

1

The Robot control

using the wireless communication and

the serial communication

A Design Project Report

Presented to the Engineering Division of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical)

by

JONG HOON AHNN

2

Project Advisor: Professor Mark Campbell

Degree Date: May 2007

Abstract

Master of Electrical Engineering Program

Cornell University

Design Project Report

Project Title: Robot control using the wireless communication and the serial communication

Author: Jong Hoon Ahnn

Abstract:

This project outlines the strategy adopted for establishing two kinds of communications;

one for wireless communication between a mobile Robot and a remote Base Station,

another for serial communication between a remote Base Station and a GUI Application,

PC. TekBot is a low cost mobile Robot built by Oregon State University which in its

current version requires wired communication. Our aim is to be able to command and

control the Robot wirelessly by the GUI Application. This will be a useful addition for

NASA’s curriculum development for master’s degree programs.

 The principle task of this project was to program the AVR microcontroller

interfaced to a radio packet controller module (operating at a frequency of 433 MHz)

which would enable us to wirelessly control the Robot. The communication protocols

dealing with transmission and reception of data and wireless control of the TekBot have

been successfully implemented. These details are discussed in this report.

Report Approved by

Project Advisor:_______________________________________Date:_____________

3

Executive Summary

The NASA Robotics Alliance Cadets Program is being designed to be implemented at a

very low start-up cost, and to make this goal obtainable, the program is being developed

using low to no cost components from already developed, well-tested and robust

engineering testbeds.

In this project we are trying to establish both wireless communication between the mobile

Robot and the remote Base Station, and serial communication between the remote Base

Station and the GUI Application. The Base Station requires the serial communication

with the GUI Application and also needs to be hardwired with the radio packet controller,

FRPC2 for wireless control. Our aim is to be able to command and control the Robot

wirelessly by the GUI Application.

The main task of this project is two parts: (1) to program the AVR microcontroller on

both the Base Station and the Robot interfaced to the radio packet controller module

which would enable us to wirelessly control the Robot; (2) to program the GUI

Application which would enable us to serially control the Base Station.

Theoretical system limitation for the packet transmission is evaluated and analyzed. We

tested packet stress to the wireless module while varying the number of Robots and the

payload data. The wireless parts were evaluated with CRC error checking.

As a result, we achieved control both wireless communication between the mobile Robot

and the remote Base Station, and serial communication between the remote Base Station

and the GUI Application. This level of completely was successfully tested on groups at

up to four Robots. Hence the wireless communication and the serial communication were

successful in the downlink.

4

Contents

1. Introduction……………………………………………………………………….4

2. Project requirements……………………………………………………………...7

3. Radio Packet Controller Module ………………………………………………...8

 Design Requirements…………………………………………………………8

 Fast Radio Packet Controller (FRPC) ……………………………………….10

 Signals………………………………………………………………………..13

 Functional Description……………………………………………………….13

 Operating States……………………………………………………………...15

 Port Operations and Initializations…………………………………………..16

4. ATmega 128.2 Microcontroller Board…………………………………………..18

 Introduction………………………………………………………………….18

 ISP Connections……………………………………………………………..19

 Hardware Description………………………………………………………..19

 Port Description and Initialization…………………………………………...21

5. Design Protocols for Wireless Communication…………………………………22

 Protocol Overview…………………………………………………………...22

 Network Description………………………………………………………...23

 Packet Format………………………………………………………………..23

6. Evaluation

 Palyload Estimation………………………………………………………….26

 Error Rate of The packet Transmission……………………………………...27

7. Results ……………………..…………………………………………………….28

8. Future of this Project……………………………………………………………..28

9. References………………………………………………………………………..29

5

10. Appendix A- Registers…………………………………………………………...29

11. Appendix B- Code……………………………………………………………….37

1. Introduction

The NASA Robotics Alliance Cadets Program is a far-reaching, innovative project aimed

at creating a new highly integrated and interactive college undergraduate level curriculum

centered around Robotics and focusing on the content of at least the first two years of

Mechanical Engineering, Electrical Engineering and Computer Science. This project is

being co-led by Mark Leon, NASA AMES Director of Education and David Schneider of

Cornell University and is supported by David Lavery, NASA Program Executive of

Planetary and Solar Exploration. The program is being designed to be implemented at a

very low start-up cost, and to make this goal obtainable, the program is being developed

using low to no cost components from already developed, well-tested and robust

engineering testbeds. The Microcontroller board to be used is the Oregon State University

TekBots platforms, whose base kit is approximately $100.

Fig. 1.1 The system structure

Serial

Wireless

Position Recognition

Robot

Base Station

Camera

Serial

Wireless

Position Recognition

Robot

Camera

GUI Application

6

In this project we are trying to establish both wireless communication between the mobile

Robot and the remote Base Station, and serial communication between the remote Base

Station and the GUI Application shown in Fig 1.1.

The Base Station requires serial communication with the GUI Application and also needs

to be hardwired with the radio packet controller, FRPC2 for wireless control. Our aim is

to be able to command and control the Robot wirelessly by the GUI Application shown in

Fig. 1.4.

The main task of this project is two parts: (1) to program the AVR microcontroller on

both the Base Station shown in Fig. 1.3 and the Robot in Fig. 1.2 interfaced to the radio

packet controller module which would enable us to wirelessly control the Robot; (2) to

program the GUI Application which would enable us to serially control the Base Station.

Fig. 1.2 The Robot

7

Fig. 1.3 The Base Station

The GUI Application is operated by a joystick with two components as shown in Fig. 1.4.

By moving the joystick, the GUI Application commands movement such as go forward,

go backward, left turn, right turn as well as the operation of modular, optional tools.

Fig. 1.4 The GUI Application

8

The data transmission from the GUI Application to the Robot would be implemented and

the reverse transmission from the Robot to the GUI Application will remain for the future

work. However, possible enhancements will be discussed in the end of the report.

2. Project Requirements

Objectives:

• Benchmark the wireless modules.

• Learn the working and functioning of the Tekbot Microcontroller board.

• Interface the Tekbot microcontroller board with a radio packet controller module.

• Interface the Tekbot microcontroller board with a serial port.

• Build a transmitter consisting of the Tekbot microcontroller board interfaced with a

FRPC2 radio packet controller.

• Program the microcontroller so as to wirelessly control the Cadets Robot.

• Program a multithreaded GUI Application so as to serially communicate with the

Base Station.

• Establish the structure of packets for the wireless and serial transmission.

• Solder a tiny26 Microcontroller board

• Develop efficient code along with adequate internal and external documentation.

• Measure the performance and error rate of the packet transmission.

9

3. Radio Packet Controller Module

The Radiometrix RPC transceiver has been chosen by the RoboCup team as the

communication link for several previous years. Though it has proven to be an adequate

system, during the competition, many teams used the same RPC unit and were sharing

the same frequencies in their Robots causing interference and drop-outs, especially when

teams were testing their own Robots. Based on the RoboCup team’s trouble, it was

decided to develop a metric to find better alternatives. This entire metric and its results

are mentioned in Section 3.1.

3.1 Design Requirements

The previous system using the RPC is susceptible to interferences caused by the sharing

of same frequencies. Hence we need to find a new system that is not only preventing such

occurrences but also reliable during the uncertain conditions. The system should also

have error-checking capabilities.

With regard to Performance, since our Robotic system is real-time, there is a need for a

low latency system, which is affected by the delay in processing and transmission.

Latency in processing is defined to be the time taken to process the signal and high

transmission rate is defined as the time taken for actual transmission.

With regard to Ease of Implementation, the new system should be easy to integrate into

the current Robotic unit so that no major redesigning of the boards etc is needed. It

should also easy for the team to pick up and learn without needed a lot of expertise since

10

student projects are time-constrained. Its implantation should not delay the development

of other parts of the project.

With regard to Cost, we need to consider the cost of new modules and new development

kits. It has been suggested by past teams that full-duplexity in the communication link is

desired. The advantage of having a full-duplex system is that information can be

transmitted and received simultaneously from the Robot to the GUI Application through

the Base Station, which might be useful in Robots’ control.

However, through benchmarking other wireless modules shown in Table 3.1, we decided

that first we adopt the Fast RPC (FRPC2) whose performance is better than RPC. The

advantage choosing the FRPC2 is the low cost, better performance, error-checking

available, and ease of implementation. Later on, we plan to upgrade the wireless module

to a system even which will be better than FRPC2.

The chip with the FRPC2 is the BiM which is more reliable, easy to establish a

communication link and it has lower latency. In addition, the BiM is easy to change

Frequency without code compilation. In general, the BiM outperforms high-throughput.

Other consideration to choose the wireless module is that it should be individually

addressable, and have high resistance to interference.

One of the reasons that we choose FRPC2 is that the overhead cost in significant speed

and low complexity outweighs the advantage of having a full-duplex wireless channel.

The entire metric is mentioned in Section 3.1.

company component feature Baud Rate Frequency
band operating range

Radiometrix RPC-418-40 IC+BiM, UK
version

40kbit/s (half
duplex) 433 MHz 30m ~ 120m

Radiometrix RPC-433-40 IC+BiM, Euro
version

40kbit/s (half
duplex) 433 MHz 30m ~ 120m

Radiometrix FRPC2-433-
160

IC+BiM2-433-
160

160kbit/s (half
duplex) 433 MHz 30m ~ 200m

Parallax
RF
Transceiver
Package

RF Tranceiver 1200 ~
19.2kbit/s 433 MHz 30m ~ 200m

ABACOM
TECHNOLO
GIES

SILRX-433-
A TXM-433-
A

UHF FM
Transceiver

5 kbps (ver.A),
10kbps (ver.F) 433 MHz 50m ~ 200m

RCS SE200-A1 UHF FM
Transceiver

up to 10kbit/s
(half duplex)

433.92MHz
ISM-band 152.4m

AEROCOMM LX2400S-3A
Frequency-
Hopping Spread-
Spectrum

144kbit/s 2.402 ~
2.479GHz 30.48m ~ 152.4m

AEROCOMM LX2400S-10 Frequency-
Hopping Spread- 144kbit/s 2.402 ~

2.479GHz 30.48m ~ 152.4m

11

Spectrum

AEROCOMM LX2400S-150
Frequency-
Hopping Spread-
Spectrum

144kbit/s 2.402 ~
2.479GHz 30.48m ~ 152.4m

Talisman
Electronics

BlueWAVE
RS232 DCE

Bluetooth
Specification
v1.1

244byte/s ~
1.38Mbbyte/s
(full duplex)

2.4GHz 10m ~ 100m

Broadcom BCM 4306
chipset IEEE 802.11b/g 1-54 Mbyte/s

(full duplex)

4.900 to 5.850
GHz and 2.300
to 2.500 GHz

18m ~ 36m (a) / 27m ~
45m (b/g)

Atheros AR5002X 802 IEEE
802.11a/b/g

1-54 Mbyte/s
(full duplex)

4.900 to 5.850
GHz and 2.300
to 2.500 GHz

18m ~ 36m (a) / 27m ~
45m (b/g)

Maxstream XStream RS-
232/RS-485 RF Modems

9600bit/s or 19.2
kbit/s (full
duplex)

900 MHz or
2.4 GHz

 18m ~ 36m (a) / 27m
~ 45m (b/g)

Table 3.1 Benchmark wireless modules

company component feature Baud Rate Frequency band operating
range

Neteon.Net LS100W Serial(RS232) to IEEE
802.11b

up to 115Kbps
(Full duplex) 2400 ~ 2485MHz 27m ~ 45m

Data
Hunter

O.E.M. WLAN
802.11b “ Mini-
b” Serial

Serial(RS232) to IEEE
802.11b

9600 to 115 kbps
(Full duplex) 2.4 ~ 2.4835 GHz 30m ~ 300m

Data
Hunter

802.11“g”
Wireless RS232

Serial(RS232) to IEEE
802.11b/g

up to 54Mbps
(Full duplex) 2.4 ~ 2.4835 GHz 27m ~ 45m

Parani ESD100 /110 Serial(RS232) to
Bluetooth v.1.2 Class I

1200 ~ 230 Kbps
(Full duplex) 2.4GHz 100m~1000m

Parani ESD200 /210
Serial(RS232) to
Bluetooth v.1.2 Class
II

1200 ~ 230 Kbps
(Full duplex) 2.4GHz 30m ~300m

Table 3.2 Benchmark alternative wireless modules

Moreover, as a future upgrade the Bluetooth, IEEE 802.11a/b/g and Wi-Fi will be

considered as shown in Table 3.2 and Table 3.3.

Protocol Frequency Max Through-put Actual

Through-put

Signal Range Latency

Bluetooth 2.4 GHz 1.2 Mbps full-duplex 680 kbps 10-100 m < 2 ms

802.11a 5 GHz 53 Mbps full-duplex 21 Mbps 18-36 m < 2.5 ms

802.11b 2.4 GHz 11 Mbps full-duplex 4 Mbps 27 ~ 45 m < 5 ms

802.11g 2.4 GHz 54 Mbps full-duplex 17 Mbps 27 ~ 45 m < 2.5 ms

Table 3.3 Wireless Standard

3.2 Fast Radio Packet Controller (FRPC2)

12

The Fast Radio Packet Controller (FRPC2) module shown in Fig. 3.2.1 is an intelligent

transceiver which enables a radio network/link to be simply implemented between a

number of digital devices. The module combines a UHF radio transceiver and a 160kbit/s

packet controller.

Fig. 3.2.1 FRPC2-433-160

The FRPC2 is a self-contained plug-on radio port which requires only a simple antenna,

5V supply and a byte-wide I/O port on a microcontroller (or bi-directional PC port). The

module provides all the RF circuits and processor intensive low level packet formatting

and packet recovery functions required to inter-connect a number of Microcontrollers in a

radio network. More details can be found in Section 3.3 and 3.4.

Fig. 3.2.2 FRPC2 + Micro µController

13

The flow of data transmission begins with a data packet of 1 to 60 bytes downloaded by a

Microcontroller into the FRPC2's packet buffer. This is then transmitted by the FRPC2's

transceiver and will appear in the receive buffer of all the FRPC2's within radio range

shown in Fig. 3.2.2. The FRPC2’s block diagram is also shown in Fig. 3.2.3.

Fig. 3.2.3 FRPC2-433-160 block diagram

 A data packet received by the FRPC2's transceiver is then decoded using the FRPC2’s

internally provided function, stored in a packet buffer and the Microcontroller receives a

signal that a valid packet is waiting to be uploaded. The output of pins is shown in Fig.

3.2.4 and will be used to help describe this process in future detail in the next Section 3.3.

14

Fig. 3.2.4 The FRPC2's pin-out

3.3 SIGNALS

In order to set up the signal ports, it is recommended that the FRPC2 be assigned to a

single byte wide bi-directional I/O port on the Microcontroller board. The 8 lines that

must be connected consisted 4 data lines D0 to D4 and 4 handshake lines called TXR,

TXA, RXA, RXR. The table 3.3.1 below gives the description of the pins in Fig. 3.2.4

and their use will be discussed in Section 3.5.

Important points are: (1) the 4 Handshake lines are active low; (2) the 4 Data lines true

data; (3) logic levels are 5 volt CMOS; (4) input pins have a weak pull-up internally.

The port must be such that the four data lines can be direction controlled without

affecting the other four handshake lines which are used in the handshake between FRPC2

modules.

In short, the pin TXR signals a data transfer request from the Microcontroller to the

FRPC2. The TXA pin accepts the handshake from the Microcontroller.

Similarly, the RXR pin signals for a transfer request at data from the FRPC2 to the

Microcontroller. And the RXA pin is used by the Microcontroller to accept the handshake

from the FRPC2. D0 to D3 indicates four bit bi-direction data bus which has tri-state

between packet transfers, driven on receipt for accept signal until packet transfer is

complete shown in Table 3.3.1.

Pin name Pin no. Pin function I/O Description

TXR 6 TX Request I/P Data transfer request from Microcontroller to

FRPC2

TXA 7 TX Accept O/P Data accept handshake back to Microcontroller

15

RXR 8 RX Request O/P Data transfer request from FRPC2 to

Microcontroller

RXA 9 RX Accept I/P Data accept handshake back to FRPC2

D0 2 Data 0 (4) Bi-dir 4 bit bi-directional data bus. Tri-state between

packet transfers, driven on receipt for Accept

signal until packet transfer is complete.

D1 3 Data 1 (5) Bi-dir

D2 4 Data 2 (6) Bi-dir

D3 5 Data 3 (7) Bi-dir

Table 3.3.1 The pins description

3.4 FUNCTIONAL DESCRIPTION

The whole packet structure of the FRPC2 is detailed in Fig. 3.4.1. On receipt of a packet

downloaded by the Microcontroller, the FRPC2 will append to the packet: its own

preamble, start byte and an error check code. The packet is then coded for security and

mark; space balanced and transmitted as a 160kbit/s synchronous stream. One of four

methods of collision avoidance (Listen Before TX) may be user selected, which will be

discussed in details in Section 3.5.3.

When not in transmit mode, the FRPC2 continuously searches the radio noise for valid

preamble. On detection of a preamble, the FRPC2 synchronizes to the in-coming data

stream, decodes the data and validates the check sum. The Microcontroller is then

signaled that a valid packet is waiting to be unloaded. The format of the packet is entirely

of the users’ determination except the 1st byte (the Control Byte shown in Fig. 3.6.1)

which must specify the packet type (control or data) and the packet size. A valid received

packet is presented back to the Microcontroller in exactly the same form as it is discussed

in Section 5.3.

To preserve versatility, the FRPC2 does not generate routing information (i.e. source/

destination addresses) nor does it handshake packets. These network specific functions

are left for the Microcontroller to perform.

Additional features of the FRPC2 include extensive diagnostic/debug functions for

evaluation and debugging of the radio and Microcontroller driver software, a built in self

test function and a sleep mode / wake-up mechanism which may be programmed to

reduce the average current to less than 100µA. The operating parameters are fully

16

programmable by the Microcontroller and held in EEPROM, the Microcontroller may

also use the EEPROM as a general purpose non-volatile store for addresses, routing

information etc. However, in this project these features are not currently used.

Initialization of packet transmission is shown in Source Code 3.4.1 which initializes the

ports that FRPC2 use.

Fig. 3.4.1 FRPC2’s packet

Preamble

Start Byte

Control Byte

Check Sum

Data

Start Byte

Header 2 Byte

CRC16

Cadet
special
(FRPC2
required)

Cadets
Specified

FRPC2
Specified
(Automatically
, Internally)

Data

17

Source Code 3.4.1 Initialization of Packet Transmission

3.5 OPERATING STATES

The FRPC2 has four normal operating states: (1) IDLE/SLEEP; (2)

MICROCONTROLLER-TRANSFERS; (3) TRANSMIT; (4) RECEIVE. For our

requirements we will not be operating the FRPC2’s in the IDLE/SLEEP state. Since

FRPC2 has half-duplex feature, a packet can’t be sent and received simultaneously.

3.5.1 IDLE/SLEEP

The IDLE state is the quiescent/rest state of the FRPC2. In IDLE the FRPC2 enables the

receiver and continuously searches the radio noise for message preamble. If the power

saving modes have been enabled, the FRPC2 will pulse the receiver on, check for

preamble and go back to SLEEP if nothing is found. The 'ON' time is 2.5ms, OFF time is

programmable in the FRPC2's EEPROM and can vary between 22 ms and 181ms. The

TX Request line from the Microcontroller is constantly monitored and will be acted upon

if found active (low). A TX Request will immediately wake the FRPC2 up from SLEEP

mode.

3.5.2 MICROCONTROLLER-TRANSFERS

If the Microcontroller sets the TX Request line low a data transfer from the

void packet_init(void)
{

 UCSR0B |= _BV(RXCIE0) | _BV(RXEN0) | _BV(TXEN0);
 UCSR0C |= _BV(UCSZ01) | _BV(UCSZ00);
 UBRR0L = 51;
 UBRR0H = 0;

 UDR0 = 'S';
}

18

Microcontroller to the FRPC2 will be initiated. Similarly the FRPC2 will pull RX

Request low when it requires transferring data to the Microcontroller.

The transfer protocol is fully asynchronous, i.e. the Microcontroller may service another

interrupt and then continue with the FRPC2 transfer. It is desirable that all transfers are

completed quickly since the radio transceiver is disabled until either the Microcontroller

to the FRPC2 or the FRPC2 to the Microcontroller transfer is completed. Typically a

Microcontroller can transfer a 60 byte packet to / from the FRPC2 in under 1ms.

3.5.3 TRANSMIT

When a data packet is received from the Microcontroller, the packet - preamble, frame

sync byte and an error check sum are appended by the FRPC2’s internal function. For

mark such as space balance, the packet is then coded and transmitted. In 6ms of TX air

time (60 byte data @ 160kb/s + 1.25ms preamble), a full 60 byte packet can be

transmitted

Collision avoidance (Listen before transmit) functions can be enabled to prevent loss of

packets. Data packets may be sent with either normal or extended preamble. Extended

preamble is used if the remote FRPC2 is in power save mode. Extended preamble length

can be changed in the EEPROM memory.

3.5.4 RECEIVE

On detection of preamble from the radio receiver, the FRPC2 will phase lock, decode and

error check the incoming synchronous data stream. If it is successful, the data is then

placed in a buffer and the RX Request line is pulled low to signal to the Microcontroller

that a valid packet waits to be uploaded to the Microcontroller shown in Fig. 3.5.1.

19

Fig. 3.5.1 Microcontroller to FRPC2 connection

4. ATMega128.2 Microcontroller Board

4.1 Introduction

The ATmega128.1 board was developed within the TekBots group at the Electrical and

Computer Engineering department at Oregon State University. The mega128.1 board is

intended to be used as a tool for learning assembly, C programming, and microcontroller

architecture. Besides a tool for learning, it also provides a stable platform for the

development of other projects requiring a microcontroller in Fig. 4.1.1.

Features of ATMega128.2 are: (1) ATmega128 AVR 8-Bit RISC microcontroller; (2)

32Kbyte external RAM (3) (ISP) in system programming via PC parallel port; (4) RS-232

port; (5) IR transmitter and receiver; (6) eight push buttons; (7) eight LEDs for general

use.

20

Fig. 4.1.1 Block diagram of ATMega128.2

4.2 ISP Connection

At the end of the 10 Pin ribbon cable, there are two female headers in Fig. 4.2.1 and Fig.

4.2.2. Both headers are notched to prevent them from being connected backwards.

Connect the one end of the ribbon cable to J22 on the mega128.1 board, and the other end

to J1 on the DB25 dongle. Note that J1 on the dongle board does not have a notched

shroud but the notch is clearly indicated on the silkscreen. Lastly connect the DB25

dongle to the parallel port of the computer. In most cases this would be LPT1.

21

Fig. 4.2.1 ISP Connector J22 Fig. 4.2.2 DB25 Dongle

4.3 HARDWARE DESCRIPTION

The following diagram in Fig. 4.3.1 gives the complete hardware description of the

microcontroller board with all the associated interfaces and connections. The hardware

picture is shown in Fig. 4.3.2.

Fig. 4.3.1 Hardware picture

22

Fig. 4.3.2 Hardware diagram

4.3.1 General Purpose LEDs

There are 8 LEDs on the ATmega128.1 board, L4 through L11, that are connected to

Port B and are driven directly by the microcontroller. These are high efficiency LEDs that

only take 2mA to drive to full brightness. Thus always having them connected to

Port B does not load the Port significantly.

4.3.2 General Purpose Switches

There are 8 push button switches on the mega128.1 board. These switches, S2

through S9, are connected to Port D. An external 10K resistor is used to pull the

Port pin high. When the push button is pressed, the Port pin is pulled low through

a 470Ω resistor. This was done to prevent directly grounding a pin that may be

23

configured to force a logic high.

4.3.3 Indicator LEDs

There are three LEDs on the mega128.1 board that are dedicated to indicate that specific

functions are active. L3 is a greed LED and indicates that there is power connected to the

board and that switch S10 is in the “on” position. Yellow LED L2 indicates that the

System Programming Port is active. L12 is a red LED and indicates that the IR is

transmitting.

4.3.4 Reference # Color Function

Green on L3 indicates that the board is powered. Yellow on L2 indicates that ISP is in an

active status. Red on L12 indicates that IR TXD is active.

4.3.5 Reset Push Button

Pushing push button S1 resets the ATmega128 microcontroller. This reset is OR’ed

within the system programming chip reset. The ATmega128 reset is active low. The

figure below shows the reset circuitry.

4.4 Port Description & Initialization

The below configurations are done according to the protocols which require you to

configure certain bits as input/output as can be seen in the code.

As a default, the Cadets’ Robot setup uses PORTA, as the FRPC2 controlled port. This

part is initialized to hex 19. Similarly PORTB is internally connected to the LED’s, and is

initialized to hex FF to set as o/p. PORTC is a data port (pins 0 through 3 are connected

to data pins D0-D3 of FRPC2). PORTD is internally connected to the switches, and it is

initialized to hex 00 to set as i/p. PORTF is used to power the FRPC2, and it is initialized

to hex FF (pins 6, and 7 are connected to GND and VCC of the FRPC2 respectively).

24

Fig. 3.6.1 Control byte for data packet

The control byte shown in Fig. 3.6.1 basically defines the various modes of operation of

the FRPC2. The control byte includes details such as the number of bytes to be

transmitted using BC5-BC0. The control byte also details the type of data packet (PT)

and the preamble control (WU0). In the Cadets system, the default was set to be bit seven

was set to zero (PT=0,) since all are data packets and bits five and WH=0 to use the

normal preamble. Bit 6 is also set to zero the Cadets data will never exceed x bytes. On

top of the FRPC2 protocol, the Cadets system uses its own additional protocol structure

consisting four bytes i.e. start byte, two packet header bytes and a stop byte. These

additional four bytes are discussed in detail in Section 5.3.

5. Design Protocols for the wireless communication

25

Diagram 5.1 Time diagram of packet transmission in the system

In our system, we adopt the proposed protocol. The follow section provides details on

this protocol.

5.1 Protocol Overview

The proposed protocol defines a simple packet syntax that is independent of the physical

transport medium. The protocol is designed to support up to 15 uniquely addressed nodes

where a node can be a Robot or a Base Station. Within the network, all nodes are peers,

and therefore any node can communicate with any other node. In turn, individual packets

can be labeled with one of the 16 FXN IDs shown in Section 5.3.

5.2 Network Description

The proposed protocol most closely fits into layer 2 (Data Link Layer) of the OSI (Open

Systems Interconnection Basic Reference Model) model which is a layered, abstract

description for communications and computer network protocol design, developed as part

of the Open Systems Interconnection initiative shown in Diagram 5.2.1.

Although the proposed protocol can be used in a number of network topologies, it is

optimized for use in a peer, asynchronous, bussed network. Every node in the network

must have a unique, nonzero address. This allows every packet to carry both source and

destination information. Therefore, by default, any node can send a packet to any other

Robot Base Station GUI Application

Send a packet
to the Robot through
the Base Station

Relay the packet
to Robot

26

node. Other network configurations can be built on top of the proposed protocol (master,

slave, synchronous, etc.), but they are not defined as a part of the current standard

protocol.

Diagram 5.2.1 OSI 7 Layers

5.3 Packet Format

In order to be as flexible as possible, the packet is byte aligned, with 8bit bytes. This

makes implementation easy and efficient on a number of platforms, including the 8bit

AVR microcontroller used as the main processing unit on the Robots. Byte alignment

also makes the packet easily compatible with a number of physical transport layers (e.g.

RS232).

A packet is made up of four sections: START, HEADER, DATA, and CHECKSUM,

transmitted in that order. These sections are summarized in Table 5.3.1.

Packet Type Bytes Description

START 1 Always 0x5A

HEADER 1 DST SRC First byte holds destination address (DST) in upper nibble and

27

source address (SRC) in lower nibble. SRC must never be 0.

LEN must never be 0.

 1 FXN LEN Second byte holds function (FXN) in upper nibble and data

length (LEN) in lower nibble. DST of 0 is general call.

DATA LEN Main data (D[1]...D[LEN]). Must be at least one byte of data. Organization of

data is implementation dependent, but big-endian is recommended for multi-

byte data.

CHECKSUM 2 16bit cyclic redundancy check, MSB first (CRC1, CRC0). Polynomial used in

x16 + x15 + x2 + 1.

Table 5.3.1 Packet structure

The START byte is used to synchronize the transmitter and the receiver. Since the

START byte must always be of a known value, the receiver can know with a high degree

of certainty that a packet is starting. Note, however, that the START byte value is not

reserved, and that same value is allowed to appear within the HEADER, DATA, and/or

CHECKSUM sections.

The HEADER section contains all important information about a packet. It contains four

nibbles split between two bytes that collectively define the packet. The first byte contains

source and destination address information (SRC, DST). The source address must always

be the unique address of the originating node. Note that address 0 is reserved for future

use and thus cannot be used as an originating address. The destination address can either

be the address of the intended recipient or 0 for a general call. Every node is required to

accept a general call broadcasting of a message from one node automatically.

Broadcasting from one node forces all other nodes in range to switch to receive nodes.

This is detailed in Section 3.2.

The second HEADER byte contains a function identifier (FXN) and the length of the

payload data (LEN). The function identifier is used to specify what the payload data is,

i.e. provide a label to act as a signal to the receiving node’s Host code. The precise

meaning of each function identifier is left up to the implementation. No standards have

been established at this time.

The length parameter defines the number of payload bytes being carried in the packet.

Note that a LEN of 0 is reserved for future use in general, and therefore every packet

28

must have a minimum of 1 byte of payload. Since the length parameter is 1 nibble, the

maximum payload length is 15 bytes.

The DATA section is the actual payload data. As noted, a packet can carry between 1 and

15 bytes of data. Any data values are acceptable, and the data can be structured in any

manner desired. Note that although this protocol does not define any requirements for the

data, it is recommended that multi-byte data (such as long integers) be transmitted big-

endian where (1) big-endian means that the most significant byte of any multi-byte data

field is stored at the lowest memory address, which is also the address of the larger field;

(2) little-endian means that the least significant byte of any multi-byte data field is stored

at the lowest memory address, which is also the address of the larger field.

The CHECKSUM section is used for transmission error detection. It holds a 16bit CRC

in two bytes. The first byte holds the most significant byte and the second byte the lease

significant. The polynomial used is x16 + x15 + x2 + 1. Note that the CRC encompasses

every byte of the packet preceding the CHECKSUM section, including the START byte.

Source Code 5.3.1 details the packet structure.

Source Code 5.3.1

6. Evaluation

6.1 Payload Estimation

 pkt_s_tx[0] = PKT_START_BYTE; // start byte
 pkt_s_tx[1] = (dest<<4) | PKT_SRC_ADDR; // destination and source address
 pkt_s_tx[2] = (fxn<<4) | (len & 0x0F);
 for (i = 3; i < len+3; i++)
 pkt_s_tx[i] = data[i-3]; // real data
 pkt_s_tx[i++] = 0; // Pad with 0 for CRC generation
 pkt_s_tx[i++] = 0; // Ditto
 pkt_s_tx_size = i; // size of a packet

 crc = 0;
 for (i = 0; i < pkt_s_tx_size; i++)
 crc = _crc16_update(crc, pkt_s_tx[i]); //calculating CHECKSUM
 pkt_s_tx[pkt_s_tx_size-2] = crc>>8;
 pkt_s_tx[pkt_s_tx_size-1] = crc & 0xFF;

29

Theoretical system limitation for the packet transmission in each case is shown in Fig.

6.1.1 and Fig. 6.1.2.

5 6 7 8 9 10 11 12 13 14 15

10

25

40

0
20
40
60
80

100
120
140
160

180

200

220

Fr
am

e
R

at
e

[fr
am

es

Number of Robots

Payload
Data

[bytes]

Unified Packets

200-220

180-200

160-180

140-160

120-140

100-120

80-100

60-80

40-60

20-40

0-20

Fig. 6.1.1 Payload for unified packets

5 6 7 8 9 10 11 12 13 14 15

10

25

40

0
20
40
60
80

100
120
140

160
180

200
220

Fr
am

e
R

at
e

[fr
am

es

Number of Robots

Payload
Data

[bytes]

Individual Packets

200-220

180-200
160-180

140-160
120-140

100-120
80-100

60-80
40-60

20-40
0-20

 Fig. 6.1.2 Payload for individual packets

Packets/frame and bytes/frame are based on payload data [bytes] and number of the

Robots shown in Fig. 6.1.1 and Fig. 6.1.2. As the number of Robots increases the frame

rates decrease. As the data bytes of payload increase, the frame rates decrease as well. In

both cases, how much higher the number of the frame rate is depends on the number of

the Robots. With no doubt, the smaller the number of the Robots, the higher the frame

30

rates. In the case that the payload per a Robot is less than 25 bytes, the system guarantees

a frame rate of over 100.

6.2 Error Rate of the Packet Transmission

We tested packet stress to the wireless module while varying the number of Robots and

the payload data. In our tests, payload was set to the 8 bytes in each packet transmission.

X-axis indicates a number of Robots (up to 15 Robots). Y-axis indicates frame rates for

each payload type.

The wireless parts were evaluated with CRC error checking. 23,040 packet transmissions

were tested varying the distance from the Base Station to the Robots. The experiments

ranged starting from 10 cm to 400 cm and in each test set the distance was increased by

50 cm. At each distance, for each test case, we sent a packet 256 times from the GUI

application to the Robots. In all tests, however the payload was 8 bytes for each packet

transmission. The packet transmission path was from the GUI Application to the Robots

through the Base Station.

Error Rate of Packet Transmission

2555

2556

2557

2558

2559

2560

2561

Each Test

T
ri
a
l

Trials

Success

Trials 256025602560256025602560256025602560

Success 256025602560256025572560256025602560

1 2 3 4 5 6 7 8 9

Table 6.2.1 Signal to Noise

As a result, the average of the error rate for every packet transmissions is 0.013020833

[%] which is very low. It is especially promising as the expected maximum distance in

the intended application is 4 meters. In the case of the 200 cm distance, the error rate is

31

0.1171875 [%] which is abnormal in the data set. The problem might be caused by the

FRPC2 antenna’s direction. No efforts were made to ensure a direct path between the

Robots’ FRPC2 and the Base Station’s FRPC2.

7. Results

In this project, we achieved control both wireless communication between the mobile

Robot and the remote Base Station, and serial communication between the remote Base

Station and the GUI Application. The main task of this project was two parts: to program

the AVR microcontroller on both the Base Station and the Robot interfaced to the radio

packet controller module which would enable us to wirelessly control the Robot and to

program the GUI Application which would enable us to serially control the Base Station.

This level of completely was successfully tested on groups at up to four Robots. Hence

the wireless communication and the serial communication were successful in the

downlink.

8. Future of This Project

Implement uplink communication from the Robots to GUI Application through the Base

Station.

Control up to 10 Robots from the GUI Application through the Base Station.

Use a secured wireless channel using encryption and decryption.

Consider larger bandwidth system should be onboard because video streaming service

desired.

9. References

1. Oregon State Tekbots

