features of echocardiographic images

3.1.3 Classification using GA-based fuzzy-logic
approach

We randomly selected 12 normal and 12 abnormal echo
diograms from the 45 subjects and called them ‘‘set A
and called the remaining~11 normal and 10 abnormal!
hearts ‘‘set B.’’ We used set B as learning data for traini
to obtain optimal membership functions, and used set A
test data for classification, and vice versa. The classifica
results were then averaged. it should be noted that the
MFs were initially generated by usingm and s obtained
from learning data for learning and optimization phase.
other words, no learning data were used for testing in t
study.

A two-step fitness function in the selection operati
was employed to attempt increasing the accuracy of cla
fication. Fitness values are computed by the fitness fu
tions shown as follows:

f 15
n2m

n
~14!

and

f 25(
i 51

n

~d1i2d2i !
2, ~15!
Journal of Electronic Imaging / October 2004 / Vol. 13(4) / 783
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wheren andm refer to the number of learning data and t
number of misclassification, andd1i and d2i represent the
minimum values obtained from fuzzy rules 1 and 2, resp
tively. When m5n, that is, all of the learning data ar
misclassified, thenf 150. On the contrary, whenm50,
namely, all learning data are correctly classified during
training phase, thenf 151. Moreover, when the differenc
betweend1i andd2i increases, then the value off 2 becomes
greater. The fitness values obtained from Eqs.~14! and~15!
are used for ranking the individuals. The ranking proces
as follows:~a! The individuals are ranked according to th
fitness value off 1 . ~b! Those individuals having the sam
value of f 1 are further ranked according to the value off 2 .

After completion of learning, the individual with th
highest fitness value is selected and the eight variable
this individual are considered as the optimal coefficien
By using the optimal coefficients, the width~cs! of each
membership function is determined. For example, when
A was used as test data for classification, the mean v
and the standard deviation ofQ1 for normal case were
0.137 and 0.037. The optimal coefficientc was 1.21. Fi-
nally the width of the corresponding membership functi
was 0.045.

3.1.4 Results and discussion

We evaluate the performance of the proposed metho
terms of sensitivity, specificity, and overall accuracy. Se
sitivity ~true positive fraction! is the probability that a di-
agnostic test is positive, given that the person has the
ease. Specificity~true negative fraction! is the probability
that a diagnostic test is negative, given that the person d
not have the disease. Overall accuracy is the probab
that a diagnostic test is correctly performed. The three
dices are defined13,14 as follows:

sensitivity5
TP

TP1FN
, ~16!

specificity5
TN

TN1FP
, ~17!

accuracy5
TP1TN

TP1TN1FP1FN
, ~18!

where TP, FP, TN, and FN refer to true positive, false po
tive, true negative and false negative, respectively.

Table 1 shows the classification rates for performing
GA-based fuzzy method~GA-fuzzy method!. In order to

Table 1 Performance comparison for various methods applied to
myocardial heart disease.

Method
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)

BP–NN 82.1 83.0 80.8

GA–NN 88.7 91.7 86.4

Fuzzy 91.4 91.7 91.3

GA-fuzzy 95.9 91.7 100
784 / Journal of Electronic Imaging / October 2004 / Vol. 13(4)
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demonstrate the effectiveness of the proposed method
also provide the results of neural network with bac
propagation learning method~BP–NN method!, neural net-
work with GA learning method~GA–NN method!, and
fuzzy method~without GA operation! for comparison. The
sensitivity rates for BP–NN/GA–NN/fuzzy/GA-fuzzy
methods were 83.0%/91.7%/91.7%/91.7%, respectiv
Except for the BP–NN method, the sensitivity rates for t
other three methods are comparable. The BP–NN met
has lower sensitivity because of the number of FN cas
Specificity rates for BP–NN/GA–NN/fuzzy/GA-fuzzy
methods were 80.8%/86.4%/91.3%/100%, respectiv
The GA-fuzzy method provided the highest specificity, fo
lowed by fuzzy, GA–NN, and BP–NN methods. The tab
reveals that none of the FP cases misclassified. The re
indicated that the GA-fuzzy method was effective. T
overall accuracies for BP–NN/GA–NN/fuzzy/GA-fuzz
methods were 82.1%/88.7%/91.4%/95.9%, respectiv
The results showed the superiority of the GA-based fu
method.

Regarding fuzzy-logic-based methods~fuzzy and GA-
fuzzy methods!, the employment of GA for optimization o
GDMFs could achieve better classification rates, a 4.
increase in accuracy. The results suggest that our prop
GA-fuzzy method for determining the GDMFs is usefu
especially in the case of small number of training da
available.

Furthermore, in order to reveal the merit of the use
GDMFs, we also evaluated the performance of using
triangular-type membership function. Our results show
that the average classification rate was 85%, an 11%
crease in accuracy. This inferiority may be due to the r
son that those test data having feature values larger
m13s could not be classified using the triangular-ty
membership function and resulted in misclassification.

To the best of our knowledge, so far, there are no ot
reports dealing with echocardiography classificatio
Therefore, we do not have references for the compara
evaluation of our results on the specific database us
However, we believe that the performance of our propo
method is satisfactory and the method is clinically use
for computer-aided diagnosis of cardiomyopathy.

3.2 Classification of Clustered Microcalcifications on
Mammograms

Breast cancer is a leading cause of cancer deaths am
women in many parts of the world. Mammography
known as the most effective modality for early detection
breast cancer, such as tumors and microcalcifications.
tection of microcalcifications is especially related to ea
detection of breast cancer because those are consider
be suspicious observations in the early stages of can
Thus, development of a CAD system is strongly desirab

Several methods for classifications of microcalcific
tions in mammography have been reported.25–28 In these
papers, methods using neural networks25–27 and using
GAs28 have been proposed. Recently, there has been
search on the application of fuzzy logic to the CAD
medical images.18,29–33The reason lies in the fact that a lo
of information used for interpretation of medical images
fuzzy. In this application, we use our proposed GA-fuz
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Medical image classification . . .
method to discriminate between benign and malignant c
tered microcalcifications.

3.2.1 Data set

In this application, we used the mammographic datab
provided by the Mammographic Image Analysis Socie
~MIAS! in the United Kingdom. Each of the mammogram
in the MIAS database was digitized at a spatial resolut
of 50 mm sampling distance with an eight-bit density res
lution. Figure 5 shows an example of region of intere
~ROI! with microcalcifications.

The MIAS database consists of more than 300 imag
The images of the database can be categorized as no
microcalcification, mass, architectural distortion, and asy
metry. Of the images, 25 images are obviously indicated
microcalcifications. The aim of our study is to develop
CAD system for discrimination between benign and mal
nant clustered microcalcifications. Therefore, we emplo
only 25 images including 13 benign and 12 malignant m
crocalcifications in the current study.

3.2.2 Feature extraction

Prior to feature extraction from the ROI images used
classification, we employed mathematical morphology
detect microcalcifications from ROIs.34 After detection,
four features including microcalcification number~Num!,
mean area~Area!, mean circularity~Cir!, and mean mini-
mum distance~Dis! were used for classifying clustered m
crocalcifications. The main reason for using these featu
is that radiologists’ interpretation for classifying cluster
microcalcifications is generally based on the visual inf
mation distribution such as sizes and shapes of clust
microcalcifications. These features are expressed as
lows:

Num5n, ~19!

Area5
1

n (
i 51

n

Ai , ~20!

Cir5
1

n (
i 51

n

Ci , ~21!

Dis5
1

n (
i 51

n

Di , ~22!

wheren is the number of isolated candidate regions of m
crocalcification within a ROI image.Ai andCi are the area

Fig. 5 An example of mammogram with microcalcifications. The
mammograms used in this study was digitized at a spatial resolution
of 50 mm sampling distance with an eight-bit density resolution.
-

e
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al,
-
s
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and the circularity of theith candidate region, respectivel
Di is the distance fromith candidate to the nearest cand
date.

3.2.3 Classification using GA-based fuzzy-logic
approach

Basically, the GA-based fuzzy method used in this appli
tion is the same as that used in the preceding application
this application, eight GDMFs are generated from four fe
tures~Num, Area, Cir, and Dis! for each of two categories
~benignancy, malignancy!.

As shown in Fig. 3, rule 1~normal! and rule 2~abnor-
mal! correspond to benignancy rule and malignancy ru
respectively, in this application. We used GA at traini
phase for determining the optimal membership functions
varying the values of coefficientc. In training phase, ten
benign cases and ten malignant cases were used as lea
data. The remaining five cases were used for classifica
as unknown images. In order to obtain results of high re
ability, a total of 3146 combinations for classification
malignancy and a total of 4356 combinations for classifi
tion of benignancy were used, respectively. That is, whe
malignant case was selected and used for classification
number of combinations for training and classification w
11C10313C10511328653146. Similarly, when a benign
case was selected and used for classification, the numb
combinations for training and classification was12C10

312C1056636654356.

3.2.4 Results and discussion

Table 2 shows the classification rates for performing o
proposed method. We also compare the method with o
three techniques~BP–NN, GA–NN, fuzzy!. The specificity
rates at 100% sensitivity level for BP–NN/GA–NN/fuzz
GA-fuzzy methods were 69.2%/53.8%/30.8%/76.9%,
spectively. The accuracies at 100% sensitivity level
BP–NN/GA–NN/fuzzy/GA-fuzzy methods were 84.6%
76.9%/65.4%/88.5%, respectively. The results showed
superiority of the proposed GA-fuzzy method. Moreover,
order to show the statistical significance of the propos
method, receiver operating characteristic~ROC! analysis
was made. ROC analysis is the standard approach to ev
ate the sensitivity and specificity of diagnostic procedur
The ROC analysis estimates a curve, namely, ROC cu
which describes the inherent tradeoff between sensiti
and specificity of a diagnostic test.35,36 Figure 6 illustrates
the ROC curves. The differences in the performan
among the four techniques were estimated by compa
four Az values~the areas under the ROC curves!. The Az

Table 2 Performance comparison for various methods applied to
microcalcifications.

Method
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)

BP–NN 84.6 100 69.2

GA–NN 76.9 100 53.8

Fuzzy 65.4 100 30.8

GA-fuzzy 88.5 100 76.9
Journal of Electronic Imaging / October 2004 / Vol. 13(4) / 785
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value has become a particularly important metric for eva
ating diagnostic procedures because it is the average s
tivity over all possible specificities.35 TheAz areas for BP–
NN/GA–NN/fuzzy/GA-fuzzy methods were 0.86/0.8
0.89/0.95, respectively.

Pairedt test was used to validate the statistical sign
cance of the difference inAz values in terms ofp value. The
p values of GA-fuzzy and GA–NN pair, GA-fuzzy an
BP–NN pair, and GA-fuzzy and fuzzy pair were 0.04
0.16, and 0.15, respectively. These results show that
proposed method is significantly superior to the GA–N
method. However, the differences inAz values among GA-
fuzzy, BP–NN, and fuzzy are statistically insignificant. T
insignificance may be due to insufficient sample imag
Increase of sample images for further performance ass
ment is needed.

Figure 7 shows four ROI images~one malignant case
and three benign cases! that had low sensitivity or low
specificity by using the GA-fuzzy method. The sizes
ROI images shown in this application were reduced to 3
of actual sizes of the original images. The benign cases
B10, and B13 were on dense-glandular mammograms
the character of background tissue. Since microcalcifi
tions are buried in dense regions, it is difficult to correc
extract regions of microcalcifications from dense-glandu
mammograms because microcalcifications are buried
dense regions. In particular, it is difficult to visualize m
crocalcifications in case B13 though we do not kno
whether microcalcifications really exist or not, because
place of each microcalcification was not indicated in t
MIAS database. We suppose that detection results of
crocalcifications influence classification performance. T
factor may be a reason of misclassifications in this appl
tion.

In several related studies, Chanet al.26 reported a speci-
ficity of 39% at 100% sensitivity, Haraet al.27 reported a
specificity of 94% at 79% sensitivity, and Chanet al.28 re-

Fig. 6 ROC curves obtained from the computer analysis of four
various methods, i.e., BP–NN, GA–NN, fuzzy method, and GA-
fuzzy methods. A ROC curve describes the inherent tradeoff be-
tween sensitivity and specificity of a diagnostic test. The area under
an ROC curve, Az , is a quick and accepted way of comparing the
performance of different classifiers. It is the average sensitivity over
all possible specificities.
786 / Journal of Electronic Imaging / October 2004 / Vol. 13(4)
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ported a specificity of 50% at 100 sensitivity. The corr
sponding accuracies obtained from the three reports
70%, 86%, and 75%, respectively. The respective ima
used were 56, 104, and 145. Although the conditions
performance evaluation were different among these rep
as well as our present study~25 images!, the performance
of our proposed method~an accuracy of 88.5%! is consid-
ered superior or comparable to the performance show
the mentioned literature. The results demonstrate the
fulness of our method in the classification of clustered m
crocalcifications on mammograms.

However, to further improve the classification perfo
mance, it is still necessary to enhance the detection pe
mance of microcalcifications and to investigate the ex
tence of more powerful features and to increase sam
images.

4 Conclusion

In this paper we have proposed a GA-based fuzzy appro
for CAD scheme in disease classification. The propo
method was to exploit a GA-based training for optimizati
of membership functions. Unlike the conventional types
membership functions, Gaussian-distributed members
functions were employed. The effectiveness of our p
posed method has been demonstrated through two app
tions, i.e., discrimination of myocardial heart disease fro
echocardiographic images and classification of cluste
microcalcifications from mammograms. We have compa
the proposed methods with other three methods, BP–
GA–NN, and fuzzy approaches. In the application of d
crimination of myocardial heart disease, the results in ter

Fig. 7 Four cases that had low accuracy classified using the GA-
fuzzy method. On the left are original ROI images (one malignant
case M5 and three benign cases B7, B10, and B13), and on the
right are the corresponding thresholded binary images. The sizes of
the ROI images shown were reduced to 35% of actual sizes from
the original images.
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Medical image classification . . .
of accuracy have validated the superiority of the propo
method. In the application of classification of microcalci
cation, the ROC analysis was employed to compare
performance of the four methods and the results show
tendency for the improvement by using the propos
method. Our future works include increasing sample i
ages for further feasibility test on the proposed meth
modifying the shape of consequent-part membership fu
tion, and exploring more powerful image features.
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