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This paper presents a platform for multifaceted product search using Semantic Web technology. Online shops
can use a ping service to submit their RDFa annotated Web pages for processing. The platform is able to pro-
cess these RDFa annotated (X)HTML pages and aggregate product information coming from different Web
stores. We propose solutions for the identification of products and the mapping of the categories in this pro-
cess. Furthermore, when a loose vocabulary such as the Google RDFa vocabulary is used, the platform deals
with the issue of heterogeneous information (e.g., currencies, rating scales, etc.).
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1. Introduction

Online product search, as a tool to help customers find their prod-
ucts of interest, has become more important than ever as consumers
nowadays purchase more often on the Web [1]. This is due to the fact
that there is an increase in product specificity and consumer prefer-
ence variation. The most important reason for this is technical ad-
vancement, as this has led to a large increase of different product
types. A second reason is that general wealth increase causes con-
sumers to strengthen their preferences. The search space on the
Web for products has also grown, which makes product search even
more important.

There are several problems with the current state of product
search on the Web. First, the search engines cannot deal properly
with synonyms and homonyms. Second, there is no good support
for multiple languages, and more importantly, the aggregation of
Web-wide information is seldom done. This is clear when we analyze
the way we search for products on the Web. We keep switching back
and forth from search results to find, for example, the cheapest price
of a certain product. It would be useful if the product information is
aggregated and shown to the user in one unified view. Third, there
is no parametric Web-wide search available. Users cannot use queries
like ‘all solar panels which give 12A output and cost less than $2000’.

There are some localized, as opposed toWeb-wide, product search
Web sites where the user can perform this kind of parametric search.
Usually these search engines only support basic product properties.
Examples of these properties are the brand, the price, and the review
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rating of a product. Shopping.com, Google Products, and Shopzilla.com
are three well-known parametric product search engines of such
kind.

A user can search, for example, for a washing machine with a max-
imum price of £750 of the brand ‘Bosch’. Fig. 1 shows an example of
this search. The user specifies the query constraints and the search
engine queries the database, which contains all products, in order to
display the washing machines that fulfill the requirements of the
user. As a result of this, only stores that are indexed in the database
of the search engine are shown.

The databases of these kinds of search engines are updated
through application programming interfaces (APIs) of Web shops
that sell products. Of course, not every Web shop has an API and/or
data feed possibilities. Furthermore, every search engine has its own
standards which have to be obeyed by the Web shops. For instance,
the API of Shopping.com is different than the API of Shopzilla. This
means that not every Web shop will have their data prepared for
both Shopping.com and Shopzilla. As it is costly to adjust data to a
standard, it is not likely that a single search engine will receive data
from all Web shops. By annotating Web pages with information on
the Semantic Web, the APIs of nowadays can be made obsolete. The
annotated information is also publicly available, which enables a
search engine to gather product information directly fromWeb pages.

There is one severe consequence of the current situation of prod-
uct search. Because a user is not going to view all presented search re-
sults, there is a chance that (s)he cannot precisely find a product that
matches his or her criteria. What happens is that users more quickly
start to focus on the price and give less weight to the product features.
The result is that a fierce price competition arises. This can be consid-
ered negative for both consumers and companies, as a user can prefer
a product that meets all requirements but has a slightly higher price.
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Fig. 1. Shopping for a ‘Bosch’ washing machine on Shopping.com.

Fig. 2. A result of searching for ‘Art of Pizza restaurant’ on Google.com.
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With semantic search, the companies can develop new business
models, because consumers can find the very specific products they
are searching for, easier than before.

We have seen how Semantic Web can enhance online product
search. In order to make this work, automatic aggregation of product
information has to be made possible. The main goal of this research is
to show how we can effectively aggregate product information from
different sources. In this paper, we focus particularly focus on aligning
product names (product identification) and categories (category
mapping) from different Web shops. Product identification is the
first step when an annotated Web page is processed. The actual prod-
uct that is described on that Web page has to be identified in order to
be able to perform aggregation of product properties (e.g., prices, re-
views, etc.). Category mapping is necessary in order to make it possi-
ble for users to use the category facet in the user interface. Each
product category that occurs in the product description needs to be
mapped to a category from the internal product category hierarchy.
As part of this research, we provide an implementation of this plat-
form, the XploreProducts.com Web application, which uses a multi-
faceted user interface and is available online at http://www.
xploreproducts.com. We do not cover product search engine algo-
rithms, as our focus lies on the aggregation of product information.
Further, we propose a solution that solves several issues that current
product search engines face. These issues are based on the fact that
(product) information on pages is often not well-structured. Product
information is usually annotated using a loose vocabulary because
there is no widely accepted standard for product names, categories,
currencies, scales, units, etc. [2].

Web shops can provide their product offerings on XplorePro-
ducts.com simply by supplying the URLs of their product Web
pages. This is called the ping service of XploreProducts.com. The
provided URLs should point to Web pages that have been annotated
using the data-vocabulary.org RDFa vocabulary. We choose to use
this vocabulary because it is easy to use and already supported by
Google. This vocabulary is a good example of a simple and non-
restrictive (loose) vocabulary. A loose vocabulary is characterized by
the fact that the range of properties is not well-defined. For example,
for the range of the price property in the data-vocabulary.org RDFa
vocabulary, it is not specified if it should be a string, float data type,
or some other data type. Some users can specify ‘$199!’ as the price
while others might use ‘199.99’. This makes it easy to use by users,
but poses issues for automatic aggregation of information.

Although Google is supporting the data-vocabulary.org vocabulary,
it is not using it to improve the search engine by aggregating the
product information that is annotated on Web pages. The search
queries are still based on keywords, like in every traditional search
engine. Currently, Google is only using these annotations for the pre-
sentation of their search results. Fig. 2 shows a screen shot of one of
the results of a search query on Google.com. As a result of annotating
the Web page of the ‘Art of Pizza’ restaurant on yelp.com, Google can
show information about the price, reviews, etc.We expect that Google's
support for these, so-called, rich snippets [3] will lead to a fast adoption
of RDFa and/or microformats, to improve search, presentation, and
ranking of information.

http://www.xploreproducts.com
http://www.xploreproducts.com
image of Fig.�2
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With our research, we want to show how the Semantic Web can
be used to improve the search and exploration of products on the
Web by aggregating information from various sources.

The contribution of this paper stems from several aspects. First, we
propose an algorithm that is able to identify products with a high pre-
cision. Second, we propose an algorithm for the mapping of a catego-
ry from an external product category taxonomy to an internal product
category taxonomy. This algorithm is compared with two earlier
approaches and the results show that our approach gives better per-
formance on average. The comparison also gives insight into the rela-
tionships between the different approaches. Third, our evaluation is
done on significantly larger data sets than previously used in similar
work. For the category mapping, we use 6 data sets that contain
each 500 manually mapped categories. These manually mapped cate-
gories are obtained by three individuals that are not related to this
project. Fourth, we implemented our solution and made it available
online, to give a snapshot of future product search engines.

The rest of the paper is organized as follows. Section 2 gives back-
ground information on the topics addressed in this research. Section 3
discusses related work about product search, Semantic Web, and fac-
eted search. Then, in Section 4, we present the XploreProducts.com
platform. In Section 5, XploreProducts.com is evaluated. Last, in
Section 6, we draw conclusions and discuss future work.

2. Background

This section provides some background information on the topics
that play an important role in this paper. First, we discuss the Web
page annotation topic and then we give an introduction to online
product search related topics. Further, we provide justifications for
the choices we have made in this paper.

2.1. The Semantic Web

The Semantic Web is an extension to the current Web that adds
semantics to the Web data. Nowadays Web pages are human-
readable and human-understandable, but the information on these
pages is not understandable by machines. For instance, when some-
one states on his personal home page that he works for Philips then
this statement is understandable for a human, but for a machine it
is just another sequence of characters. Furthermore, it is not clear
for the machine that the page actually describes a person and that
Philips is a company.

The Semantic Web makes it possible to describe real world objects
(concepts) on Web pages. These concepts can be persons, companies,
products, etc. Furthermore, it is possible to describe relationships
between these concepts. Allowing machines to understand these con-
cepts facilitates automatic aggregation of information over resources.
Thus, if two different Web sites describe the same concept then it is
possible to aggregate this information. For instance, the Wikipedia
page of ‘Barack Obama’ does not contain his public agenda, but his
own official Web page does. With a semantic search engine it would
be possible to combine the information of these two different sources
describing the very same concept.

2.2. Semantic searching versus traditional searching

Traditional search engines, like Google or Yahoo! crawlWeb pages
and perform keyword-based search. If a user searches for a certain
search phrase, like ‘Nokia 3 inch screen’, all the Web pages that
match this phrase are returned. The search engine does not know
that ‘Nokia’ denotes a mobile phone brand and that ‘3 inch screen’
is a feature of that phone. For the search engine these words are
just sequences of characters.

With semantic search it would be possible to search for a mobile
phone which has a screen size of at least 3 in. Other mobile phones
could be shown based on a different set of criteria. This enables a
user to explicitly state its query constraints. In [4] some other seman-
tic search examples are given. One of these examples is the search for
all the papers published by ‘Eric Miller’. When one would perform a
regular keyword-based search ‘Eric Miller’ on Google, one would
find all documents which contain the words ‘Eric’ and ‘Miller’, thus
also the papers that cite the ‘Eric Miller’. With a semantic based
search engine it would be possible to state the constraint that you
are only interested in papers which are written by this author.

2.3. Faceted navigation versus keyword driven search

Traditional Web search is performed by entering a search phrase
with some keywords. After submitting the search phrase all the rele-
vant Web pages are shown, usually ordered by their relevance to the
search phrase. For instance, the three most important Web search en-
gines, Google, Yahoo!, and Bing work in such a manner. It is not pos-
sible to perform parametric search, i.e., to specify certain attributes in
a search query. Thus, in such Web search engines you cannot specify:
“I am looking for a product in the category ‘Notebooks’with the brand
‘Apple’ and a price lower than $1000”.

You might have noticed that parametric search is possible in cer-
tain Web shops or product comparison Web sites, e.g., Shopping.com.
It is possible to narrow your search by specifying preference values
for these attributes (facets). This is called ‘multifaceted category nav-
igation integrated with keyword search’ [5]. This approach has be-
come a very successful way of searching or navigation in
information collections [6]. The main idea is to build a set of category
hierarchies each corresponding to a different facet (dimension or fea-
ture type) that is relevant to the collection to be navigated. Each facet
has a hierarchy of values associated with it, e.g., for the facet ‘product
category’ these values could be ‘electronics’, ‘laptops’, and ‘televisions’.
After designing the facet hierarchies, each item in the collection can
be assigned any number of labels from the facet hierarchies. The result-
ing interface is known as faceted navigation, or is sometimes called
guided navigation [7].

2.4. Annotating pages

In order to enable semantic search engines like the one described
above, pages need to be annotated. As a consequence, some extra
mark-up needs to be added to existing, static or dynamic, (X)HTML
pages. For annotating Web pages, two possible languages exist,
namely microformats and RDFa. Microformats are small XHTML tags
that represent things like people, products, events, reviews, and tags
in Web pages. However, these formats are less flexible than RDFa,
but, as a result of this, the language is more easily understood by
Webmasters who usually do not have a background knowledge in
the Semantic Web.

The World Wide Web Consortium (W3C) supports its own initia-
tive, namely the ‘Resource Description Framework in attributes’
(RDFa) [8]. RDFa is a W3C Recommendation that adds a set of
attribute-level extensions to XHTML for embedding rich metadata
within Web documents. The RDF data model mapping enables its
use for embedding RDF [9] triples within XHTML documents, and it
also enables the extraction of RDF model triples by compliant user
agents.

2.4.1. Resource Description Framework (RDF)
In order to better understand the annotation of Web pages, we

briefly highlight some features of the Resource Description Frame-
work (RDF). RDF, as the name already indicates, describes resources.
Each resource is denoted by a URI, this is in most cases just a URL.
In RDF everything is a resource, including properties and classes. An
RDF document is a collection of statements. A statement is a triple
which contains a subject, a predicate, and an object. Each of these is a
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resource, except for the object, which can also be a literal, either a
string or data type value (integer, float, etc.).

Let us consider the statement: ‘Product X is called Nokia N97
Smartphone 32 GB WCDMA (UMTS)/GSM’. Assume that the Web
page fragment http://example.com/X describes this product. If we
want to create an RDF statement about this product we need to first
decide which vocabulary to use. Because the data-vocabulary.org vo-
cabulary is supported by Google and our platform makes use of it, let
us consider this vocabulary. This vocabulary has a predicate called
name. So in order to make the above statement, we create the triple:

subject: http://example.com/X

predicate: http://rdf.data-vocabulary.org/name

object: “Nokia N97 Smartphone 32 GB WCDMA (UMTS)/GSM”

Graphically, this statement can be visualized as shown in Fig. 3.

2.4.2. RDF in attributes (RDFa)
As already mentioned, today's Web is built predominantly for

human consumption. Despite the fact that machine-understandable
data starts to appear on the Web, it is typically distributed in a sepa-
rate file, with a specific format, and limited correspondence between
the human and machine versions [8]. The essence of RDFa is to pro-
vide a set of attributes that can be used to carry annotations (metada-
ta) in an XML language (hence the ‘a’ in RDFa). RDFa is to be used
with XHTML 1.x or higher. Thus, only one XHTML file exists, which
contains the information and this information is readable by both
humans and machines. An example of XHTML content, annotated
with RDFa, is shown below:

bdiv xmlns:v="http://rdf.data-vocabulary.org/#"

typeof="v:Product">

bspan property="v:brand">Nokiab/span>

bspan property="v:category">Mobile Phonesb/span>

bspan property="v:name">Nokia N97 Smartphone 32 GB

WCDMA (UMTS)/GSMb/span>
bspan property="v:description">The Nokia N97 intro-

duces the concept of ‘social location’. With integrated

A-GPS sensors and an electronic compass, the Nokia N97

mobile computer intuitively understands where it is.

The Nokia N97 makes it easy to update social networks au-

tomatically with real-time information.b/span>

b/div>

ba href="http://europe.nokia.com/find-products/devices/

nok-ia-n97" rel="v:url">Nokia Europe - Nokia N97 -

Productsb/a>

The typeof="v:Product" declaration indicates that the
marked-up content represents a product. Each product property (like
the name and the brand) is labeled using the attribute property. The
predicate names are prefixed with v:, which shows that the attribute
is from the v namespace, in this case the http://rdf.data-

vocabulary.org/ namespace. Each attribute has a certain meaning
that is defined in the vocabulary.

The namespace declaration using xmlns, shown in the XHTML
above, indicates which vocabulary is used. The xmlns:v="http://

rdf.data-vocabulary.org/#" namespace declaration is the
http://example.com/#X

Nokia N97
Smartphone 32 GB

WCDMA
(UMTS) / GSM

http://rdf.data-vocabulary.org/#name

Fig. 3. An example of an RDF statement.
vocabulary which is supported by Google. There are several other
(more sophisticated) vocabularies available online. Another well-
known ontology for describing products is the GoodRelations [10] on-
tology The GoodRelations ontology is more advanced than Google's
vocabulary. For instance, with GoodRelations it is possible to specify
the warranty, the delivery options, the payment methods, the curren-
cy, etc. GoodRelations is not to be compared with data-
vocabulary.org, as GoodRelations is a fully-fledged OWL ontology
where the user is able to specify mainly product specific properties.
Examples of these kinds of properties are ‘the number of rooms
when one is selling a house’ or ‘the battery life time for a mobile
phone’. With the Google supported RDFa, it is only possible to specify
relatively simple and general information about a product, like the
product name, the brand, the category, the price, the review rating,
etc.

As already mentioned, in this paper we will use the less advanced
vocabulary from data-vocabulary.org, which is supported by Google.
We chose for this vocabluary as we want to show that even with
vocabularies without many constraints, it is possible to perform
advanced product search on Web level. Furthermore, as Google, the
largest Web search engine, is supporting this vocabulary, we expect
this vocabulary to be commonly used worldwide in the near future.

2.4.3. SPARQL
Just like with relational databases, a query language to query the

data from a set of RDF statements is needed. For relational databases
the most commonly used language is SQL. For RDF, there is a language
which is similar to SQL, namely SPARQL [11].

Consider the set of statements shown in Fig. 4. An example query
which retrieves all resources which have the name property is shown
below.

PREFIX v: bhttp://rdf.data-vocabulary.org/#>

SELECT ?product ?name

WHERE {

?product v:name ?name .

}

If we want only the products with a price larger than $400.00, then
the following query can be used:

PREFIX v: bhttp://rdf.data-vocabulary.org/#>

SELECT ?product ?name

WHERE {

?product v:name ?name .

?product v:price ?price .

FILTER(?price > 400) .

}

Fig. 4. An example of a SPARQL query on RDF statements.

http://example.com/X
http://example.com/X
http://rdf.data-vocabulary.org/name
http://rdf.data-vocabulary.org/
http://europe.nokia.com/find-products/devices/nokia-n97
http://europe.nokia.com/find-products/devices/nokia-n97
http://europe.nokia.com/find-products/devices/nokia-n97
http://rdf.data-vocabulary.org/
http://rdf.data-vocabulary.org/
http://rdf.data-vocabulary.org/
http://rdf.data-vocabulary.org/
http://rdf.data-vocabulary.org/
http://rdf.data-vocabulary.org/
image of Fig.�3
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3. Related work

In this section, we first discuss literature that addresses Semantic
Web approaches for product search. After that, we give an overview
of existing product ontologies. Then we discuss related product
search approaches. We conclude this section with the description of
the product search inherent categorization problem.

3.1. Products and the Semantic Web

A lot of research has been performed to show the potential of
using the Semantic Web for improving the search for products on
the Web, e.g., [14,13,12]. There exist several general categorization
standards for products and services, like UNSPSC, eOTD, eClass, and
the Rosettanet Technical Dictionary (RNTD). In [15] a comparison is
made between all these standards and the authors reveal weaknesses
and shortcomings in all of the four standards. It depends on the pur-
pose and segment of interest which standard performs the best.

3.1.1. Ontologies
Based on the just mentioned standards eClassOWL [16] and

unspscOWL [17] are developed. These are general product and ser-
vice ontologies. However, according to [10], these general product
and service ontologies do not provide the means required for
e-commerce on the Semantic Web. Annotating products require
more advanced statements than just ‘a Sony Vaio is an instance of
the product class Notebooks’. Therefore, several ontologies for Se-
mantic Web-based e-commerce on Web scale have been proposed,
e.g., GoodRelations [10].

With these e-commerce ontologies it is possible to specify and an-
notate product specific properties and business relations between the
product and the merchant. For instance, this leads to annotations
which answer questions like ‘Is this product in stock?’, ‘Is this an
offer for rent or to sell?’, ‘Is this a special price?’, ‘What is the size of
this mobile phone?’, or ‘For which period does this offer hold?’

Unfortunately, these ontologies are not yet commonly used. How-
ever, well-known Web tools as Joomla! [18], osCommerce [19], and
Drupal [20] have plug-ins or even support the GoodRelations ontolo-
gy. So, we believe it is just a matter of time before this ontology will
be used on a large scale. Nevertheless, as already mentioned, for
this paper we use a simpler vocabulary: the data-vocabulary.org vo-
cabulary. We chose for this vocabulary as Google currently already
supports it, and thus it allows for the immediate applicability of our
results.

3.2. Product search

Although the potential of using the Semantic Web for improving
the search for products on the Web is emphasized in [14,13,12], sur-
prisingly, there is not much research performed where the focus is on
semantic product search.

In [21] a search and comparison system for products is proposed.
Their approach is based on the assumption that each shopping mall
offers a product ontology and a product search service based on
Web Services. The authors state that more shopping malls are
expected to offer Web Services, and their search engine will be able
to useWeb Services to collect structured product information. We be-
lieve that this assumption is a weak point, because the Semantic Web
offers a lot more and makes the data semantics directly available on
the Web. Further, there are still many small shopping sites that
do not plan to support Web services at all. Therefore, we propose a
product search engine which makes only use of Semantic Web
technologies.

The authors of [22] propose a completely semantic-driven product
search engine is proposed. Unfortunately, this engine is not a general
search engine, but it is an engine for a specific product category. In
this work ‘mobile phones’ is chosen as a practical example. Further-
more, the authors use a self-made ontology, instead of one of the
well-known earlier mentioned ontologies. In this paper, we propose
a general product search engine that makes use of standardized Se-
mantic Web technologies and vocabularies.

In the literature we can find other related work that covers prod-
uct search in an e-commerce environment. In [23] and [24] a federat-
ed product search application using heterogeneous sources is
proposed. Unfortunately, the authors do not use advanced faceted
search, as only one facet, the product category, is available. This ap-
proach is similar to keyword-based search, with the possibility to
specify the product category, separately from the keywords. Further-
more, Semantic Web technologies are ignored as the authors useWeb
services and semi-structured HTML to extract product data.

The authors of [25] propose a ranking algorithm that can be ap-
plied to product descriptions in an e-commerce environment for
product search. The algorithm is based on concept contradiction
and concept abduction. The difference between this approach
and our approach is that we present a solution that also includes
product identification and category mapping. The algorithm pre-
sented in [25], as opposed to our approach, assumes that the e-
commerce data is already stored in some formal language, like
OWL.

In [26] a framework similar to XploreProducts.com is pro-
posed. The authors use a three-layered architecture as a basis
for their product information retrieval framework. First, the
framework extracts product information from HTML pages using
predefined information extraction rules. Next, this data is stored
and exposed using two search methods, i.e., a search method
based on the vector space model, and a search method that is
based on SPARQL. Last, the authors provide an easy to use graph-
ical implementation of the search interfaces. Compared to our ap-
proach, the solution presented in [26] is different in several ways.
For example, the authors do not focus on the fact that multiple
ontologies can be used. As a consequence, there is no product
name identification and no solution for the alignment of product
category taxonomies.

3.3. Category mapping

As already discussed in Section 3.1, several categorization stan-
dards exist for products and services. Furthermore, many Web
shops use their own vocabulary for categorizing their products
and/or services. For instance, we searched for a ‘Nokia N97’ cell
phone on Amazon.com and Circuitcity.com. Amazon associates
this phone with the category ‘Cell phones & services’ while Circuit-
city.com associates this phone with the category ‘Unlocked Cell
Phones’. Also, the hierarchical product category relationships differ
over Web shops.

As there is no general product classification standard, the IEEE In-
telligent Systems Magazine even launched an international research
challenge to come up with a generic model and working solution
that is able to (semi-)automatically map a given product description
in two different e-commerce product classification standards [27].
In this paper we focus on mapping product categories to an existing
product category hierarchy. The eClassOWL product classification
standard is a comprehensive classification scheme and is freely avail-
able for non-commercial use. We have chosen not to use it as it does
not fit our domain well as this ontology contains many business-to-
business product categories. We have therefore chosen to use an in-
formal, yet comprehensive, category hierarchy, namely the one of
Shopping.com.

As alreadymentioned in the introduction, we compare our catego-
ry mapping approach with two other approaches from literature.
These approaches showed good results with respect to precision
and recall. The goal of category mapping is to map a category from
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the source taxonomy to a category from the target taxonomy. First,
we compare our approach against the approach presented by Park
and Kim [28]. Their approach consists of three main steps. In the
first step, they apply word sense disambiguation to find the correct
synonym set from WordNet for a given source category. This is
done by analyzing and comparing the hypernym tree of the source
and target paths. The second step consists of syntactic matching of
terms in the synonym set in order to find candidate paths from the
target taxonomy. In the last and final step, a similarity between the
source path and all previously identified candidate paths is computed.
If the highest similarity is above some threshold, the corresponding
candidate target path is selected as the mapping, otherwise the algo-
rithm does not provide a mapping for the category. The similarity be-
tween two paths is the average of the proposed co-occurrence
similarity and order-consistency measure. The co-occurrence similar-
ity represents the number of common categories between the source
path and a candidate path. This similarity takes into account the syn-
onyms of a category. The order-consistency measure takes into ac-
count the ratio of correctly ordered matching categories, which
emphasizes that the order in which categories occur in a path is
important.

Second, we compare our approach with PROMPT, presented in
[29]. PROMPT is a very popular ontology mapping toolkit which
has been used in many domains and evaluated thoroughly, for ex-
ample in [30]. PROMPT takes as input a set of anchor point pairs.
An anchor point is a pair of categories, where one category comes
from the source taxonomy and the other from the target taxonomy.
These initial mappings can be either obtained through a manual,
semi-automatic, or fully automatic process. Next, all possible paths
are generated where the start and end point of a path is an anchor
point pair. This is done for both the source and target taxonomy.
With these two sets of paths, pairs of paths of equal length are con-
sidered, where one path is from the source taxonomy and the other
from the target taxonomy. For each pair, the categories in between
the anchor points at the same position are registered as being sim-
ilar and their similarity is increased with a constant. When this pro-
cedure finishes, all pairs of categories that are similar can be
considered as a mapping. In order to improve the mappings and
make the algorithm less sensitive to noise, PROMPT proposes to fil-
ter the scores. This filtering can be done by computing the median
of all mapping scores and removing all mapping scores that are
smaller than the median. PROMPT has two parameters, the first de-
termines the maximum path length for paths that are generated in
the first step. The second parameter determines whether or not the
scores should be filtered.

In [31] a method for ontology mapping is proposed, which can be
used in the context of product category mapping. The basic idea of
this algorithm is that it uses instance data to semantically enrich the
ontologies that need to be mapped. This is done in order to be able
to compute the semantic similarity (cosine similarity) between con-
cepts in the ontology. The concepts are represented as vectors,
where each element is representing a word from a concept instance
description. To obtain the concept vector, an average is taken over
all vectors of documents that belong to a concept. Our approach is
different from this one as it does not assume that we have any in-
stance information, i.e., it maps product categories from two sources
without knowing the products that are in these categories. As our
framework requires product category mapping without any knowl-
edge of products, we have chosen not compare our approach with
this one.

The authors of [32] take a different approach and use Bayesian
decision making for the purpose of ontology mapping. The basic
idea is that the ontology mapping task is transformed into a deci-
sion problem by computing a probability for each possible map-
ping. The authors present several strategies for computing these
probabilities, including relying on the names of the concepts and
concept instance data. Then the Bayesian risk (also sometimes
called the loss) is minimized in order to obtain the best mapping.
We have not considered this approach as the results from the
paper showed that the algorithm performs best with the use of in-
stance data and in our case we cannot assume to have this
information.

Another related algorithm is proposed in [33]. In this paper,
an algorithm based on similarity flooding [34] is proposed
that is able to match substructures of a taxonomy, such as
concept→property→concept. In their paper, they evaluate their
technique on data sets that contain educational concept maps
drawn by students. We do not consider this technique as it
might be inappropriate because it does not provide solutions
for issues that occur specifically for product category taxonomies,
such as path ambiguity, and synonyms.

4. The XploreProducts.com platform

In this section we discuss the XploreProducts.com platform. We
first provide a problem description and then move on to a detailed
discussion of the platform.

4.1. Problem description

As already explained, in e-commerce there exist many heteroge-
neous data sources. Every Web shop uses its own standards, lan-
guages, vocabularies, and ontologies. With XploreProducts.com we
aim to search over different data sources. We focus on the following
heterogeneous aspects which exist when querying over several Web
shops:

• the use of different product names for identical products;
• the use of different category standards;
• the use of different category hierarchies;
• the use of different currencies;
• the use of different review rating scales;
• aggregating over review rating information.
4.2. Identical product recognition

In order to be able to aggregate information across different
sources, we need to identify the product names that represent
the same product. We now describe an algorithm that deter-
mines if two products are equal given their names. The products
to be compared are assumed to be annotated with the same
brand.

Before we can step into the details of the product name identifi-
cation algorithm, we need to explain an existing text similarity mea-
sure. The Levenshtein distance [35] is a metric for measuring the
amount of difference between two strings (i.e., the so-called edit
distance). The Levenshtein distance between two strings is given
by the minimum number of operations needed to transform one
string into the other, where an operation is an insertion, deletion,
or substitution of a single character. It can be considered a general-
ization of the Hamming distance, which is used for strings of the
same length and only considers substitution edits. It is often used
in applications that need to determine how similar, or different,
two strings are.

For example, the Levenshtein distance between ‘hair’ and ‘stairs’ is
3, since the following three edits change one into the other, and there
is no way to do it with fewer than three edits:

1. hair→shair (insert of ‘s’ at the beginning)
2. shair→stair (substitution of ‘h’ for ‘t’)
3. stair→stairs (insert ‘s’ at the end).
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This distance is called the absolute Levenshtein distance. We denote it
by alvij, which is the absolute Levenshtein distance between strings i
and j.

In our framework we use the normalized Levenshtein distance,
which is a function of the absolute Levenshtein distance. We use
the notation lvij, which is the normalized Levenshtein distance be-
tween strings i and j. The normalized Levenshtein distance is de-
fined as:

lv x; yð Þ ¼ alv x; yð Þ
max length xð Þ; length yð Þð Þ : ð1Þ

The normalized Levenshtein distance addresses the issue of
short string lengths. If you have two strings, of both length 24,
then an absolute Levenshtein distance of 3 is not large. However,
with two strings of length 6, this distance is quite large as it is
50% of the tag length. According to the absolute Levenshtein dis-
tance these two distances are the same. But the normalized
Levenshtein distances are in this case 0.125 and 0.5. This indicates
that, according to the normalized Levenshtein distance, the two
pairs of strings do not have the same distance, i.e., the first pair is
more similar.

The product name identification process is summarized in
Algorithm 1. The algorithm has two input parameters, the two prod-
uct names, and four control parameters (thresholds and weights). We
replace common words like ‘and’, ‘or’ and characters like ‘&’, ‘/’, ‘-’,
with a space. This eliminates any ‘noise’ in the product names and
makes them more easy to compare.

Several functions are defined, which need some explanation.
The function calcCosineSim(a,b) calculates the cosine similarity be-
tween two product names a and b. It is defined by the following
equation:

calcCosineSim a; bð Þ ¼ a∩bj jffiffiffiffiffiffi
aj jp ffiffiffiffiffiffi

bj j
p ð2Þ

where a and b are the set of words of the first and second product
name, respectively. So for the product names ‘sony ericsson X1’
and ‘xperia X1’ the cosine similarity is 1=

ffiffiffi
3

p ffiffiffi
4

p� �
¼ 0:408.

The function extractModelWords(a) is used to extract the words
from a product name which contain alphabetic/punctuation, and nu-
meric characters, i.e., the possible ‘model words’. Table 1 shows
‘model words’ for some example product names.

With avgLvSim(X,Y), the average Levenshtein similarity between
two sets of words can be computed. In some cases, the set of words
X and Y are preprocessed before using this function. We then consider
only the first maximal n elements from each set, so that both sets are
of an equal size. Using the normalized Levenshtein distance function
lv(x,y), we can give the definition of the function avgLvSim(X,Y),
Table 1
Product names with corresponding ‘model words’.

Product name

Nikon D700 digital SLR camera — 3″ active matrix TFT color LCD
Nikon D700 12.1MP digital SLR camera
Apple iPod touch 32 GB flash portable media player
Apple iPod touch 32 GB (3rd generation) NEWEST MODEL by Apple
Samsung BD-P1600 Blu-ray player — 1080p, HDMI, USB, Ethernet, remote control
Samsung BD-P1600 — Blu-ray DVD player
Sony DSC-W290 cyber-shot 12 megapixel digital camera with 5× optical zoom, 3″ LCD, H
Sony cyber-shot DSC-W290 — 12.1 megapixels, 5× optical zoom, 3.0″ LCD, black
where X and Y are sets, as following:

avgLvSim X;Yð Þ ¼ ∑
x∈X

∑
y∈Y

1−lv x; yð Þð Þ length xð Þ þ length yð Þ
∑tsx∈X ∑

y∈Y
length xð Þ þ length yð Þ

ð3Þ

where length(⋅) returns the length of a string.
The function avgLvSimMW is very similar to avgLvSim, the only dif-

ference is that the average is taken over only the model words which
have the non-numeric part approximately the same and the numeric
characters are the same:

avgLvSimMW X;Yð Þ ¼ ∑
x∈X

∑
y∈Y∧x≈y

1−lv x; yð Þð Þ length xð Þ þ length yð Þ
∑
x∈X

∑
y∈Y∧x≈y

length xð Þ þ length yð Þ

ð4Þ

The process of recognizing identical products is outlined in
Algorithm 1. The algorithm starts by checking for a general high co-
sine similarity and returns ‘true’ if it finds one, indicating that the
product names represent the same product, as shown in lines 1
through 4. On lines 5 and 6, the ‘model words’ from both product
names are extracted and stored in sets. Then a check is performed
to see if the two products can immediately be classified as different.
This is done by examining if there is a pair of model words where
the non-numeric part is approximately the same but the numeric
part is not. We define approximately the same by using a normalized
Levenshtein distance with a certain threshold. The argument for this
is that when one finds two ‘model words’ which are approximately
the same with respect to the non-numeric characters, but not with
respect to the numeric part, then the two ‘model words’ belong to
two different products, i.e., the ‘model words’ for the Sony VGN laptop
series: ‘VGN-NW350FS’ versus ‘VGN-NW320FS’.

If the algorithm did not return false, the similarity between the
two product names is computed, as shown on line 10. Next, a check
is performed to see if the computed similarity on line 10 needs to
be updated. The similarity is updated when there is at least one pair
(a ‘model word’ from set X and a ‘model word’ from set Y), where
the two ‘model words’ have approximately the same non-numeric
characters and equal numeric characters. The condition is necessary
as we do not want to compute the similarity between ‘model
words’ pairs like ‘3Ghz’ and ‘24in.’. If this condition is satisfied, the
similarity is updated by giving more weight to the similarity between
the ‘model words’ (only the pairs which pass the previous condition
test), as shown on line 13. The reason for the update of the initially com-
puted product name similarity is that ‘model words’ play an important
role in product identification, as these are natural identifiers of products.
We therefore give a relatively large weight, i.e., δ, to this similarity when
updating the final similarity. As last, if the final similarity, finalNameSim,
is higher than the threshold �, the product names represent the same
product. Consider the product names ‘Panasonic DMPBD605 Blu-ray
Player—1080p, BD-Live’ and ‘Panasonic DMP-BD60K Blu-ray DVD
Model words

D700, 3″
D700, 12.1MP
32 GB
3 rd
BD-P1600, 1080p
BD-P1600

D, black DSC-W290, 5×, 3″
DSC-W290, 5×, 3.0″
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Player’. These two product names appear to be the same but they do not
represent the same product, as indicated by thewords ‘DMPBD605’ and
‘DMP-BD60K’, these are two different model numbers.
4.3. Category mapping

As discussed in the previous subsection, Web shops use different
names for describing product categories on the Web. Furthermore,
different hierarchies are used. For instance, ‘Nintendo DS Games’
can be a child of ‘Games’, where on another Web site it is a child of
a more specific category ‘Console Games’. To cope with this problem
we use an existing product category hierarchy, i.e., the internal taxon-
omy, to map the new product categories to. We chose for the Shop-
ping.com product hierarchy as it is freely accessible and available
through their API.

Algorithm 1. Product name identification
Require: The input: product names a, b
Require: The out: true if the product names a and b represent the same

product, false otherwise
Require: The parameters:

• α, the threshold for the cosine similarity of the product names
(nameCosineSim)

• β, the weight for the cosine similarity of the product names
(nameCosineSim)

• δ, the weight for the cosine similarity of the identified ‘model words’ in
the product names (modelWordSimVal)

• �, the threshold for the final similarity between two product names
(finalNameSim)

Require: calcCosineSim(a,b) gives the cosine similarity, as defined by Eq. (2),
between product names a and b

Require: extractModelWords(a) returns a set of ‘model words’ (words which
contain both numeric and alphabetic characters),
extracted from product name a

Require: avgLvSim(X,Y) returns a similarity ∈ [0,1] between two
sets of ‘model words’ X and Y

Require: avgLvSimMW(X,Y) returns a similarity ∈ [0,1] between two sets of
‘model words’ X and Y, considering only elements x∈X and y∈Y such that
the non-numeric parts are approximately equal (x≈y).

1. nameCosineSim=calcCosineSim(a,b)
2. if nameCosineSim>α then
3. return true {the product names represent the same product}
4. end if
5. modelWordsA=extractModelWords(a)
6. modelWordsB=extractModelWords(b)
{analyze the two sets of ‘model words’, comparing each ‘model word’
from one set to each ‘model word’ from the other set (called a pair)}
7. if found a pair where non-numeric characters are approximately the same
AND numeric characters are not the same then

8. return false {the product names do not represent the same product}
9. end if
{compute initial product name similarity}

10. finalNameSim=β×nameCosineSim+(1−β)×avgLvSim(a,b)
{check if we have a pair of ‘model words’which are likely to represent the
same}
11. if there is at least one pair where the non-numeric characters are
approximately the same AND the numeric characters are the same then

12. modelWordSimVal=avgLvSimMW(modelWordsA,modelWordsB)
13. finalNameSim=δ×modelWordSimVal+(1−δ)×finalNameSim

{updated the calculated product name similarity}
14. end if
15. return finalNameSim> � {the product names represent the

same product if true, false otherwise}

As with the identification of the products names which describe
identical products, we have to identify to which existing product
category our system should map new unknown product categories.
There are two difficulties with this process, as one has to deal with
syntactic variations and with semantic variations. The syntactic
variations are for example singular/plural forms, abbreviations,
and typographical mistakes. The semantic variations are synonyms
and homonyms. In order to deal with these issues we developed
an algorithm which is able to take into account both of these
variations.

Algorithm 2 shows the steps taken to find a matching product
category in the internal taxonomy, given a new category. We as-
sume that the category taxonomy of the new category is available.
The algorithm starts with a loop that runs for each category in the
target taxonomy. The idea is that we compute a similarity between
the input category and all target categories and choose the target
category that has the highest similarity. If the highest similarity is
below a certain threshold, the algorithm does not map the input
category. We denote an input category by c and a target category
by target. The way we compute the similarity between two catego-
ries is that we first generate the path that goes to the root category
in the taxonomy for both categories. Then, we compute a weighted
average of similarities between pairs of categories that are on
the same level from the two paths. For example, consider a path
p1=(c1,c2,c3,c4), obtained from the input category c1, and a target
path p2=(t1, t2, t3). In this example, c4 is the root category of the
source taxonomy and t3 is the root category of the target taxonomy.
The similarity between p1 and p2 would be an weighted average of
the similarity between (c1, t1), (c2, t2), and (c3, t3). The category c4 is
not used as the target path (p2) is only 3 categories long. The
weights that are used to compute the weighted average give the
combination (c1, t1) more weight than (c3, t3). The reasoning behind
this is that a pair of categories close to the to be mapped category is
more important than one far away. We have chosen for the follow-
ing weight function:

wi ¼
1

iþ 1
=
Xn

j¼1

1
j

ð5Þ

where i represents the zero-based index for the location on
the path and n is the total number of elements in the weighted
average. So for the weights for the above mentioned example
are w0=(1/1)/(1/1+1/2+1/3), w1=(1/2)/(1/1+1/2+1/3), and
w2=(1/3)/(1/1+1/2+1/3). These values are respectively 0.55,
0.27, and 0.18.

Before we compute a similarity between two categories, the cate-
gory to be mapped c and the target category target are cleaned. This is
happening on lines 3 and 4 for the input category and a target catego-
ry. The cleaning of category names is necessary in order to remove
possible ‘noise’. For example, some users write ‘Camera and Photog-
raphy’while others might write the abbreviated form ‘Camera & Pho-
tography’. We solve this issue by replacing occurrences of both ‘and’
and ‘&’ by a space character. After the category names are cleaned,
the similarity can be computed, as done on line 5. The function that
is used to calculated the similarity between two cleaned category
names is given by:

getCatSim a; bð Þ ¼ λ⋅calcCosineSim a; bð Þ þ 1−λð Þ⋅avgLvSim a; bð Þ ð6Þ

where a and b are sets of words, calcCosineSim(a,b) is defined by
Eq. (2) and avgLvSim(a,b) is defined by Eq. (3). The sets a and b
are obtained by splitting a category name on the space character,
this is achieved by using the function cleanAndSplit(⋅), which is
also used to clean the product names. The multiplication with w0

indicates that the first similarity is weighted by w0, as already
explained.

The algorithm continues by computing the same similarity for all
pairs of parent categories of the input category and target category,
this is done in 7 to 16. The index for the weight is increased on line
15. On line 17, when all ancestor similarities are computed, the final
similarity is added to the set of all similarities S. After the similari-
ties with all target categories are computed, a category needs to
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be chosen. If the highest similarity in the set S is above some thresh-
old, the corresponding target category is selected as the matching
product category.

Algorithm 2. Category mapping algorithm
Rating Scales 
Converter

Faceted Search
User Interface

Product  Name
Recognizer

Review Rating 
Aggregator

SPARQL Query 
Generator

RDF 
Database
(reasoner)

Fig. 5. The XploreProducts.com platform.
Require: The input: a new category c to be matched to an existing category
from the framework

Require: The taxonomy T (existing categories provided by the framework,
for example, the categories from Shopping.com)

Require: The function cleanAndSplit(a) ‘cleans’ a category name, i.e., replaces
‘and’, ‘or’, ‘&’, ‘(’, ‘)’, ‘,’, and other special characters with a space and
returns set of words obtained by splitting ta on the space character

Require: The vectorwwhere each elements represent the weight for the similarity,
i.e., w0 is the weight for the leaf nodes similarity,w1 is for their parents, etc.

Require: The function getCatSim(a,b) gives a similarity ∈ [0,1] between
category names a and b

Require: The minimum similarity threshold ϕ
1. S={}
2. for target∈T do
3. a=cleanAndSplit(c)
4. b=cleanAndSplit(target)
5. sim=getCatSim(a,b)×w0

6. i=1
7. for targetAncestor∈ {ancestors of target} do
8. cAncestor=nextAncestorOf(c)
9. if not exists cAncestor then

10. return
11. end if
12. a=cleanAndSplit(cAncestor)
13. b=cleanAndSplit(targetAncestor)
14. sim=sim+getCatSim(cAncestor, targetAncestor)×wi

15. i= i+1
16. end for
17. S=S∪{(target,sim)}
18. end for
{The category that is the best match for c is the one with the highest sim-
ilarity in the set S}
19. return {x|(x,m)∈S,m≥ϕ,∀(y,n)∈S :n≤m}

4.3.1. Different currencies
The XploreProducts.com platform also offers support for various

currencies. As already mentioned, the data-vocabulary.org vocabulary
does not have many restrictions on the values of properties. This
means that a price can be expressed as a numeric value (e.g.,
149.99) or as a string (e.g., FREE, $ 149.99, 149.99). Note also that
the decimal separator is not given as this is not known upfront. We
use simple heuristics to deal with these issues. Some examples of
these heuristics are:

• When the currency is not stated, the domain name of the Web
page is used to retrieve the currency of that country (e.g., ‘.nl’
is the Netherlands, which uses the Euro). With non-country do-
main names, like ‘.com’ or ‘.org’, we use an API [36] to map the IP
address of the server to the country where the server is located.

• Statements like ‘free’, ‘free of charge’, and ‘for nothing’ are trea-
ted as 0.00. For this purpose we have developed a comprehen-
sive list of lexical representations that denote a null price.

4.4. The Platform

The XploreProducts.com platform consists of two environments,
namely an environment where the end-users can search and explore
products on the Web and an environment where Web shops are able
to ping our platform with their product information containing Web
pages. Fig. 5 gives an overview of the platform with its two environ-
ments. The arrows in the Figure denote a ‘uses’ relationship, i.e., the
‘Faceted Search User Interface’ uses the ‘SPARQL Query Generator’.

4.4.1. Ping service
The ping service in XploreProducts.com allows companies, such as

online Web shops, to submit their annotated Web pages so that the
platform can process and interpret the new information and conse-
quently update the database. This service can be used by consumers
in a scenario where one wants to add some product Web pages to
the XploreProducts.com database. We think that this service is mostly
used by companies that want to have their products listed in as many
product search engines as possible. For these companies the Xplore-
Products.com ping service is an easy and fast way to promote their of-
ferings. In the ping service, the user submits a list of product URLs that
need to be added to the database. The user also has the possibility to
upload a site map file or specify an online site map URL, if many URLs
need to be provided. After a user submits one or more product URLs,
the processing starts. The ping service extracts the RDF statements
from the annotated HTML pages and uses the services from the
‘RDFa Processor’ to process the extracted RDF data, as shown in
Fig. 5. The RDF data is prepared, cleaned, and adjusted to be stored
in an RDF database which is compatible with the framework. The
database is updated immediately after the processing of the RDF
data is finished. When a user searches for his products in the search
engine of XploreProducts.com, the results can be instantly viewed.
4.4.2. Searching on XploreProducts.com
For the implementation of the user interface, we use multifaceted

category navigation, integrated with keyword search. The facets
which we use are: the product category, the brand, the price, the re-
view rating, the number of reviews, and the store name, as shown in
Fig. 5. When the user enters a query, the SPARQL query generator
translates the user's input to a SPARQL query in order to get relevant
results from the RDF database. Fig. 6 shows an example of searching
for ‘office’.

Furthermore, one can notice in Fig. 6 that aggregation over shop
results is performed. The HP printer can be found on both Amazon.-
com and Circuitcity.com, but the average rating (and price) differs
across these shops. This is a result of the product name identification,
presented in Section 4.2.

The ranges for the prices and the review counts are computed au-
tomatically to redistribute the values optimally such that each range
contains an equal number of products. This allows the user to browse
the results with the most flexibility. Additionally, one is able to
change the currency, so that users can compare prices more easily
with the currency in their own country. The default value for this fil-
ter is U.S. Dollars. When a user changes the currency, not only the
prices shown in the results will update, but also the computed ranges
will change.



Fig. 6. Searching for ‘Office’ on XploreProducts.com.
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5. Evaluation

In this section we evaluate the algorithms used in XplorePro-
ducts.com. First, we analyze the results of the recognition of identical
products, an important task of XploreProducts.com as the aggregation
of information is dependent on the success of this task. Second, we
evaluate the category mapping task of XploreProducts.com, and last,
the user interface is evaluated.
5.1. Product name identification

For the evaluation of the product name identification algorithm
we collected 603 product name combinations from Amazon.com, Cir-
cuitcity.com, and other online shops. We manually identified which
product names are describing identical products. These mappings
are used to facilitate the evaluation of our algorithm, where the auto-
matic mapping is compared to the manual mapping. Some examples
of product names which are identified by the algorithm as being iden-
tical products, are given in Table 2.

Our final results are summarized in Tables 3 and 4. Table 3
shows the accuracy, the precision, the recall, and the specificity.
These measures are commonly used with independent binary
classifiers, i.e., which give a yes/no answer for a certain decision.
The evaluation is done using a two-way contingency table, in our
Table 2
Product name examples which describe identical products.

Cluster number Product names

1 Nikon D700 digital SLR camera — 3″ active matrix TFT color LCD
Nikon D700 12.1MP digital SLR camera

2 Dell Vostro 1520 laptop computer (Intel Core 2 Duo T6670 250
GB/2 GB)
Dell Vostro 1520 15.4-inch widescreen laptop (black)

3 Samsung BD-P1600 Blu-ray player — 1080p, HDMI, USB,
Ethernet, Netflix ready, DVD/CD, remote control
Samsung BD-P1600 — Blu-ray DVD player

4 VIZIO VA370M 37-inch full HD 1080p LCD HDTV
VIZIO VA370M – 37″ widescreen 1080p LCD HDTV – 15,000:1
dynamic contrast ratio – 6.5 ms response time
case given in Table 4. These tables always have four cells: true
positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN). True positives is the number of cases where
‘YES’ was correct and false positives is the number of cases
where ‘YES’ was incorrect. False negatives is the number of
cases where ‘NO’ was incorrect and true negatives is the number
of cases where ‘NO’ was correct. In our case, ‘YES’ represents the
decision taken by the algorithm that two product names repre-
sent the same product and ‘NO’ that the two products are
different. Performance measures from information retrieval are
defined and computed from these contingency tables. These
measures are recall (r), precision (p), specificity (s), accuracy
(ac) and error (e):

r ¼ TP TP þ FNð Þ
p ¼ TP TP þ FPð Þ
s ¼ TN FP þ TNð Þ
ac ¼ TP þ TNð Þ TP þ FP þ FN þ TNð Þ
e ¼ FP þ FNð Þ TP þ FP þ FN þ TNð Þ

The results of the product name identification algorithm look
promising with accuracy, precision, recall, and specificity, all above
91%. These results are obtained with α=0.80, β=0.10, δ=0.40,
and =0.50. To select these parameters we experimented with
every possible parameter combination when using a step size of
0.05 and for all the parameters a range between 0 and 1. The proces-
sing time for all the 20×20×20×20=160,000 parameter combina-
tions was less than 80 min on an Intel Quad Core Q9550 2.83 GHz
CPU, the software ran on 8 threads. For every 160,000 parameter
combinations the 603 product name combinations are evaluated.
Table 3
Results for the product name identification
algorithm.

Measure Value

Accuracy 93.60%
Precision 92.11%
Recall 91.30%
Specificity 95.05%



Table 4
Confusion table for the product name identification algorithm.

Predicted Actual

Identical Not identical

Identical 210 18
Not Identical 20 346
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The algorithm can be configured to minimize a single error mea-
sure, for example the FPs. This would rather lead to a relatively high
number of FNs. There is a typical trade-off that arises with the use
of binary classifiers and this phenomenon is shown in Fig. 7. This fig-
ure shows a scatter plot where the points represent a parameter com-
bination, with the false positives on the x-axis and the false negatives
on the y-axis. We can see that there is a trade-off between the FPs and
the FNs. Our decision is to minimize equally both the FPs and FNs
(both with the same weight). This is equivalent to choosing the com-
bination which has the smallest distance to the origin. From the figure
we can see that the algorithm performs well, as there are many points
that are close to the origin.
5.2. Category mapping

For the evaluation of the category mapping algorithm, we have
collected the product taxonomies of Amazon [37], ODP [38], and
Overstock [39]. The collected taxonomies contain in total 2575,
44,181, and 1052 categories respectively. For each taxonomy a ran-
dom sample of 500 categories has been drawn that is used for the
evaluation of the mapping algorithms. The mapping algorithms are
evaluated from this random source sample to a full target taxonomy,
so for example Amazon500→ODPfull. This means that 6×500=3000
categories have been manually mapped for all 6 mappings. These
manual mappings have been performed by three individuals that
are not related to this project.

For each category in the random samples, each algorithm either
finds a mapping or not. The way we compute the results is by com-
paring the mappings obtained by the algorithm with the manual
mappings. True positives are the cases where the algorithm correctly
provided a mapping and true negatives are the cases where the algo-
rithm correctly identified that there is no suitable mapping. False pos-
itives are the cases where the algorithm mapped to a category while
the correct action was either another category or no category at all (if
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Fig. 7. Product name identification: FP versus FN.
no suitable mapping is found). False negatives are the cases where
the algorithm incorrectly decided not to map the category. As with
the evaluation of the product identification, we compute accuracy,
precision, recall, and specificity for each algorithm and mapping com-
bination. Further, we compute the F1-measure, which is the harmonic
mean of the precision and recall. The F1-measure is widely used to
represent the precision and recall using one value.

For each algorithm and each data set, we obtained an optimal
set of thresholds by applying a hill-climbing procedure with an
increment of 0.1. For Park and Kim, the optimal threshold was
found to be quite low for each data set, being 0.1 for five mapping
combinations and 0.2 for one mapping combination. This threshold
defines the minimum value the similarity has to be in order for the
algorithm actually to map the category. For PROMPT, we have
found that the optimal parameters are a maximum path length of
2 and filtering the scores. For our approach, the optimal λ parame-
ter is 0.8 and the mapping threshold is 0.3. The λ parameter is the
cosine weight in the total similarity between two category names, as
defined in Eq. (6). The mapping threshold is again the minimum value
the similarity has to be in order for the algorithm actually to map the
category.

The results of the different category mapping algorithms are
shown in Table 5 (XP stands for XploreProducts.com, our platform).
We can see that our approach performs the best with respect to the
F1-measure and that the method of Park and Kim achieves the highest
average precision. For recall, our approach also performs better than
the approach of Park and Kim and PROMPT. In the evaluation of Park
and Kim [28], the authors' results show that their method outperforms
PROMPT with respect to recall. As one can see in the table, this is also
confirmed for the data sets that we have used in this evaluation.

We have performed paired t-tests to test the significance of the
differences in performance. Table 6 shows a subset of the alternative
hypotheses and the corresponding p-values. The p-values that are
below the 5% significance level are shown in bold. Alternative hypoth-
eses that are not shown (e.g., PROMPT>XP) are left out as all the p-
values are above the significance level of 5%. From the table, we can
conclude that the Park and Kim approach has significantly better pre-
cision than our approach and PROMPT. More importantly however,
for the F1-measure and the recall, we have significantly better results
than the Park and Kim approach and PROMPT.

One should note that although our results support the conclusions
of Park and Kim, i.e., that their approach outperforms PROMPT, the
performance with respect to the recall is found to be different. Park
and Kim report better results with respect to recall on their data
sets. This is probably due to the fact that we used more categories,
in total 3000 categories, to perform the evaluation of the mapping
algorithms. Also, the target product category taxonomies to which
is mapped were also large (as already mentioned, ODP contains
44,181 categories).
5.3. User interface

In this section we discuss several use cases of our framework and
we present how the user interface works. For this purpose, we creat-
ed a tool which is used to automatically annotate Amazon.com and
Circuitcity.com Web pages. We collected about 700 product Web
pages from both Amazon.com and Circuitcity.com. After running the
annotation tool and importing the annotated pages with the ping ser-
vice, as described in Section 4, we have approximately 700 products
in the demo database at our disposal.

During the design of the user interface we dealt with several is-
sues. Our goal is to improve existing user interfaces by implementing
several missing features of popular product search sites, such as Google
Products, Shopping.com, and Shopzilla. This section will also highlight
how we implemented these features in XploreProducts.com.

image of Fig.�7


Table 5
An overview of the category mapping results for the Park and Kim (P&K) algorithm, PROMPT algorithm, and XploreProducts (XP) algorithm.

Data set F1-measure Precision Recall

P&K PROMPT XP P&K PROMPT XP P&K PROMPT XP

amazon→odp 0.191 0.053 0.250 0.241 0.077 0.160 0.159 0.040 0.580
amazon→overstock 0.238 0.191 0.389 0.602 0.356 0.292 0.148 0.131 0.580
odp→amazon 0.136 0.113 0.287 0.280 0.121 0.225 0.090 0.106 0.395
odp→overstock 0.269 0.129 0.270 0.253 0.155 0.225 0.288 0.110 0.335
overstock→amazon 0.180 0.288 0.471 0.525 0.420 0.331 0.109 0.219 0.814
overstock→odp 0.229 0.065 0.353 0.279 0.101 0.226 0.194 0.047 0.803
Average 0.207 0.140 0.337 0.363 0.205 0.243 0.165 0.109 0.585
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As already mentioned, the XploreProducts.com platform uses a
faceted category navigation integrated with keyword search. For the
evaluation, we have used the category taxonomy from Shopping.com,
as it is concise and well-structured. The 327 categories were collected
through the Shopping.com API, available at http://developer.
shopping.com. The user starts navigating by entering one or more
keywords. After the keywords are entered, the facets and initial re-
sults are displayed. A result page that is presented to the user, is
shown in Fig. 6. Note that prices shown on the page are minimum
prices for each product. The numeric facets are based on numeric
ranges of the retrieved results. The non-numeric facets can be or-
dered or non-ordered, the ordered facets can be split in hierarchical
and non-hierarchical facets.

5.3.1. Searching and browsing
In order to explain the facets, and understand how they work, we

give example queries and explain how our user interface is employed
by the users. We start by considering the facet ‘Category’, which is a
hierarchical facet, and that the user queries for ‘office’. The search re-
sults show 5 categories with two root nodes, ‘Computers’ and ‘Home
and Garden’. When a user clicks on a category, the result screen im-
mediately refreshes and only the category itself, its parent, and its an-
cestors are shown. A green marker indicates which categories are
selected. Most product search Web sites do not support the selection
of multiple product categories. On XploreProducts.com, this is
allowed as one might want to select, for instance, multiple brands at
the same time (which implies a disjunctive query).

The same functionality as described in the previous paragraph
holds for the brand, multiple brands can be selected. This means
that when a user selects a brand, he or she has the possibility to
drill down (by filtering on other facets) or to broaden the search re-
sults (by selecting another brand). With most product search Web
sites, for example with Google Products, this is not possible. Searching
for ‘gsm’ on Google Products provides several brands. If we select one
of them, e.g., ‘Nokia’, then the screen refreshes and the user can only
choose ‘Any brand’ as an option. The other brand options are then
made invisible.

Moving on to the next three facets, the numeric facets, we imple-
mented a similar behavior for all of them. Each facet consists of 4
ranges which are recomputed each time the query changes. This is
done in order to redistribute the values evenly across the different
ranges. When there are no products for a certain range, for example
Table 6
This table shows the result of the performed significance tests for the comparison of
the category mapping algorithms. For this comparison, we have used one-tailed paired
t-tests. In the first column the alternative hypothesis is shown and in columns two to
four the p-values (bold if significant) for the different measures are given.

Alternative hypothesis F1-measure Precision Recall

P&K>PROMPT 0.084 0.000 0.137
P&K>XP 0.988 0.022 0.997
XP>P&K 0.012 0.978 0.003
XP>PROMPT 0.000 0.175 0.001
a price range, then the price range is not selectable, as this would
give no results. Last, we have the facet for the stores. This facet be-
haves in the same manner as the brands facet. The user can use this
facet as an overview of how many products per store are returned
in the results. If the user selects a store, only results from that store
will be shown.

We also have evaluated the response time of XploreProducts.com.
For a test sample with 100 queries, the average response time was
0.56 s. The performance is however very dependent on the machine
the Web application is running. These statistics are for a dedicated
server, with 16 GB of RAM and an Intel Xeon X3440 2.53 GHz
processor.

6. Conclusions and future work

In this paper we provided a solution for the issues that arise in
Web-wide information aggregation and parametric product search.
We have argued that the current situation is not beneficial for neither
consumers nor producers, as the consumers focus primarily on the
price and thus, a fierce price competition arises, which causes the
margins for producers to diminish. Web-wide product search can
help consumers to focus more on the properties of products instead
of only the price, by providing a fast and efficient way to find the
product a user is looking for. It also makes it more easy for small com-
panies to survive as they can pursuit a specialized business model.

For our solution we have three main components: product name
identification, category mapping, and multi-faceted search interface.
For the first two components, product name identification and cate-
gory mapping, we have devised our own algorithms.

For the product name identification algorithm the precision, accu-
racy, recall, and specificity are all above 91% for a data set with 603
product names. This algorithm is important for Web-wide product
search as this is the key factor for the success of our information ag-
gregation method. The algorithm deals with several issues, such as
homonyms, synonyms, and product names of different lengths.

In the evaluation of the category mapping algorithmwe have used
a significantly larger data set than currently presented in related liter-
ature. In total we have obtained 3000 manual mappings spread across
6 mapping combinations. The results of this paper show that our algo-
rithm, at a significance level of 5%, significantly outperforms two
existing category mapping algorithms with respect to the F1-measure
and recall, i.e., the algorithm of Park and Kim [28] and PROMPT [29].
We confirm the results of Park and Kim, which show that their algo-
rithm significantly performs better than PROMPT with respect to the
F1 measure, but we find that the difference in recall between their
method and PROMPT is not significant at a significance level of 5%.
Finally, we found that the method of Park and Kim significantly (5%
significance level) outperforms our approach and that of PROMPT
with respect to precision.

For the purpose of demonstration, we implemented a prototype of
our framework, which uses a multifaceted category navigation inte-
grated with keyword search interface. For merchants it is possible
to ping their product Web pages. This has the advantage that the

http://developer.shopping.com
http://developer.shopping.com
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merchants do not need to make a data feed for each product search
platform, they just have to annotate their current product Web
pages. The users benefit from a flexible user interface, which has sev-
eral features that other product search Web sites do not have, such as
multiple category selection, multiple brand and store selection, auto-
matic range calculation, and currency converting.

As future work, we propose to use more advanced ontologies to
represent the product information, like the eClassOWL [16] or Good-
Relations [10] ontologies. This will lead to more facets as users can
provide more specific product information, like the battery life of a
laptop, stock information, or the screen size of a mobile phone.
With the currently used vocabulary, only general product properties
as the ‘product category’ or the ‘brand’ can be used.

Furthermore, in our product search prototype, we use Shopping.-
com's existing product category hierarchy. Future work might be to
deduce a product category hierarchy from the product information,
e.g., the categories, the product descriptions, etc. Besides using prod-
uct descriptions for deducing category hierarchies, these descriptions
could also help to improve the results for the product name identifi-
cation algorithm as descriptions also contain valuable product
information.

While we focused on using a textual based faceted search shop-
ping interface, in the future we would like to investigate how we
can use graphical attribute-based shopping interfaces [40]. These in-
terfaces would allow for a better overview of the results and product
attributes.
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