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ABSTRACT

Matrices, or more generally, multi-way arrays (tensors) are common forms of data that are encountered
in a wide range of real applications. How to classify this kind of data is an important research topic for
both pattern recognition and machine learning. In this paper, by analyzing the relationship between two
famous traditional classification approaches, i.e., SVM and STM, a novel tensor-based method, i.e.,
multiple rank multi-linear SVM (MRMLSVM), is proposed. Different from traditional vector-based and
tensor based methods, multiple-rank left and right projecting vectors are employed to construct decision
boundary and establish margin function. We reveal that the rank of transformation can be regarded as a
tradeoff parameter to balance the capacity of learning and generalization in essence. We also proposed
an effective approach to solve the proposed non-convex optimization problem. The convergence
behavior, initialization, computational complexity and parameter determination problems are analyzed.
Compared with vector-based classification methods, MRMLSVM achieves higher accuracy and has lower
computational complexity. Compared with traditional supervised tensor-based methods, MRMLSVM
performs better for matrix data classification. Promising experimental results on various kinds of data
sets are provided to show the effectiveness of our method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Matrices, or more generally, multi-way arrays (tensors) are
common forms of data that are encountered in a wide range of real
applications. For example, all raster images are essentially digital
readings of a grid of sensors and matrix analysis is widely applied
in image processing, e.g., photorealistic images of faces [1] and
palms [2], and medical images [3]. In web search, one can easily
get a large volume of images represented in the form of matrix.
Besides, in video data mining, the data at each time frame is also a
matrix. Therefore, matrix data analysis, in particular, classification,
has become one of the most important topics for both pattern
recognition and computer vision.

Classification is arguably the most often task in pattern recog-
nition and relevant techniques are abundant in the literature.
Standard methods, such as K-nearest neighborhoods classifier
(KNN) [4], support vector machine (SVM) [5,6] and one-
dimensional regression methods [7] are widely used in many
fields. Among these approaches, some of them are similarity
based, such as KNN, and some of them are margin based, such
as SVM. Due to its practical effectiveness and theoretical sound-
ness, SVM and its variants, especially linear SVM, have been widely
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used in many real applications [8,9]. For example, SVM has been
combined with factorization machine (FM) [10] for spammer
discovering in social networks [11]. Nevertheless, traditional
classification methods are usually vector-based. They assume that
the inputs of an algorithm are vectors, not matrix data or tensor
data. When they are applied to matrix data, the matrix structure
must be collapsed to make vector inputs for the algorithm. One
common way is connecting each row (or column) of a matrix to
reformulate a vector.

Although traditional classification approaches have achieved
satisfactory performance in many cases, they may lack efficiency in
managing matrix data by simply reformulating them into vectors.
The main reasons are as follows: (1) When we reformulate a
matrix as a vector, the dimensionality of this vector is often very
high. For example, for a small image of resolution 256 x 256, the
dimensionality of reformulated vector is 65,536. The performances
of traditional vector based methods will degrade due to the
increase of dimensionality [12,13]. (2) With the increase of
dimensionality, the computation time will increase drastically.
For example, the computational complexity of SVM is closely
related to the dimensionality of input data [9]. If the matrix scale
is large, traditional approaches cannot be implemented in this
scenario. (3) When a matrix is collapsed as a vector, the spatial
correlations of the matrix will be lost [14]. For example, if an
image of mxn is represented as a mn-dimensional vector, it
suggests that the image is specified by mn independent variables.
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However, in practice, there are generally only a few interested
aspects about an image, and the degree of freedom of the model is
far less than mn.

In order to solve the above mentioned problems, a lot of
researchers have proposed many approaches. There are mainly
two types of methods. The first type of methods reduces dimen-
sionality of original tensor data and then employs some off-the-
shelf classifiers on the projected vector data. For example, in image
processing field, there have been many feature based methods, such
as the elastic graph model which can preserve spatial information
in a compact dimensionality [15]. Recently, a lot of interests have
been conducted on tensor-based approaches for matrix data ana-
lysis. Vasilescu et al. have proposed the famous tensor face for face
recognition [16]. After that, a lot of researchers have also extended
traditional subspace learning methods, such as principal compo-
nent analysis (PCA) [17], linear discriminant analysis (LDA) [18],
locality preserving projection (LPP) [19], etc., into their tensor
counterparts [1,20-24]. Nevertheless, since most of these methods
are unsupervised, they have lost label information in learning
subspace. They cannot be used for tensor data classification directly.

The second type of methods can classify tensor data directly
[25-30]. For example, Tao et al. have proposed a framework to
extend traditional approaches into their tensor counterparts, e.g.,
support tensor machine (STM) [25,26]. Other related works in
multiple view learning have also used the same strategy to
incorporate data representations from different views [31]. When
we apply these tensor-based approaches to classify matrix data,
their performances can also be improved since their training error
is often large. For example, STM only uses one left projecting
vector together with one right projecting vector. Its training error
is larger than the following proposed approach.

In this paper, by discovering the relationship between SVM and
STM, we introduce a novel matrix classification model using
multiple rank projections. It is named as multiple rank multi-
linear SVM (MRMLSVM). Instead of converting an m x n matrix
into an mn-dimensional vector as in traditional linear SVM, and
using only one left and one right transformation vector as in STM,
we employ two groups of transformation matrices in designing
constraints and establishing objective function. More importantly,
there are several transformation vectors in each group. Essentially,
we discover that the number of transformation vectors is a
tradeoff parameter for the capacity of learning and generalization
of a learning machine. Besides, we have also proposed an effective
optimization strategy and some deep analyses, including conver-
gence analysis, initialization, computational complexity and para-
meter determination. Compared with other vector based methods,
such as LDASVM (LDA for subspace learning and linear SVM for
classification) and linear SVM, and tensor-based approaches, such
as 2DLDASVM (2DLDA for subspace learning and linear SVM for
classification) and STM, it achieves more promising results in
matrix data classification. Compared with traditional classification
approaches in converting matrix into vector, the computational
complexity is also reduced. Plenty of experiments on different
kinds of data are presented for illustration.

It is worthwhile to highlight the contribution of our algorithm:

(1) We have revealed the relationship between traditional linear
SVM and STM. Based on this analysis, we have proposed a
novel approach, i.e., MRMLSVM, for matrix data classification.
Compared with other related vector based and tensor based
approaches, it can achieve promising classification accuracy.

(2) We have provided an effective way to solve the proposed non-
convex problem. Compared with other vector based counter-
parts, its computational complexity is low, especially when the
data scale is large. Experimental results have been proposed
for demonstration.

(3) The most important parameter in MRMLSVM is the rank of
regression. We have revealed its essence. It can be regarded as
a parameter to balance the capacity of learning and general-
ization for a learning machine. This is important for tightening
the relationship between two famous learning methods, i.e.,
SVM and STM.

(4) MRMLSVM is just an instance in using multiple rank projec-
tions. Intrinsically, we can regard it as a common model. Other
linear methods can also be extended by the similar way.

The rest of this paper is organized as follows. In Section 2, we
will provide some notations and some related works. In Section 3,
by analyzing the relation between linear SVM and STM, we
propose the MRMLSVM algorithm in details, together with an
effective way in solving this problem. We present the performance
analyses, including convergence behavior, initialization, computa-
tional complexity and parameter determination in Section 4.
Section 5 provides some promising comparing results on various
kinds of data sets, followed by the conclusions and future works in
Section 6.

2. Notations and related works

In this section, we would like to introduce some representative
works, including 2DLDA, linear SVM and STM, since 2DLDA is a
typical supervised two-dimensional dimensionality reduction
method and our algorithm has close relationship with linear
SVM and STM. Before going into the details, let us introduce some
notations at first.

2.1. Notations

In this paper, we try to solve a supervised matrix data
classification problem. Besides, we only introduce our algorithm
for matrix data (two order tensor) in binary classification task. As
we will explain later, it is direct to extend our approach to any
orders of tensor and any numbers of categories.

Denote {X;eR™"|i=1,2,...,1} as a set of training examples. The
associated class label vectors are {y;,y,,...,y;}, where y;=1 iff X;
belongs to the first category and y; = —1 otherwise. m and n are
the first and second dimensions of each matrix data respectively. [
is the number of training points. Additionally, we also have t
testing points {(X;eR™"i=1[1+1,1+2,...,1+ t}. The vectorization
of X;, denoted as Xx;, is formulated by connecting each column
vector of X; fori=1,2,.... [+ t.

Define w;eR™ and v;eR" as the j-th left and right projection
vectors, where j=1,2, ...,k and k is rank of linear transformation.
Other important notations are summarized in Table 1. We will
explain their concrete meanings when they are firstly used.

Table 1

Notations.
1 Number of training points
t Number of testing points
m The first dimensionality of matrix data
n The second dimensionality of matrix data
k Rank of linear transformation
X;eRm<n The i-th training matrix data
x;€R™ The vectorization of X;
yiefl,—1} The label vector of X;
w,eR™ The i-th left regression vector

v;eR" The i-th right regression vector

U=[uy, -, u] The left regression matrix
V=[vy,--, V] The right regression matrix
-1 The Frobenius norm

® The Kronecker product
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2.2. 2DLDA

2DLDA is one of the most important supervised two-dimen-
sional subspace learning methods. It can be regarded as the two-
dimensional extension of traditional LDA approach. Denote M; as
the set of training points in the i-th class, where M; has [; samples.
Let X; = (1/1})Yx,em, Xi be the mean of samples in the i-th class for
1<i<c. Denote X = (1/))3X; as the mean of all training data.

2DLDA tries to find two transformation matrices L and R, which
project X; to its low-dimensional embedding, i.e., Z;, by Z; = L'X;R.
Define the within-class distances D,, and between-class distance
Dy, as follows:

c _
Dy= Y ¥ IX-Xjll

Jj=1X;eM;
C —
Dy= X LIX;—XI*. M
j=1
where |- || is the Frobenius norm of a matrix. Intuitively, D,

measures the sum of divergence between any two classes and
D,, is the sum of data variance for each category.

Similar to LDA, in the low-dimensional space, the optimal
transformation matrices L and R in 2DLDA should minimize D,,
and maximize D,, the low-dimensional counterparts of D, and D,
shown as follows:

~ C — J—
Dw=Tr| ¥ ¥ L"X;—X,)RR'(X;—X))'L |,
J=1X;eM;

Dy =Tr< ¥ leT(xj—X)RRT(xj—X)TL) )
j=1

Since it is difficult to derive the optimal L and R simultaneously,
2DLDA solves the above problem in Eq. (2) in an alternative way.
Briefly, it fixes L in computing R and fixes R in computing L. See
more details in [21].

As seen from above formulation, although 2DLDA inherits the
discriminative power in deriving low-dimensional representa-
tions, it cannot be used for classification directly.

2.3. Linear SVM

SVM is one of the most popular classifier in real applications. It
maximizes the margin for two categories. More concretely, denote
w as the vector orthogonal to the decision boundary and b as a
scalar “offset” term, we can write the decision boundary as w’x +
b =0 for any vector data x. To relaxed the hard constraints, one
common way is to soften it as y;(W'X; 4+ b)>1—¢;, where £>0 is the
slack variable. Since the margin is proportionate to 1/||w]|, the
concrete formulation of linear SVM can be defined as follows:

!
1wTw+C > &
2 i=1
st Y (W'X; + b)>1—-¢
&>0 fori=1,2,...,1 3)

arg min
& w,b.E

where C > 0 is the regularization parameter and &=[£;,&,,....&]"
consists of all slack variables.

Let us explain the meaning of each function. The objective
function aims to maximize the margin and the constraints indicate
that the training points should be correctly classified by the
relaxed decision function w’'x + b. The optimization problem in
Eq. (3) can be solved by casting it to its dual form. We can also use
the kernel trick to manipulate nonlinear classification tasks. See
more details in [32].

As seen from the formulation in Eq. (3), traditional linear SVM
only involves vector data. In manipulating matrix data, we can
only employ its vectorization as the input. This would lose the

spatial information [14] of original matrix data and enlarge the
computational cost.

24. STM

STM is the tensor extension of traditional SVM [25]. When it is
used to manipulate matrix data, it uses two transformation vectors
u and v to replace the original transformation vector w in Eq. (3).
More concretely, the margin function is replaced by |lu®v|?> and
the transformation w’x; is replaced by u’X;v. STM has the
following formulation:

. 1 !
arg min 5 lu®vl* +C ¥ ¢&
wvEb 2 i—1

st y;"Xv +b)>1-¢
&>0 fori=1,2,...,1, “)

where ® indicates the Kronecker product between two vectors
and u®v = Vec(uv’).

As stated in [25], since the derivation of u is related to v, we
cannot solve the optimization problem in Eq. (4) directly. One
possible way is optimizing them alternatively. Moreover, when v is
fixed, the problem in Eq. (4) amounts to a standard SVM problem.
Similarly, when u is fixed, we can use the same way to derive v.
See more details in [25].

3. Multiple rank multi-linear SVM

In this section, we would like to introduce our multiple rank
multi-linear SVM (MRMLSVM) algorithm. Before going into the
details, we analyze the relationship between SVM and STM. Then,
the formulation of MRMLSVM is introduced step by step. Since the
formulated problem is not convex, we propose an effective
method to find the approximated solution in an alternative way.
To show the effectiveness theoretically, we will also provide some
deep analyses in the next section.

3.1. Relationship between SVM and STM

Comparing the formulation of SVM in Eq. (3) with that of STM
in Eq. (4), we know that the transformation vector w in SVM's
objective function has been replaced by u®v as that in STM.
Correspondingly, the constraints have been changed from
YiWTx; 4+ b)>1-¢; to y;(u"X;v + b)>1-¢;.

Notice that

u'X;v = Tru"X;v) = Tr(X;vu’) = Tr(X;(vu’))
=Tr((uv))"X;) = (Vec(uv’))"Vec(X;) (5)

and
lugv||? = |[Vec(uv)||2. (6)

Here Vec(-) is the vectorization of a matrix (by connecting each
column of this matrix).

As seen from above deduction, when we employ STM to classify
matrix data, it is equivalent to the employment of SVM on the
vectorization of corresponding data, provided that the constraint is
w = Vec(uv’). More concretely, we have the following discussions.

On one hand, STM can be regarded as a special case of SVM by
adding the constraint that w=Vec(uv’). It indicates that the
corresponding w is determined by only m + n variables. In many
real applications, such as image processing, a real matrix of size
m x n has mn elements. It cannot be simply modeled by just m +n
independent variables [14]. In other words, this added constraint
is too strict since we only have m +n free variables to model
m x n-dimensional vectors derived from original matrices. It
will make the model lack of flexibility in modeling matrix data.
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By contrast, w in SVM has mn free variables. From the view of
optimization, the feasible region of STM is much smaller than that
of SVM due to this additional constraints. Consequently, compared
with SVM who can find the global solution in a larger feasible
region, the objective function value of STM is larger, which
indicates that it has larger training error.

On the other hand, compared with STM, SVM has larger degree
of freedom in selecting feasible w since it regards mn elements in
the matrix independently. Nevertheless, it treats traditional vector
data and vectorized matrix data equally. Compared with traditional
vector data, the matrix data also have some spatial dependence. For
example, all pixels of an image cannot be treated independently
[14]. SVM neglects the spatial dependence of a matrix data and
treats them independently. In other words, this model has too many
free variables and it will cause the problem of over fitting.

Besides, the above connection between SVM and STM also
holds when the order of tensor is larger than 2. For illustration, we
take three order tensor as an example. Extension to any order can
be derived in a similar way. Assume XeR™ *™*™ s a three order
tensor. The corresponding transformation vectors are u¥eR™ for
j=1,2,3. To show their relationship, we only need to prove that
Egs. (5) and (6) also hold in this scenario.

Notice that

3 3
N2 _ 1 2),,(3 j 2
I TT ®@u?|* = Y Y (u;,gu;,;u;,;) = ||Vec<n ®u0>> [
i=1 pr=1py=1p;= =1
and
D y@ oyy® — % ¥ UDy@y®
Xx1u'V xou? x3u = Z > > X,,1 paps Up, Up U
pi=1py;=1p3=

T
= (Vec( ﬁ ®uU’>> Vec(X)
i=1

where x; is the model-1 time between a tensor and a vector and
similar to others. Vec(-) is the vectorization of a three order tensor
by first connecting column of each splice and then connecting
formulated vectors from each splice. See more details in [25].

As seen from above two equations, we know that STM can be
regarded as special case of SVM, provided that
w:Vec(Hf=1®u(’)). It also holds in the matrix scenario since
Vec(uv’) = Vec(u®v). Additionally, the above deductions can also
be conducted on higher order tensor.

3.2. Multiple rank multi-linear constraints

Based on above analysis, we know that the constraints of STM
and SVM have their own merits and disadvantages. To relax the
too strict constraints in STM and avoid over fitting in SVM, instead
of using merely one couple of projecting vectors, i.e., the left
projecting vector u and right projecting vector v, we propose to
use k couples of left projecting vectors and right projecting vectors
in our MRMLSVM formulation. They are denoted as {uj} ; and
{vj}k . More concretely, the constraints in Eq. (4) becomes

Vi@ Xivq + W Xiva + - + u XV + b)>1-¢;

&0 fori=1,2,..,1 )
Denote U=[uy,uy, ..., ]eR™* and V=[vq, Vs, ...,v]eR™¥ the
constraints in Eq. (7) can be reformulated as follows:
YiTrU'XV) + b)>1-¢;

>0 fori=1,2,....1L )

Intuitively, compared with the employment of only one couple of
projecting vectors, there are totally k(m + n) free variables in our

formulations. Since k>2, it is more than that of STM who only has
m+n free variables. In other words, the too strict constraint
w =Vec(uv’) in STM has been relaxed by inducing more free
parameters. This constraint is not required to follow and our
model is more flexible in characterizing matrix data. Besides,
one couple of projecting vectors is a special case of our setting
when uw;=0, v;=0 for j>2. More importantly, we have the
following proposition which can reveal the essence of parameter
k, the rank of projecting vectors.

Proposition 1. Assume {uq,u,,...,w} are any k vectors of dimen-
sionality m, {vq,va,...,vy} are k vectors of dimensionality n. If
k=min(m,n), then the dimensionality of space spanned by
Vec(zﬁ‘uiv{) is mn. Here Vec(:) represents the vectorization of a
matrix.

The proofis listed in Appendix. Based on above proposition, we
have the following discussions:

(1) When k= min(m,n) and the constraints are Tr(U")"X;V")>
1-¢;, the above proposition indicates that the searching
space for UP(V™)T is very similar to the feasible region
determined by (Vec(Xku;(vy)"))"Vec(X;). In other words,
(Vec(Tru;(vi)") Vec(X;) and Tr(U”X;V") are more likely to
be the same. That is to say, the constraints in Eq. (8) are close
to the corresponding constraint of SVM.

(2) As shown in above proposition, SVM has larger k and more free
parameters (m x n). Thus, the feasible region of SVM is larger and
it can find the global optimization. Consequently, the training
error is often smaller. Nevertheless, since it has too many
parameters and the model is too complicated, it tends to be
over fitting. When we use smaller k as in STM (k=1). The over
fitting problem is avoided. Nevertheless, it will add too strict
constraint since we only have m + n free parameters. Compared
with SVM who can find the global optimization in a larger
feasible region, the training error of STM is often larger.

3.3. Formulation

Motivated by the above comparison, we now introduce our
algorithm formally. Mathematically, MRMLSVM has the con-
straints shown in Eq. (8). Similar to SVM and STM, the objective
function of MRMLSVM should describe the margin. Considering
the objective functions of SVM and STM shown in Egs. (3) and (4),
we have

Kk
2 u/Xv; = 21 Tr(u/ X;v;)
s

k k
= _Z] Tr(XilelJT) = Tr(Xi(_ Z] Vju}-))
j= i=

=TrX;VU") = Tr(UV")X;) = (Vec(UVT)) Vec(X;) 9)

Comparing the formulated constraint of MRMLSVM (in Eq. (8))
with that of SVM (in Eq. (3)), we know that the tensor counterpart
of w in Eq. (3) should be UVT. Since the objective function of
SVM is

1

!
T .
5Tr(ww!) +C ¥ &

i=1

Then, the tensor extension of original objective function is

%Tr(UVTVUT) +C 2 & (10)
i=1

In summary, by combing the constraints in Eq. (8) with the
objective function in Eq. (10), we formulate our MRMLSVM
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algorithm as follows:

. 1 T T !
arg Jr\lzlgnb jTr(UV \"8) ) +Ci§] &
st y(TrUXV) + b)>1-¢;
E>0 fori=1,2,...1, 11)

where U=[uy,uy,...,u] and V=[vq,Vs,...,v,] are defined as
previous.

As seen from above formulation of MRMLSVM, we notice that
there is one important parameter k. We would like to reveal its
essence.

First, we would like to show the influence of k to training error.
As seen from above formulation and following solving strategy, we
assume 1 < k < min(m, n) and use a similar way in formulating and
solving the problem as in STM. More importantly, if we use the
solution of STM to initialize MRMLSVM, we have the following
proposition.

Proposition 2. If we use the optimal value v* of STM to initialize
MRMLSVM by setting v; =v* and other v by any values satisfied
[V2,Vs, ...,V ]#0. The optimal function value of MRMLSVM is no
larger than that of STM.

The proofis listed in Appendix. As stated in above proposition, if we
use this kind initialization, the training error of our method is no larger
than that of STM. Besides, experimental results in Section 5.2 also show
that other kinds of initializations (mentioned in Section 4.2) have
similar training error, which is also smaller than that of STM. On the
contrary, since SVM has largest k and it can find the global optimiza-
tion, its feasible region is larger than that of MRMLSVM and its training
error is no larger than that of MRMLSVM. Experimental results in
Section 5.2 also validate this analysis. In summary, if we use STM to
initialize MRMLSVM, the larger k indicates the smaller training error.

Second, we would like to show the influence of k to the extent
in avoiding over fitting. As what we have mentioned in Proposition
1, SVM has the largest k and most free parameters (m x n). It
trends to be over fitting, when we use smaller k. The over fitting
problem can be solved. In summary, the larger k indicates the
more likely over fitting occurs.

Finally, based on above two points, we know that k can be
regarded as a parameter to balance the training error and the
extent in avoiding over fitting. In learning theory, training error
can measure the capacity of learning and the extent in avoiding
over fitting can measure the capacity of generalization [5]. There-
fore, k is a parameter to balance these two capacities in essence.
Recalling the basic rule of learning theory, we know that these two
capacities cannot be improved simultaneously [5]. In our following
formulations, we assume 1 < k < min(m, n). Thus, our method is a
general tradeoff between two famous methods, i.e., SVM and STM.

3.4. Solution

In this section, since the problem in Eq. (11) is not jointly convex
with respect to U and V, we will try to find an approximated solution
to the proposed problem. Recalling the basic solving procedure of STV,
we would like to optimize U and V in an alternative way. More
concretely, we fix one parameter and optimize the other one. Before
going into details, we would like to introduce a lemma at first.

Lemma 1. Assume that A, B and C are three matrices and ABC exists,
we have

(1) Vec(ABC) = (CT®@A)Vec(B).
(2) Tr(ATB) = Vec(A)" Vec(B).

The proof of this lemma is direct and we would like to omit it.

Based on Lemma 1, we have the following proposition, which is
vital for our following solution.

Corollary 1.
Tr(UVTVUT) = TrUTUVV) = (Vec(U))  (VTV)®Lnym)VecU)  (12)
where In,.m represents the m x m identity matrix.

The proof is listed in Appendix. See more details there.

(1) Fixing V and optimizing U and b. As seen from Eq. (11), we
reformulate the optimization problem of MRMLSVM as follows:

: 1 TyyiT d
arg mlglb iTr(UV VU > +C,~§1 &

Kk
s.t. y,-( Y u/ X+ b) >1-¢
=i

&>0 fori=1,2,...,1L (13)

When we fix V, or equivalently, vq, Vv, ..., v, we need to compute a
set of w; for j=1,2,...,k and b. First, let us reformulate the
problem in Eq. (13) as follows. Denote

Xiv, uy

P Xiv ~ u: T

fi= |77 ;=" D = (V'V)®m (14)
XV | mkx1 el mksc1

Then, recall that @ = Vec(U) and Corollary 1, we know that Eq. (13)
is equivalent to

1
%ﬁTDﬁ LY g

arg min
agb i=1
s.t. y,»(ﬁTfi +b)>1-¢;
&>0 fori=1,2,...,1L (15)
Denote
u=D"?u" f;=D /*f (16)

Then, Eq. (15) becomes

1
%uTu+C > &
i=1
st y;(uTf; + b)>1-¢
>0 fori=1,2,...,1L a7

arg min
ub

Comparing the formulation in Eq. (17) with that in Eq. (3), we
know the problem in Eq. (17) amounts to a standard linear SVM
problem when V is fixed. More concretely, we solve the problem in
Eq. (17) by formulating the Lagrangian as follows:

1 ! ! !
L= EUT“ +C '21 &i— 'Zl ai(yi(u'fi +b)—1+¢&)— '21 Bigi (18)
1= 1= 1=

where ;>0 and ;>0 are the Lagrangian multipliers.
Recall the basic idea of dual theorem [33], we can reformulate
the problem in Eq. (17) as

! 1 I
min max (%uTquc Y &— X ai(yi(u'fi+b)-1+&)- ¥ /5,-5,-).
i i i=h

wb @;>04>0 i—1 i—1
(19)
Its dual form is

(1. ! I . I
,max min <§u u+ Ci; &i— i; ai(yi(u'f;+b)-1+ Si)—izzl Bigi |-
(20)
By minimizing £ in Eq. (20) with respect to u, b and & and
taking the derivative of £ with respect to u, b and &, we have

oL ! oL

oL !
Su =Y i; aiyifi = 0.5p = i§l aiy; = O’a?,- =C—a—p;=0. (21)
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Plus Eq. (21) back to Eq. (20) and take some simple deduction, we
have the following dual optimization problem
!

1L 1 !
argmaxg= Y a5 > > aiajy,yjfinj st. Y ay;=0
i i=1 i=1j=1 i=1

0<ai<C fori=1,2,...1. (22)

As in traditional linear SVM, the optimization problem in Eq. (22)
can be solved in an effective way, although it is still a quadratic
programming [32].

In summary, when we fix {v,-}ﬁ‘: 1, the solution of MRMLSVM can
be computed by solving the optimization problem in Eq. (22) directly.
In other words, we can regard it as taking the data, represented by
{f,»}ﬁ; 1, as the input of original linear SVM and compute the
corresponding projection vectors. In Section 4, we will show that
when V is fixed, our derived results are the global solutions to the
problem in Eq. (11). Besides, as seen from above deduction, the
dimensionality of f; is mk. It is less than the vectorization of X;, which
has the dimensionality mn. Thus, the computational cost is also
reduced.

(2) Fixing U and optimizing V and b. Similarly, when U is fixed,
we can also change the formulation of our algorithm in Eq. (11)
and derive its optimal V and b by solving another linear SVM
problem. More concretely, Denote

X'uy Vi

g= Xl ou=|"] 23)
X[ uy nkx1 Vi ] nkx1

Q=U"U)Rlnxn (24)

We can reformulate Eq. (11) as the following form:

. 1.7 !
2 C )
argmin 5V'QV+C ¥ &
st Y0 g +b)>1-¢

&>0 fori=1,2,...,1L (25)
Denote
v=Q'%v g=Q "% (26)

Then, Eq. (25) becomes

I
arg min lvTv+ CY¢& st y(vig +b)=1-¢

vEb 2 i—1

£20 fori=1,2,...L 27)

The problem in Eq. (27) amounts to a standard SVM problem,
taking {g;} as the input. We can also adopt the same method as
previous to derive the global optimization to this problem. The
dimensionality of input is nk. It is also less than mn. Due to the
limitation of space, we omit the details.

In summary, as seen from above procedure, when we fix one
parameter and optimize the other, we can derive the solutions by
employing traditional SVM on two different data sets with
different formulations.

There are several points should be highlighted here as follows:

(1) The first is about initialization. As seen from above procedure,
MRMLSVM is solved in an iterative way. Thus, initialization is
vital for searching optimal solution. In next section, we will
provide three different kinds of initialization methods, i.e.,
fixed, uniform and norm. See more details there.

(2) The second is about the convergence behavior of our algo-
rithm. As seen from the problem in Eq. (11), our formulation is
not joint convex with respect to U, V, b. Thus, it is solved in an
alternative way. In next section, we will show that the
objective function in Eq. (11) will decrease through this kind

of iteration. In other words, the above iteration is convergent
to a local optimization to the problem in Eq. (11). Our
experiments also show that this kind of iteration converges
fast. It is often less than ten times in our experiments.

(3) The third problem is about the extension to any order tensors.
As seen from the above deduction, extension to any order is
direct and the formulated problem can also be solved in
similar way. For example, we can fix any two projection
matrices and compute the rest one if the data is cubic.

(4) Although the final computed projecting vectors are u and v,
not U and V, they are just different arrangements of similar
vectors. We can use Eqgs. (14), (16), (23) and (26) to derive U
and V directly. Besides, in above deductions, b and & are
updated two times in each iteration. We have not distin-
guished them in deriving U and V.

In summary, the procedure of MRMLSVM is listed in Table 2.

4. Performance analysis

In this section, we will analyze our proposed algorithm in four
different aspects, including convergence behavior, initialization
problem, computational complexity and parameter determination.

4.1. Convergence analysis

As seen from the procedure in Table 2, we solve the optimiza-
tion problem in an alternative way. Namely, we fix one variable
and compute the other. When U is fixed, the following proposition
shows that we can find the global optimization to the problem in
Eq. (12). Similarly, the derived results of the problem in Eq. (27)
are also the solutions to the problem in Eq. (11) if U is fixed.

Proposition 3. When V is fixed, the results U and b, derived by
solving problem in Eq. (17), are the global solutions to the problem in
Eq. (11). Similarly, when U is fixed, the results derived by solving
problem in Eq. (27) are also the global solutions to the problem
in Eq. (11).

The proof is direct. Briefly, when V is fixed, the optimization
problem in Eq. (11) is equivalent to the problem in Eq. (17).
Considering the procedure of traditional SVM, we can derive its
global optimization by solving the dual problem in Eq. (22). Thus,
the solution to Eq. (17) is also the global optimization to the
problem in Eq. (11), provided that V is fixed. Similarly, we can also
conduct the same conclusion when U is fixed. Intuitively, when
one parameter is fixed, we will compress a matrix into one
direction (row or column). MRMLSVM could find the best decision
boundary to classify the compressed vector data.

The above proposition only shows that the proposed algorithm
could find a global optimization in each iteration. Based on this
result, we will propose another proposition. It indicates that our
iteration in Table 2 will find the solutions, which satisfy the
constraint in Eq. (11) and monotonically decrease the objective
function of the problem in Eq. (11).

Proposition 4. The iterative procedure shown in Table 2 will find the
solution that satisfies the constraints in Eq. (11) and monotonically
decreases the objective function of the problem in Eq. (11) in each
iteration.

The proof is listed in Appendix. This proposition indicates that we
can find a local optimal solution to the problem in Eq. (11). Besides,
the final results are closely related to initialization. If we have
initialized suitably, our derived solution will be near to the optimal
solution. We will discuss the initialization problem in next section.
Experimental results also show that this kind of iteration is effective.
It converges fast and the time of iteration is often less than 10.
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Table 2
Procedure of MRMLSVM.

Training process:
Input: Training matrix data set: {X;|i=1,2,...,1}, label vectors: {y;|li=1,2, -, 1}
Output: Left and right projection vectors: U, V, b

1. Initialize V by one of the three strategies shown in Section 4.2 and formulate f; in Eq. (16)

2. Alternatively update u and v until convergence

a. Update u and b by solving the problem in Eq. (17), where D and f; in Egs. (14) and (16) are computed based on the latest V
b. Update v and b by solving the problem in Eq. (27), where Q and g; in Eqgs. (24) and (26) are computed based on the latest U

3. Reformulate u and v to U and V according to Eqs. (14), (16), (23) and (26)

Testing process:

Input: Testing matrix data set: {X;[i=1+ 1,1+ 2,...,+ t}. The left and right projection vectors U, V and b

Output: The labels of testing data: {y;li=1+1,1+2,...,1+ t}

1. Compute the decision values of X; : Tr(U'X;V) + b
2. Assign the label of X;, i.e., y; fori=1+1,1+2,...., [+t
1, TrU'™X;V)+b>0
V=921, TruTXV) + b <0

4.2. Initialization

Since our method is solved in an alternative way, the final
solution has close relationship with initialization. We would like to
introduce three different kinds of initialization strategies in this
section.

The first initialization is an empirical method. Since the
initialization of 2DLDA is R:[l,zx,z,olzx(n,,z)]T, where [, is the
second reduced dimensionality, we can initialize MRMLSVM in a
same way, i.e., V:[Ikxk,okx(n,k)]T. For convenience, we call this
kind of initialization ‘Fixed’ in the following. As seen from the
following results, although this kind of initialization is simple, it is
effective. In the following experiments, we will use this kind of
initialization without specification.

The second kind of initialization is random. We generate some
random elements, which is sampled from a uniform distribution
(range from O to 1) to form the matrixes with corresponding sizes.
In other words, we formulate ReR"*2 for 2DLDA, veR" for STM
and VeR™ for MRMLSVM by these elements. Intuitively, each
column vector of the initialization matrix takes the role of
weighting the column vectors of X. In the following, it is named
as ‘Uniform’ for convenience.

To show the influence of different sampling methods, we
generate a random matrix, whose elements are sampled from
another distribution, i.e., standard normal distribution. It is named
as ‘Norm’ in the following. In next section, we will provide some
experimental results to compare different kinds of initializations.
See more details in Section 5.3.

Finally, as mentioned above, we can also use the solution of
STM to initialize MRMLSVM by simply setting v, as STM's solution
and others as not all zeros. By using this kind of initialization, we
can guarantee that the training error of MRMLSVM is no larger
than that of STM. The objective function values in using this
initialization are reported in Section 5.2.

4.3. Computational complexity

We compare the computational complexity of different meth-
ods, including linear SVM, LDA, 2DLDA, STM and MRMLSVM, in
this section. Since different implementations of the same method
may cost different time, we would like to give a common analysis
merely.

The first group of methods contains LDA and 2DLDA. Consider-
ing the procedure of 2DLDA in Section 2.2, we can see that the

most time consuming step is the eigen-decomposition. If the
dimensionality of original data is D, its computational complexity
is about O(D?). Thus, the computational complexity of traditional
LDA is O(m3n3). Since 2DLDA solves two eigen-decomposition
problem with the sizes m and n iteratively. It has the computational
complexity O(s(m® + n3)), where s is the number of iterations.

The second group of methods consists of SVM, STM and
MRMLSVM. The most time consuming step of these methods is
the formulated QP problem in Eq. (21). Since different implemen-
tations of the same method may cost different time, it has the
computational complexity about O(sID) in one famous implemen-
tation LibSvm [9]. Here D is also the dimensionality of input and
I is the number of training points. s is also the times of iterations.
When SVM is employed, its computational complexity is O(slmn).
By contrast, since MRMLSVM is solved by an alternation between
two different SVMs, its computational complexity is O(sl(m + n)k).
Since STM is a special case of MRMLSVM with k=1, its computa-
tional complexity is O(sl(m + n)).

Besides, in the implementation of MRMLSVM, it still costs a lot
of time in computing the inverse and square root of matrix D, Q as
shown in Egs. (16) and (26). Recalling the above deduction, we
know that their dimensionality are mk x mk and nk x nk respec-
tively. Notice the formulations of D, Q in Egs. (14) and (24), we can
see that they are both Kronecker products of two positive semi-
definite matrices. To compute its inverse and square root in a more
effective way, we proposed the following proposition.

Lemma 2. Suppose the SVD decompositions of A and B are
A=U,x,V} and B =Ug=V}. Then

A®B = (Us®Up)(Z1®25)(Va®V5)" (28)

We would like to omit the proof and see more details in [34].
Based on above lemma, we can get the following proposition,
which facilitates the computation of D' and Q' for any i.

Proposition 5. Suppose A, B are positive semi-definite and i is an
integer, then

(A®B) = A'®B' (29

The proof is listed in Appendix. Based on above proposition,
we can decompose the inverse computation of an integrated
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matrix D (formed by Kronecker product with mk x mk dimension-
ality) into the inverse computation of a small matrix V'V (with
dimensionality k x k). Moreover, in the above iteration, s is less
than 10 and k is far less than min{m, n}. Thus, the computational
complexity of MRMLSVM is smaller than SVM, especially when the
scale of matrix is large. We will show some experimental results in
Section 5.5.

4.4. Parameter determination

In this section, we would like to discuss the problem of
parameter determination. As seen from Eq. (11), there is one
important parameter k in our method. It is the rank of regression.

Recalling the essence of k as discussed in Section 3.3, we can
regard it as a parameter to balance the capacity of learning and
generalization. The larger k indicates the stronger learning capa-
city and weaker generalization capacity and vice versa. Based on
the basic rule of learning theory, these two capacities cannot be
improved simultaneously. Thus, it cannot be too large or too small
in our implementation. We will show some numerical results
concerning objective function and classification accuracy with
different k in Section 5.6.

Since parameter determination is still an open problem, we
would like to determine it heuristically and empirically in our
paper. One direct way is using grid search as in most unsupervised
learning. More concretely, we vary this parameter within a certain
range and choose the one with the best performance. Another way
is using cross validation as in most supervised learning. We split
all the data into several proportions and use parts of them for
training and the left as testing. The parameter with best classifica-
tion accuracy is selected.

Although the above mentioned strategies are effective, it is very
time consuming for real applications. As seen from the experi-
mental results shown in Figs. 5 and 6 in Section 5.6, when k=2,
the classification accuracy of MRMLSVM is near the peak. Thus, we
empirically choose k=2 in our following experiments.

5. Experiments

In this section, we will evaluate our method in five different
aspects. The first is about the convergence behavior. The second
contains the comparison of classification accuracy, including
results on binary classification and multiple class scenario. In
multiple class scenario, we classify the data via one-vs-rest strategy
as in traditional methods. We will show the influence of different
initialization in the third group of experiments. In the fourth
group, we will compare the real time consuming of different
methods. Finally, experimental results with different parameter k
are presented.

Since SVM, 2DLDA and STM are closely related to MRMLSVM,
we would like to compare the performance of our method with
them. Additionally, we also provide the results of LDA since 2DLDA
can be regarded as its two-dimensional extension. Nevertheless,
LDA and 2DLDA cannot be used for classification directly. We use
them for projection and employ other classifiers, such as SVM, for
classification. They are denoted as LDASVM and 2DLDASVM in the
following presentations. We also present the results of K-nearest
neighborhood classifier (KNN) as the baseline, where K=1.
Besides, we also compare with the methods concerning spatial
information. The first method is S-LDA [14]. We use it as dimen-
sionality reduction approach and employ SVM for classification. It
is named as S-LDASVM. In the second approach, we simply add the
spatial matrix in [14], i.e., ATA, as a regularizer in SVM. We name it

as spatial regularized SVM (SRSVM) and its objective function is

1
%WTW +C Y &+aw'aTAw

arg min
wbg i=1

st y(wW'x; +b)>1-¢
>0 fori=1,2,....1, (30)

where « is a balance parameter.

To solve this problem, we transform it into the formulation
which can be manipulated by linear SVM. Moreover, we use the
first kind of initialization strategy. The dimensionality of subspace
is set as c—1 in LDA and 2DLDA as in traditional approaches, where
c is the number of class. Without specification, we set k=2 and C, «
are determined by five-folder cross validation.

5.1. Data description

In the following experiments, we use six different kinds of
matrix data sets for evaluation. They are Coil data set,' Pedestrian
data set,? Binucleate data set,> Umist data set,* FingerDB data set’
and Pollen data set.° These matrix data sets are selected from
different applications. The data size ranges from about 50 to 2000
and the data scale ranges from 25 x 25 to 1204 x 1280. Namely,
the dimensionality of vectorized sample ranges from about 600 to
1,000,000. After some preprocessing, we select part of them for
illustration and the detailed statistical characters are listed in
Table 3.

5.2. Convergence behavior

In order to show the convergence behavior and compare the
objective function of different methods, we provide some numer-
ical results on three data sets. We focus on the training error in
binary classification task and choose three data sets, i.e., Pedes-
trian data, Umist data(1 vs 18) and Pollen data (2 vs 7) as training
points and report their objective function values with different
initializations. After 20 times iterations, the objective function
values are shown in Fig. 1. On the top and bottom planes, STM and
MRMLSVM are initialized using ‘Fixed’ and ‘Norm’ strategies
respectively. Besides, we also show the objective function values
of SVM. When we use STM's results to initialize MRMLSVM, its
results are denoted by ‘MRMLSVM+STM'. In these experiments,
we simply set k=2 in MRMLSVM.

There are mainly two observations from the results in Fig. 1:

(1) With the increase of iteration's number, the function values of
STM and MRMLSVM converge to fixed points. It indicates that
the above solving strategy converges. It can also validate the
theoretical results shown in Proposition 4.

(2) As seen from all the sub-figures, SVM's objective function
value is smallest. If we use STM to initialize MRMLSVM, its
objective function value is smaller than that of STM. Besides, if
we use the same initialization strategy, the objective function
value of MRMLSVM is also smaller than that of STM. It also
validates our previous statement that k is a parameter who can
rank the objective function values.

1 http://www1.cs.columbia.edu/CAVE/research/softlib/coil-20.html.

2 http://www.lookingatpeople.com/download-daimler-ped-mcue-occl-class-
benchmark/index.html.

3 http://ome.grc.nia.nih.gov/iicbu2008/binucleate/index.html.

4 http://images.ee.umist.ac.uk/danny/database.html.

5 http://bias.csr.unibo.it/fvc2000/databases.asp.

6 http://ome.grc.nia.nih.gov/iicbu2008/pollen/index.html.
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462 C. Hou et al. / Pattern Recognition 47 (2014) 454-469

5.3. Classification results

In binary classification task, every two classes are combined and
parts of the results are presented. For illustration, we report two
results (1 vs 18, 4 vs 14) on Umist data, one comparison (1 vs 8) on
FingerDB data and one comparison (2 vs 7) on Pollen data. Pedestrian
data and Binucleate data are also employed for binary classification.
By randomly splitting the original data into training set and testing
set for 50 independent runs, we select 2, 3, ..., 11 samples from each
category and the others are testing samples for Binucleate, Umist,
Pollen data sets. Since Pedestrian has many samples and FingerDB
has few points for each category, we select 2, 4, ..., 20 and 2, 3, ...,
7 training samples from each category from Pedestrian and FingerDB
data sets. With different data sets and different numbers of training

Table 3
Characters of different data sets.

samples, the mean classification accuracies of 50 independent runs
are shown in Fig. 2 (a) Pedestrian data, (b) Binucleate data, (c) Umist
data (1 vs 18), (d) Umist (4 vs 14), (e) FingerDB data (1 vs 8) and
(f) Pollen data (2 vs 7). Note that, since the matrix A7A in SRSVM and
S-LDASVM is mn x mn dimensional, these methods cannot be
implemented on Binucleate and FingerDB data sets. We have not
reported their results.

To classify data from multiple classes, we choose four repre-
sentative data, including Coil, Umist, FingerDB and Pollen data sets.
As seen from the description in Table 3, they are data sets with
multiple classes. In each category, we randomly selected 2, 3,..., 11
training samples for Coil, Umist, Pollen data and 2, 3,..., 7 for
FingerDB data. The mean and standard derivation computed by 50
random splits are shown in Tables 4-7. The results with statistical
significance are boldfaced. As the same reason in previous, we
have not reported the results on FingerDB either.

There are several observations from the above comparisons as
follows:

Data Size (1+1) Scale (m xn) Class number (1) Among different methods and different data sets, MRMLSVM
Coil 1440 32 %32 20 achieves the highest accuracy in most cases.'This is mainly due
Pedestrian 2000 38 % 18 2 to the fact that MRMLSVM inherits the merits from SVM, STM
Binucleate 40 1204 x 1280 2 and spatial regularization methods.
Umist 575 28x23 20 (2) With the increase of training points' number, all methods
FingerDB 80 300300 10 achieve higher accuracies. This consists with intuition since we
Pollen 630 25x25 7 gher ac g 55
have more prior information for training.
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Fig. 1. Objective function values on three data sets with different initializations. The x-axis represents number of iterations. MRMLSVM+STM means that we used the results
of STM to initialize MRMLSVM. (a) Pedestrian data with ‘Fixed’ initialization; (b) Umist data (1 vs 18) with ‘Fixed’ initialization; (c) Pollen data (2 vs 7) with ‘Fixed’
initialization; (d) Pedestrian data with ‘Norm’ initialization; (e) Umist data (1 vs 18) with ‘Norm’ initialization; (f) Pollen data (2 vs 7) with ‘Norm’ initialization.



C. Hou et al. / Pattern Recognition 47 (2014) 454-469

(3) By adding the spatial smooth regularization, the improved

~

methods are perform better than their original counterparts in
most cases. This may be due to the fact that we have
characterized the spatial information and traditional methods
can be regarded as their special cases.

For classification, 2D based methods do not always perform
better than 1D based methods. Take the results in Table 6 as an
example, LDASVM performs better than 2DLDASVM in most
cases. The reason may be that the adding constraints in
2DLDASVM will degrade the performances.

(5) When we represent original data by its low-dimensional

embedding, it does not always helpful for classification. Take
the result in Table 6 as an example, compared with SVM's
results in classifying the embedding derived by LDA and
2DLDA, SVM achieves higher accuracy when it is used to
classify the original data directly.
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(6) When the dimensionality of original data is high, it seems that

margin based methods, such as SVM, perform better than
similarity based methods, such as KNN. It is mainly due to the
reason that the distance between any two high-dimensional data
points trends to be similar [13] and the performance of similarity
based methods, such as KNN, will be degraded in this scenario.

5.4. Different initializations

alizations.

In this section, we will show the influence of different initi-
In Section 4.2 we have discussed three kinds of

initializations. Briefly, the first is ‘Fixed’, which uses fixed value.
The second is ‘Uniform’, which initializes randomly with a uniform
distribution. The third is ‘Norm’, whose initialization matrix
consists of elements sampled from standard normal distribution.

b
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Fig. 2. Classification results of different methods on six different data sets with different numbers of training points. The number of training points varies from 4 to 22.
(a) Pedestrian data; (b) Binucleate data; (c) Umist data (1 vs 18); (d) Umist (4 vs 14); (e) FingerDB data (1 vs 8); (f) Pollen data (2 vs 7).
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Table 4
Classification accuracy of different methods on Coil data (mean + std/%).

TRAINING KNN SVM SRSVM LDASVM 2DLDASVM S-LDASVM STM MRMLSVM
NO.
40 71.80 + 1.30 7218 + 1.38 73.95 + 1.33 70.60 + 1.64 68.04 +2.97 70.68 + 1.83 73.27 +2.02 75.09 + 1.74
60 7717 + 1.14 79.75 + 112 79.79 + 1.14 74.25 + 1.35 71.03 £2.74 75.98 +£1.23 79.36 + 1.84 82.54 + 1.58
80 81.03 + 0.82 83.57 £1.25 84.99 + 1.26 78.54 +1.54 79.24 +£2.37 79.71 £ 1.30 83.80 + 1.52 86.78 + 1.31
100 82.60 + 0.99 85.95+1.25 86.43 +1.29 80.37 + 1.26 82.66 + 2.19 81.37 +£1.95 86.24 + 142 89.08 + 1.13
120 85.10 + 0.81 88.95 +0.89 89.57 + 0.89 82.77 £ 124 86.86 + 1.58 83.87 + 1.18 88.56 + 1.20 91.79 + 1.03
140 86.51 + 0.89 90.93 + 1.21 91.90 + 1.19 83.91 + 1.16 88.95 + 1.47 85.07 £1.24 90.09 + 1.31 92.88 + 1.13
160 87.66 + 0.82 92.04 +0.93 93.09 + 0.93 84.86 + 1.00 90.41 + 1.32 85.94 +1.18 91.99 + 0.87 94.06 + 0.75
180 88.87 + 0.66 93.13 +0.77 94.07 + 0.76 86.33 +0.81 92.17 +0.85 87.24+0.81 92.31+0.85 94.88 + 0.73
200 89.70 £ 0.76 93.88 + 0.92 95.20 + 0.96 86.85+0.95 92.99 +0.98 88.15 £+ 1.07 92.93 +0.72 95.30 +0.79
220 90.96 + 0.49 95.24 +0.49 95.28 + 0.46 88.03 +0.68 94.06 + 0.81 88.72 +£0.53 93.99 + 0.50 96.23 + 0.43
Table 5
Classification accuracy of different methods on Umist data (mean + std/%).
TRAINING KNN SVM SRSVM LDASVM 2DLDASVM S-LDASVM STM MRMLSVM
NO.
40 60.72 + 1.58 64.55 + 1.53 66.03 + 1.48 65.87 + 1.32 65.57 +1.55 65.95 + 1.55 65.98 + 1.37 68.32 + 1.27
60 69.88 + 1.15 75.97 + 114 77.76 £ 114 77.62 + 1.24 78.61 + 1.39 77.87 + 1.04 77.70 + 1.05 79.06 + 0.97
80 78.36 + 1.04 84.94 +0.93 84.99 + 0.95 85.39 + 0.95 85.20 + 1.08 85.39 + 0.92 84.49 + 1.08 87.21 + 1.00
100 82.56 + 1.04 88.82 +0.88 89.68 + 0.89 88.17 £ 0.98 88.32 4+ 0.96 88.65 + 0.80 87.68 + 0.84 90.85 + 0.78
120 87.95+ 0.86 92.71+0.88 92.75 + 0.86 91.82 +£0.88 9145+ 0.74 91.82 +£0.90 9112 £ 0.74 93.92 + 0.69
140 90.92 +0.77 93.41 +0.59 93.68 + 0.57 93.27 £ 1.04 93.85 + 0.65 93.32£0.55 93.54 +0.70 95.70 + 0.65
160 92.22+0.75 94.68 + 0.57 94.87 +0.58 94.43 + 0.81 94.10 + 0.51 94.94 + 0.50 94.54 + 0.64 96.48 + 0.59
180 93.96 + 0.64 95.63 + 0.44 96.24 + 0.43 95.15+0.55 95.58 + 0.46 95.86 + 0.49 96.01 +0.47 97.07 + 0.44
200 95.32 +£0.55 96.18 + 0.52 97.01 +£ 0.55 95.84 +0.55 95.92 +0.58 96.74 + 0.52 96.56 + 0.46 97.64 + 0.43
220 95.94 + 0.62 96.50 + 0.47 97.60 + 0.50 96.23 + 0.67 96.22 + 043 97.34 + 0.45 96.71 + 0.45 98.01 + 0.43
Table 6
Classification accuracy of different methods on FingerDB data (mean + std/%).
TRAINING KNN SVM LDASVM 2DLDASVM STM MRMLSVM
NO.
20 10.02 + 1.34 49.83 +2.39 4416+ 2.77 34.75 + 2.98 50.89 + 2.05 54.91 + 2.00
30 10.10 + 1.05 60.520 + 2.28 45.40 +2.79 37.30+£2.68 59.40 +2.03 64.30 + 2.00
40 10.38 + 1.11 64.25 +2.31 48.25 +2.27 40.25 +2.34 66.50 + 1.97 70.50 + 1.92
50 10.67 + 118 69.00 + 2.38 51.50 +2.12 45.50 +2.05 69.83 + 1.92 78.50 + 1.87
60 11.00 + 1.31 77.50 +1.70 51.75 + 1.81 46.50 + 1.62 73.50 + 1.72 82.00 + 1.68
70 1136 £ 1.04 78.00 + 1.80 57.00 + 1.62 49.50 + 1.58 78.45 + 1.63 83.50 + 1.59
Table 7
Classification accuracy of different methods on Pollen data (mean + std/%).
TRAINING KNN SVM SRSVM LDASVM 2DLDASVM S-LDASVM STM MRMLSVM
NO.
14 21.70 £2.36 37.59 +£2.00 39.88 + 1.87 32.18 +£1.88 2412 +2.06 41.01+2.14 40.18 + 1.68 41.05 + 1.87
21 21.88 +2.18 4240 +2.14 43.07 + 1.95 37.14 + 1.88 28.41+ 175 44.35 +2.27 43.62 + 1.58 44.86 + 1.81
28 2237 +1.96 44.97 + 1.93 46.64 + 191 39.26 + 1.58 32.72+1.94 46.04 + 1.94 45.24 + 153 4729 +1.75
35 23.16 +£1.88 46.65 + 1.49 49.77 + 1.46 41.76 + 1.54 35.00 + 1.68 48.47 +2.15 46.73 +£ 1.50 49.73 + 1.72
42 23.57 + 1.86 4719 +1.33 50.45 + 1.26 42.68 + 1.49 39.93 + 1.66 49.24 + 1.60 49.20 + 1.24 50.85 + 1.42
49 23.64+1.76 50.81 + 1.25 52.74 + 1.29 44.27 + 143 41.08 + 1.63 49.97 + 145 51.01 + 1.20 52.90 + 1.37
56 2411 +1.74 5142 + 112 53.27 +1.17 44.95 + 145 44.87 + 1.56 50.62 +1.22 51.54 + 1.11 53.99 + 1.27
63 24.74 + 1.67 53.32+ 1.11 55.47 + 1.09 4532+ 1.34 47.66 + 1.56 50.75 + 1.18 54.42 + 1.06 55.61 +1.22
70 24.83 +1.72 54.05 + 1.09 56.20 + 0.95 45.79 + 1.38 48.52 +1.48 50.84 +1.19 54.50 +0.91 56.52 + 1.04
77 2537 +£1.62 55.00 + 1.06 57.06 + 1.01 46.50 + 1.32 5116 + 1.43 50.91 + 1.11 55.09 +0.90 5721+ 1.03

We have conducted experiments on two data sets, i.e., Umist
and Pollen. With fixed training points (two for each category) and
testing points, we randomly initialize our method for 50 runs.
Since 2DLDA and STM are also solved in an alternative way,
their results are also presented. Other settings are the same as
previous. For example, we also set k=2. The experimental results,
which are the average classification accuracies of 50 runs, are
shown in Fig. 3.

As seen from the results in Fig. 3, all methods have different
performances with different initializations. Nevertheless, it seems
that the variance between different initializations is not so
significant. Thus, we have used the ‘Uniform’ initialization strategy
in other experiments. Besides, different initializations take differ-
ent influences on different data sets. For example, the variance of
2DLDASVM is larger on Pollen data than on Umist data. More
importantly, as shown in Fig. 3, MRMLSVM achieves the highest
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classification accuracy in almost all cases. It can also demonstrate
the effectiveness

5.5. Computational complexity

Commonly, another motivation for investigating tensor based
methods is reducing the computational complexity of original
methods in manipulating vectorized high-dimensional data. For
comparison, we will show some experimental results on several
data sets with different sizes and scales.

We have selected three representative data, i.e., Pedestrian,
FingerDB and Binucleate. Pedestrian data has the largest data size
and Binucleate has the highest resolution. We compare MRMLSVM
with SVM, SRSVM, LDASVM, 2DLDASVM, S-LDASVM, STM and use
LibSvm for the realization of SVM. For justice, these methods are
implemented in their original formulations, without using other
accelerating strategies. When the number of training points is
fixed, we randomly select them for 50 independent runs. With a
naive MATLAB implementation, the calculations are conducted on
a 3.2-GHz, 4G RAM Windows machine. The computational time of
different methods is listed in Tables 8-10. Since LDASVM, SRSVM
and S-LDASVM cannot be implemented on FingerDB and Binucle-
ate data sets, we only reports their results on Pedestrian data. The
results with statistical significance are also boldfaced.

As seen from the results in Tables 8-10, we will analyze the
influence of different factors. (1) When the scale of matrix data is
small and the data size is large, MRMLSVM costs similar time to
SVM and consumes less time than LDASVM and 2DLDASVM. With
the increase of data scale, the superiority of two-dimensional
methods is emerged. For example, LDASVM, SRSVM and
S-LDASVM cannot be implemented on FingerDB while 2DLDASVM
still works. Compared with SVM, MRMLSVM is more suitable for
dealing with large scale matrix data. Certainly, STM costs the least
time. (2) The computational complexity of different methods is
dominated by different factors. For example, LDASVM and

2DLDASVM are very sensitive to data scale. It is the key factor in
dominating their computational complexities. Compared with
dimensionality, the influence of data size is not so significant.
(3) The methods with spatial regularization often cost more
time than their original counterparts. This may be caused by the
fact that we also need some time to compute the regularization
matrix.

Table 9

Computational time of different methods with different number of training points
on FingerDB data (mean +std.). Note that LDASVM cannot be implemented in
this data.

TRAIN- SVM MRMLSVM

ING NO.

2DLDASVM STM

20 9.6719 + 0.1597 35.6031 + 0.0210 3.6728 + 0.4907 8.9375 + 0.2294
30 10.0719 + 0.2075 42.0625 + 0.0291 3.7321 + 0.7846 9.0500 + 0.2318
40 10.2906 + 0.1975 51.4219 + 0.0269 3.7897 + 0.4190 9.3812 + 0.2203
50 10.0313 +0.1293 58.1313 + 0.0259 4.1199 + 0.3414 9.3875 + 0.2204
60 11.8875 + 0.1920 65.2156 + 0.0257 4.3824 + 0.3257 9.7000 + 0.1755
70 12.3125 £ 0.1065 72.3719 + 0.0211 4.4481 + 0.8383 10.2000 + 0.1809

Table 10
Computational time of different methods with different number of training points
on Binucleate data (mean + std.). Note that LDASVM cannot be implemented in
this data.
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8 74687 +0.2923 1164 +2.9812 0.6340 + 0.0391 1.5312 + 0.0203
10 8.0356 + 0.2413 1172 +1.7536  0.7624 + 0.0311 1.8645 + 0.0204
12 8.6406 + 0.1445 1227 + 14561 0.8933 + 0.0361 2.2083 + 0.0212
b 0.45
I Fixed
[ Uniform i
0.4 | |_INorm -
g
3
8 035
<
S
8
£ 03
©
o
0.25
0.2
2DLDASVM ST™M MRMLSVM

Fig. 3. The classification accuracy of 2DLDA, STM and MRMLSVM with different kinds of initialization, i.e., the fixed, uniform and norm strategies. The x-axis represents
different methods and y-axis is the classification accuracy. (a) Umist data; (b) Pollen data.

Table 8
Computational time of different methods with different number of training points on Pedestrian data (mean + std.).
TRAINING NO. SVM SRSVM LDASVM 2DLDASVM S-LDASVM STM MRMLSVM
200 0.3484 + 0.0338 0.7953 + 0.0354 2.2234 +0.0589 0.6438 + 0.0264 2.3172 +0.2291 0.1910 + 0.0877 0.4531 + 0.0516
600 0.8172 4+ 0.0478 1.3672 + 0.0488 2.3359 4+ 0.0467 1.9859 + 0.1852 2.4078 +0.1884 0.3977 + 0.0249 1.0281 + 0.1346
1000 1.4047 + 0.0627 1.8891 + 0.0601 24281 +0.0331 3.1516 + 0.4558 2.5531 +0.1169 0.5986 + 0.0284 1.9813 + 0.0628
1400 2.2594 +0.0715 2.7344 + 0.0667 2.5656 + 0.0395 4.2516 + 0.4382 2.6313 +0.1423 1.0795 + 0.1062 3.8438 + 0.2300
1800 2.9922 +0.0773 3.4016 + 0.0749 2.6703 4+ 0.0379 5.4188 +0.7376 2.7360 4+ 0.1393 14793 + 0.0498 5.2156 + 0.1212
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5.6. Parameter determination

As seen from the discussion in Sections 3.2 and 4.4, we know
that k plays an essential role in the proposed method. In this
section, we would like to show its influence in three aspects.

In the first group of experiments, we would like to show the influ-
ence of k towards objective function values. As mentioned in Proposi-
tion 2, the objective function value of MRMLSVM should monoto-
nously decreases with respect to k, provided that we initialize it in a
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suitable way. For demonstration, we conduct experiments on three
data sets, including Pedestrian, Umist and Pollen. The parameter k is
varied from 1 to 10. We choose 2 and 10 training points from each
category. With the ‘Fixed’ initialization, each experiment is repeated
for 50 independent runs and the average objective function values are
shown in Fig. 4.

As seen from the results in Fig. 4, we can conclude that with the
increase of k, the average objective function values decrease mono-
tonously. It validates the intrinsic of k in dominating training error.
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Fig. 4. The objective function of MRMLSVM with different k. The x-axis represents the selected k and y-axis is the objective function. The lines with different colors represent
different number of training points. (a) Pedestrian data; (b) Umist data; (c) Pollen data. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5. The classification accuracy of MRMLSVM with different k. The x-axis represents the selected k and y-axis is the classification accuracy. The lines with different colors
represent different number of training points. (a) Pedestrian data; (b) Umist data; (c) FingerDB data; (d) Pollen data. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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In the second group of experiments, we would like to show the
influence of k towards classification accuracy. There are totally four
different data sets, including Pedestrian, Umist and FingerDB and
Pollen. We vary k from 1 to 10 and conduct experiments using
‘Fixed’ initialization with different number of training points. After
50 independent splitting training and testing points, we provide
the average classification accuracy of MRMLSVM in Fig. 5.

As shown in Fig. 5, we can see that with the increase of k, the
feasible region is expanded. Nevertheless, the classification accu-
racy does not always increase consistently. This is due to the fact
that k is a parameter to balance the influences of training error and
the extent in avoiding over fitting. These two factors are important
in dominating the performance of a learning machine. SVM and
STM can be regarded as two extreme cases. Additionally, these
results also validate the effectiveness in employing multiple
transformation vectors.

In the third group of experiments, we would like to show
whether the out-performance of MRMLSVM depends on the
combination of k and initialization strategies. We employ the same
data sets as in previous experiments. With different k and different
initialization strategies, we report the average classification accuracy
by randomly selecting 10 points in each category as training samples
and others are assigned as testing sets. With 50 independent runs,
the average classification accuracies are shown in Fig. 6.

As seen from the results in Fig. 6, we have the following
intuitions. Compared with the influences of initialization strategy,
k plays a more important role in dominating the final classification
accuracy. The reason may be (1) k is a parameter who can
determine the learning capacity of our method and (2) when k is
suitable, our solving strategy tends to find a good local optimum,
no matter which initialization strategy we have selected.

6. Conclusion

In this paper, we have proposed an efficient multiple rank
multi-linear SVM, i.e., MRMLSVM, for matrix data classification.
Different from linear SVM which reformulated matrix data into a
vector and STM which only used one left and one right projection
vector, we have used several left projecting vectors and the same
number of right projecting vectors to formulate objective function
and construct constraints. The convergence behavior, initialization
strategy, computational complexity and parameter determination
problems were also analyzed. Plenty of experimental results have
been proposed for illustration. Further research includes the
extension of MRMLSVM to nonlinear cases. We will also focus on
the accelerating issue of our algorithm.
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Appendix A

Proof of Proposition 1. We would like to prove it in two sides. On
one hand, for any mn-dimensional vector z, its matrix form is
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denoted as ZeR™*". Since rank(Z)<min(m,n), there exits two
matrixes, U=[uq,uy,...,u] and V=[vq,V,,...,v;], such that
Z=UV". In other words, for any mn-dimensional vector z, we
can find k couples of vectors, such that Z = Y *u;v!, or equivalently,
z=Vec(Truv)).

On the other hand, for any two groups of vectors, denoted as
{uy,uy, ..., ) and {vq,Va, ..., Vi }, Vec(¥¥uv] )eR™. Combining the
above two results, we get the conclusion. ©

Proof of Proposition 2. Assume that the objective function of
STM with the projecting vectors u and v is f(u, v). Correspondingly,
the objective function of MRMLSVM with projecting vectors
{uj,uy,...,w} and {vq,vy,...,Vi} is g(uq,uy, ..., W, Vi, Vo, ..., V).
Denote the optimal value of STM as f(u*,v¥). Note that

fut,v¥) =g(u*,0,...,0,, V¥, Vs, ..., Vg).

As seen from the following results in Proposition 3, In each iteration,
the objective function of MRMLSVM is not increase. Thus, the optimal
function value of MRMLSVM is no larger than that of STM. ©

Proof of Corollary 1. The first equation is obvious and we would
like to prove the second one.
Based on Lemma 1, we have

Tr(UTUVTV) = (Vec(U)) Vec(UVTV)

= (Vec(U)) Vec(Lnym UVTV) = Vec(U) (VT V)1 m)Vec(U).

Thus, the result follows. ©

Proof of Proposition 4. Assume that we have derived UY
in the s-th iteration. We now update V, & and b. The following
results hold:

1 1
() (5) Ky _ T ONAVR IO )
(VO b }_argr‘%g 2Tr(U V' VU ))+Ci=§151

st y(Tr(U9)TX;V) + b)>1—¢
>0 fori=1,2,...,1L 31

In the (s + 1)—th iteration, we fix V as V® and optimize U, &
and b by solving the problem in Eq. (11). We have the following
results:

1 1
(s+1) gs+1) R+ _ in ONETO el .
(USTY g8 b }_arg%?éﬂ 2Tr(U(V )V U>+Ci§1.§,
st y(Tr(UTX,V®) + b)>1—¢;
>0 fori=1,2,...,1L (32)

Similarly, when we fix U as U*? and optimize V, & and b by
solving the problem in Eq. (11), the following result holds:

1 I
(+1) gs+1) ps+Dy _ i L +DyTy s+ )

(VESD, gD, D) — arg min 2Tr(U VIVUED) )+Ci§l§1
st y(Tr(UST )X V) + by>1—¢ &0 fori=1,2,....1.  (33)
Combining the results in Eqs. (30) and (32), we know that

(U9, V® g5tD py and (Ue+D, vE+D gs+h p6+Dy are both feasible

solutions to the problem in Eq. (11). More importantly, recalling
the results in Proposition 3, we have the following inequality:

!
%Tr<U(s+1)(v(s+1))Tv(s+l)(U(S+l))T> 4C 3 s
i=h

I
S%Tr<U(s+1)(V(s))Tv(s)(U(SJrU)T) N> §§s+1)
i=1

1
<3 Tr(UOWO VOO € 3 & (34)
i=

It indicates
iteration. O

the decrease of objective function during

Proof of Propeosition 5. Since A, B are positive semi-definite,
then, their SVD decompositions are A =U,24U} and B = Upx,UJ.
Thus

A®B' = (U 2, UNH@(UsZLUL) = (U, ®Up)(Z, ®Zh)(Uy@Up)"
= (Un®Up)(2®25) (U;®Up)" = (A®B)'. [ 35)
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