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a b s t r a c t

In this paper, a new probabilistic model using measures of classifier competence and diversity is
proposed. The multiple classifier system (MCS) based on the dynamic ensemble selection scheme was
constructed using both developed measures. Two different optimization problems of ensemble selection
are defined and a solution based on the simulated annealing algorithm is presented. The influence of
minimum value of competence and diversity in the ensemble on classification performance was
investigated. The effectiveness of the proposed dynamic selection methods and the influence of both
measures were tested using seven databases taken from the UCI Machine Learning Repository and the
StatLib statistical dataset. Two types of ensembles were used: homogeneous or heterogeneous. The
results show that the use of diversity positively affects the quality of classification. In addition, cases have
been identified in which the use of this measure has the greatest impact on quality.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

At present, in identification and classification, the Multiple
Classification Systems (MCS) are very strongly developed, mostly
because of the fact that committee, also known as an ensemble,
can outperform its members [1]. It is well known that one of
the most important steps in the design of MCS is the ensemble
selection and the other is combining their answers. Currently, MCS
which are using Dynamic Ensemble Selection (DES) schemes are
becoming increasingly popular. The DES method is based on
dynamic selection of classifiers for a classifying object due to its
feature vector. In other words, the MCS each time select the new
ensemble (called dynamic way) for each recognition object
depending on the characteristics describing the object. Most DES
schemes use the concept of classifier competence on a defined
neighbourhood or region [2], such as the local accuracy estimation
[3–5], Bayes confidence measure [6], multiple classifier behavior
[7] or probabilistic model [8], among others.

Note that even the best MCS will not be able to outperform its
members if classifiers in the team are identical. The ideal situation
is when classifiers in the ensemble are the most competent and
where the probability of correct classification for the recognition
object is the greatest, but are possibly different from each other
at the same time. It is popular to use the diversity measure to

select such a committee. In the literature, there are many
approaches to defining and determining diversification [9]. In this
paper, the authors tried to create such a model which will select
the best classifiers (most competent) while trying to differentiate
their wrong answers. There are examples which show that the use
of measure of diversification positively affects the performance of
the whole recognition process [10].

In this paper, a novel model has been presented which uses both
competence and diversity. In this way, we obtained a hybrid
architecture [11] which uses two independent measures. Further-
more, two types of optimization problems were considered. Pro-
blem of classifiers selection, because of the criteria and constraints,
is solved using simulated annealing [12]. Methods for calculating
classifier competence and diversity using a probabilistic model are
based on the original concept of a randomized reference classifier
(RRC) [8], which – on average – acts like the evaluated classifier. The
competence of a classifier is calculated as the probability of correct
classification of the respective RRC, and the class-dependent error
probabilities of RRC are used for determining the diversity measure,
which evaluates the difference of incorrect outputs of classifiers
[13,14]. The proposed methods are novel because they take under
consideration the competence and diversity measures at the same
time during the selection process.

The motivation of our work on the development of the
algorithm described in this paper were the results of previous
research [15]. It was the first time that both measures were
combined with each other, and the results were promising. It
should be noted that previously used algorithms, selecting subsets
of classifiers, which are involved in the recognition process, were
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intuitive. In the following work, we used the simulated annealing
algorithm, which gives better results both in terms of classification
efficiency and the time required for the recognition process. It is
also a generally known and popular heuristic algorithm because of
the large number of possibilities of parameterization. It should
also be noted that the problem of classifiers selection due to two
independent measurements is complex as described in Section 3.

The paper is organized as follows. In Section 2, the randomized
reference classifier (RRC) is presented and measures of base
classifier competence and ensemble diversity are developed.
The constructed multiple classifier systems which use both mea-
sures are presented in Section 3. There are also two optimization
problems defined and a solution is proposed. The conducted
experiments and the results with discussion are presented in
Section 4. Section 5 concludes the paper.

2. Theoretical framework

2.1. Preliminaries

Consider a classification problem with a set M¼ f1;2;…;Mg of
class labels and a feature space XDRn. Let a pool of classifiers,
i.e. a set of trained classifiers Ψ ¼ fψ1;ψ2;…;ψLg, be given. Let

ψ l : X-M ð1Þ
be a classifier that produces a vector of discriminant functions
½dl1ðxÞ; dl2ðxÞ;…; dlMðxÞ� for an object described by a feature vector
xAX . The value of dlj(x), jAM represents a support given by the
classifier ψ l for the fact that the object x belongs to the j-th class.
Assume without loss of generality that dljðxÞZ0 and ∑jdljðxÞ ¼ 1.
Classification is made according to the maximum rule

ψ lðxÞ ¼ i3dliðxÞ ¼max
jAM

dljðxÞ: ð2Þ

Now, our purpose is to determine the following characteristics,
which will be the basis for dynamic selection of classifiers from the
pool:

(1) A competence measure Cðψ ljxÞ of each base classifier (l¼ 1;
2;…; L), which evaluates the competence of classifier ψ l, i.e. its
capability to correct activity (correct classification) at a point
xAX .

(2) A diversity measure DðΨ EjxÞ of any ensemble of base classifiers
Ψ E , considered as the independency of the errors made by the
member classifiers at a point xAX .

In this paper trainable competence and diversity functions are
proposed using a probabilistic model. It is assumed that a learning set

S ¼ fðx1; j1Þ; ðx2; j2Þ;…; ðxN ; jNÞg; xkAX ; jkAM ð3Þ
is available for the training of competence and diversity measures.

In the next section, the original concept of a reference classifier
will be presented, which – using a probabilistic model – will
state the convenient and effective tool for determining both
competence and diversity measures.

2.2. Randomized reference classifier – RRC

A classifier1 ψ from the pool Ψ is modeled by a randomized
reference classifier (RRC) [8] which takes decisions in a random
manner. A randomized decision rule (classifier) is, for each xAX ,
a probability distribution on a decision space [14] or – for the

classification problem (2) – on the product ½0; 1�M , i.e. the space of
vectors of discriminant functions (supports).

The RRC classifies object xAX according to the maximum
rule (2) and it is constructed using a vector of class supports
½δ1ðxÞ; δ2ðxÞ;…; δMðxÞ�, which are observed values of random vari-
ables ½Δ1ðxÞ;Δ2ðxÞ;…;ΔMðxÞ�. Probability distributions of the ran-
dom variables satisfy the following conditions:

(1) ΔjðxÞA ½0;1�;
(2) E½ΔjðxÞ� ¼ djðxÞ, j¼ 1;2;…;M;
(3) ∑j ¼ 1;2;…;MΔjðxÞ ¼ 1,

where E is the expected value operator. In other words, class
supports produced by the modeled classifier ψ are equal to the
expected values of class supports produced by the RRC.

Since the RRC performs classification in a stochastic manner, it
is possible to calculate the probability of classifying an object x to
the i-th class:

PðRRCÞðijxÞ ¼ Pr½8 k ¼ 1;…;M; ka i ΔiðxÞ4ΔkðxÞ�: ð4Þ
In particular, if the object x belongs to the i-th class, from (4)
we simply get the conditional probability of correct classification
PcðRRCÞðxÞ.

The key element in the modeling presented above is the choice
of probability distributions for the rv's ΔjðxÞ; jAM so that the
conditions 1–3 are satisfied. In this paper beta probability dis-
tributions are used with the parameters αjðxÞ and βjðxÞ (jAM). The
justification of the choice of the beta distribution can be found in
[8] and furthermore the MATLAB code for calculating probabilities
(4) was developed and it is freely available for download [16].

Applying the RRC to a learning point xk and putting in (4) i¼ jk,
we get the probability of correct classification of RRC at a point
xkAS, namely

PcðRRCÞðxkÞ ¼ PðRRCÞðjkjxkÞ; xkAS: ð5Þ
Similarly, putting in (4) a class ja jk we get the class-dependent
error probability at a point xkAS:
PeðRRCÞðjjxkÞ ¼ PðRRCÞðjjxkÞ; xkAS; jða jkÞAM: ð6Þ

In the next sections probabilities of correct classification (5)
and conditional probabilities of error (6) for learning objects will
be utilized for determining the competence and diversity func-
tions of base classifiers.

2.3. Measure of classifier competence

Since the RRC can be considered equivalent to the modeled
base classifier ψ lAΨ , it is justified to use the probability (5) as the
competence of the classifier ψ l at the learning point xkAS, i.e.:
Cðψ ljxkÞ ¼ PcðRRCÞðxkÞ: ð7Þ

The competence values for the validation objects xkAS can be
then extended to the entire feature space X . To this purpose the
following normalized Gaussian potential function model was used [8]:

Cðψ l xj Þ ¼∑xk ASCðψ ljxkÞ expð�distðx; xkÞ2Þ
∑xk ASexpð�distðx; xkÞ2Þ

; ð8Þ

where distðx; yÞ is the Euclidean distance between the objects x and y.

2.4. Measure of diversity of classifiers ensemble

As it was mentioned previously, the diversity of a classifier
ensemble Ψ E is considered as an independency of the errors
made by the member classifiers. Hence the method in which the
diversity measure is calculated as a variety of class-dependent
error probabilities is fully justified.

1 Throughout this subsection, the index l of classifier ψ l and class supports dlj(x)
is omitted for clarity.
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Similarly, as in competence measure, we assume that at a
learning point xkAS the conditional error probability for the class
ja;k of the base classifier ψ l is equal to the appropriate probability
of the equivalent RRC, namely:

Peðψ lÞðjjxkÞ ¼ PeðRRCÞðjjxkÞ: ð9Þ

Next, these probabilities can be extended to the entire feature
space X using Gaussian potential function (8):

Peðψ lÞðj xj Þ ¼∑xk AS;jk a jPe
ðψ lÞðjjxkÞ expð�distðx; xkÞ2Þ

∑xk AS;jk a jexpð�distðx; xkÞ2Þ
: ð10Þ

According to the presented concept, using probabilities (10),
first we calculate pairwise diversity at the point xAX for all pairs
of base classifiers ψ l and ψk from the pool Ψ :

Dðψ l;ψk xj Þ ¼ 1
M

∑
jAM

jPeðψ lÞðj xj Þ�PeðψkÞ j xj Þ ;jð ð11Þ

and finally, we get the diversity of the ensemble of n (nrL) base
classifiers Ψ EðnÞ at a point xAX as a mean value of pairwise
diversities (11) for all pairs of member classifiers, namely

DðΨ E nð Þ xj Þ ¼ 2
n � ðn�1Þ ∑

ψ l ;ψk AΨ EðnÞ;lak
Dðψ l;ψk xj Þ: ð12Þ

It should be noted that two different possibilities to optimize
the problem of selecting the classifier ensemble have been
proposed below. Due to the differences in the defined objectives
and constraints, we use the non-pairwise diversity measure (12)
for Problem 1 and the pairwise one (11) for Problem 2 [10].

3. Dynamic ensemble selection systems

The design of DES system may be formulated as an optimiza-
tion problem in which we look for such value of decision variable
for which the objective function takes an extreme value, subject
to constraints imposed on decision. In the considered problem, the
decision answers the question of which base classifiers should be
selected as member classifiers of an ensemble of size n (nrL)
Ψ EðnÞ for classification of a test point xAX .2

Two DES systems can be formulated depending on the role
which competence and diversity measures play in optimization
problem.

In the procedure of DES-CDd-opt system design, the diversity
measure (12) of an ensemble makes the objective function, whereas
competence (8) of member classifiers are included in constraints. In
other words, the DES-CDd-opt system maximizes the diversity of the
ensemble and simultaneously keeps competence of member classi-
fiers on an acceptable level.

In the procedure of DES-CDc-opt system design, the role of both
measures is exactly reversed: the total competence of member
classifiers creates the objective function and the diversity of
the ensemble is a constraint in optimization problem. It means,
that the DES-CDc-opt system maximizes the sum of competence of
member classifiers and simultaneously keeps the ensemble rela-
tively diverse.

The next two subsections describe both DES systems in detail.

3.1. DES-CDd-opt system

This system is constructed as follows:

(1) For a given test pattern xAX the competence (8) are calcu-
lated for each base classifier and pairwise diversities (11) are
calculated for all pairs of base classifiers from the pool Ψ ;

(2) The ensemble Ψ n
EðnÞ is found as a solution of the following

optimization problem (Problem 1):

DðΨn

EðnÞjxÞ ¼maxΨ EðnÞDðΨ EðnÞjxÞ; ð13Þ
subject to constraints

Cðψ ljxÞZα for ψ lAΨn

EðnÞ; ð14Þ
where α (0rαr1) is a given competence threshold value.

(3) The supports of member classifiers of the ensemble Ψ n
EðnÞ are

combined by the weighted sum method:

dðd�optÞ
j ðxÞ ¼ ∑

ψ l AΨn

EðnÞ
Cðψ ljxÞ djlðxÞ ð15Þ

and finally, the DES-CDd-opt system classifies x according to the
maximum rule:

ψd�optðxÞ ¼ i3dðd�optÞ
i ðxÞ ¼max

jAM
dðd�optÞ
j ðxÞ: ð16Þ

3.2. DES-CDc-opt system

This system is the same as the DES-CDd-opt system except for
step 2. Now, the ensemble Ψ n

EðnÞ is found as a solution of the
following optimization problem (Problem 2):

∑
ψ i AΨn

EðnÞ
Cðψ ijxÞ ¼maxΨ EðnÞ ∑

ψ i AΨ EðnÞ
Cðψ ijxÞ; ð17Þ

subject to constraint

Dðψ l;ψkjxÞZβ; ð18Þ
where β (0rβr1) is a given diversity threshold value.

3.3. Solution of optimization problems

Problems 1 and 2 are combinatorial optimization problems
in which we have to choose the best solution from a finite number
of solutions. It is obvious that for both problems the number
of feasible solutions is equal to ðLnÞ. For example, if the size of pool
of base classifiers is L¼50 and if we want to obtain the ensemble
containing n¼10 classifiers, then the set of possible solutions is
equal to 50!=10!40!¼ 10;272;278;170. This means that, even for
typical sizes of DES system, the exhaustive enumeration method
for the solution of optimization problems (13) and (17) is com-
pletely ineffective. In order to solve these problems we propose to
apply the simulated annealing (SA) algorithm, which has demon-
strated to be an effective method for different optimization
problems [17–20]. The main reason why SA was chosen in this
paper was the speed of its operation. In the pretests, it turned out
to be faster than other heuristic algorithms, such as tabu search or
genetic algorithms. The proposed classification algorithms based
on RRC have a high computational complexity, and therefore a fast
optimization algorithm selection was crucial. In addition, the
SA algorithm gives a lot of possibilities for parameterization of
the optimization process. SA is a random-search technique which
exploits an analogy between the way in which a metal cools and
freezes into a minimum energy structure and the search
for minimal value of the objective function [12,21]. In this

2 Formally, the decision variable has the form of binary sequence of size L in
which 1 (0) at the l-th position (l¼ 1;2;…; L) denotes that base classifier ψ l has
been selected (has not been selected) as a member classifier of an ensemble Ψ EðnÞ.
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method, the following elements must be determined: (1) a repre-
sentation of possible solutions, (2) a procedure of random changes
in solutions, (3) a method of evaluating the objective function and
(4) an annealing schedule, i.e. an initial temperature and rules for
lowering it s the search procedure progresses.

Application of the SA algorithm in the described optimization
problems allows us to create new methods, pseudocodes of which
are presented in Tables 1 and 2.

4. Experiments

In order to study the performance of the developed DES
systems two computer experiments weremade using 7 benchmark

databases. In the first experiment, the two constructed systems
were evaluated for different threshold values in the constraints
(14) and (18) of optimization problems and the values that showed
the best performance of DES systems were identified. In the
second experiment, the DES systems with the best values of
thresholds were compared against other multiple classifier sys-
tems (MCSs).

4.1. Databases and experimental setup

The benchmark databases used in the experiments were taken
from the UCI Machine Learning Repository and StatLib statistical
datasets. A brief description of the databases is given in Table 3.

The experiments were conducted in MATLAB using PRTools,
which automatically normalizes feature vectors for zero mean
and unit standard deviation and, for a given xAX , produces
classifying functions (supports) for all base classifiers according
to the paradigms of their activity [22]. The training and testing
datasets were extracted from each database using two-fold cross-
validation. The base classifiers and both competence and diversity
measures were trained using the same training dataset.

Two types of classifier ensembles were used in the experi-
ments: homogeneous and heterogeneous. The homogeneous
ensemble consisted of 20 pruned decision tree classifiers with
Gini splitting criterion. To prevent overlearning and obtaining
diversity between classifiers, each classifier was trained using
randomly selected 70% of objects from the training dataset. The
proposed percentage has been determined experimentally.

The pool of heterogeneous base classifiers used in the experi-
ments consisted of the following nine classifiers [23]: (1–2)
linear (quadratic) discriminant classifier based on normal distribu-
tions with the same (different) covariance matrix for each
class; (3) nearest mean classifier; (4–6) k-NN - k-nearest neigh-
bours classifiers with k¼1, 5, 15; (7–8) Parzen classifier with the
Gaussian kernel and the optimal smoothing parameter hopt (and
the smoothing parameter hopt=2); (9) pruned decision tree classi-
fier with Gini splitting criterion.

4.2. Experiment 1

In this experiment the influence of values of thresholds α and
β on the classification quality of DES systems was examined.

For competence threshold α five levels were applied in experi-
ments: αAf1=M; 1=M þ α′; 1=M þ 2α′; 1=M þ 3α′; 1=M þ 4α′g,
where α′¼ ð0:9�1=MÞ=4 and M denotes the number of classes.
Such a choice evenly covers the competence interval from the
value 1=M, which refers to competence of random-guessing
classifier, to the value 0.9, which was accepted as the maximal
practical threshold of competence.

In order to define values of diversity threshold β, first, some
pretests were conducted which enabled the maximum value of
diversity Dmax to be calculated for each database and for given size
of ensemble. Next, for diversity threshold β, four levels were
defined: βAf0:2Dmax;0:4Dmax;0:6Dmax and 0:8Dmaxg.

Table 1
Pseudocode of the solution of Problem 1.

Input data:
S – learning set;
Ψ L – the pool of classifiers;
n – the size of enesemble;
xAX – the testing point;
α – the threshold of competence

T – current temperature; initial value ofT is defined as algorithm

input parameter

Tmin – minimum temperature

1. For each ψ lAΨ L calculate competence Cðψ ljxÞ at the point x
2. Create temporal set of competent classifiers at the point x
Ψ ðxÞ ¼ fψ lAΨ L : Cðψ ljxÞZαg
3. Ψn

EðnÞ ¼ fψ ð1Þ;ψ ð2Þ;…;ψ ðnÞg and Ψ ðxÞ ¼ Ψ ðxÞ�fψ ð1Þ;ψ ð2Þ;…;ψ ðnÞ g where
fψ ð1Þ;ψ ð2Þ;…;ψ ðnÞgis the randomly selected subset

4. until T4Tmin

(a) Randomly change a random classifier from Ψn
EðnÞ to one from

Ψ ðxÞ and store a new set as Ψnn

E ðnÞ
(b) If diversity DðΨnn

E ðnÞjxÞ is better than the best solution so

far; store the Ψnn
E ðnÞ as the best solution

(c) If rvð0;1Þoeð�ððDðΨnn

E ðnÞjxÞ�DðΨn

E ðnÞjxÞÞ=TÞÞ accept the change

- Ψ n

EðnÞ ¼ Ψnn

E ðnÞ;
(rvð0;1Þ is a random value uniformly distributed on [0, 1])
(d) T¼0.95 T

Table 2
Pseudocode of the solution of the Problem 2.

Input data:
S – learning set;
Ψ L – the pool of classifiers;
n – the size of ensemble;
xAX – the testing point;
β – the threshold of diversity

T – current temperature; initial value ofT is defined as algorithm

input parameter

Tmin – minimum temperature

1. For each pair of classifiers ψ l and ψkAΨ L calculate pairwise

diversity Dðψ l ;ψkjxÞ at the point x
2. Create temporal set of diversed classifiers at the point x
where Ψ ðxÞ ¼ fψ l ;ψkAΨ L : Dðψ l ;ψkjxÞZβg where lak
3. Ψn

EðnÞ ¼ fψ ð1Þ;ψ ð2Þ;…;ψ ðnÞg and Ψ ðxÞ ¼ Ψ ðxÞ�fψ ð1Þ;ψ ð2Þ;…;ψ ðnÞ gwhere
fψ ð1Þ;ψ ð2Þ;…;ψ ðnÞg is the randomly selected subset

4. until T4Tmin

(a) Randomly change a random classifier from Ψn
EðnÞ to one from

Ψ ðxÞ and store a new set as Ψnn

E ðnÞ
(b) If ∑ψ i AΨnn

E ðnÞCðψ ijxÞ is greater than the best solution so far;

store the Ψ nn
E ðnÞ as the best solution

(c) If rvð0; 1Þoe
ð�ðð∑ψ i A Ψnn

E
ðnÞCðψ i jxÞ�∑ψ i A Ψn

E
ðnÞCðψ i jxÞÞ=TÞÞ

accept the change

Ψ n
EðnÞ ¼ Ψnn

E ðnÞ;
(rvð0;1Þ is a random value uniformly distributed on [0,1])
(d) T¼0.95 T

Table 3
The databases used in the experiments.

Data set Source # Objects # Features # Classes

Breast C. W. UCI 699 9 2
Biomed StatLib 194 5 2
Glass UCI 214 9 4
Iris UCI 150 4 3
Sonar UCI 3823 64 10
Ionosphere UCI 351 34 2
CNAE-9 UCI 1080 856 9
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Half of the number of base classifiers fulfiling constraints in
optimization problems was adopted as the ensemble size n (but no
less than 2), i.e. n¼maxf1=2jΨ ðxÞj; 2g.

4.3. Experiment 2

In this experiment the DES-CDd-opt and DES-CDc-opt systems with
the best competence/diversity thresholds identified in the previous
experiment were compared against three multiclassifier systems:

(1) SB (the single best) system – this system selects the single best
classifier in the pool [2];

(2) MV (majority voting) system – this system is based on
majority voting of all classifiers in the pool [2];

(3) DES-SC system – this system defines the competence of a base
classifier ψ for a test object x according to (8) and next the
ensemble of competent (better-than-random) classifiers is
selected – the final decision is made as in (16).

4.4. Results and discussion

Experiment 1. Classification accuracies (i.e. the percentage of cor-
rectly classified objects) averaged over 20 runs (10 replications of two-
fold cross validation) for experiment 1 are shown in Tables 4–7.

Values of thresholds α and β significantly affect quality of DES
systems. For the parameter α and for heterogeneous (homoge-
neous) classifiers the maximum difference of classification accu-
racy ranges from 0.87% (Iris) to 6.8% (Sonar) (from 1.17% (Iris) to
5.05% (Sonar)). The corresponding ranges for the parameter β are
as follows: for heterogeneous classifiers – from 0.64% (Iris) to
10.46% (Ionosphere); for homogeneous classifiers – from 1.13%
(Breast C.W.) to 11.76% (Sonar).

For heterogeneous classifiers the best classification accuracies
were obtained for smaller values of the threshold α (for α¼ 1=M,

1=M þ α′). For homogeneous classifiers the best classification

accuracies were obtained for the middle value of the threshold
α¼ 1=M þ 2α′.

The best classification accuracies for both homogeneous and
heterogeneous ensembles were achieved for smaller values of the
threshold β¼ 0:2Dmax, 0:4Dmax.

Experiment 2. The results obtained for the MCSs using hetero-
geneous and homogeneous ensembles are shown in Table 8.
For each database and for the DES systems, the mean sizes of
classifier ensembles are given under the classification accuracy.
The row “Average” contains results averaged over all datasets.

Statistical differences between the performances of the DES-CD
systems and the threeMCSs were evaluated using Student's t-test [24].
The level of po0:05 was considered as statistically significant.
In Table 8, statistically significant differences are given as indices of
the systems evaluated, e.g. for the Biomed database and the hetero-
geneous ensemble the DES-CDd-opt system produced statistically
different classification accuracies from the SB and MV systems.

These results imply the following conclusions:

(1) The DES-CDd-opt system outperformed the SB, MV, DES-CS,
DES-CDc-opt classifiers by 7.32%, 3.80%, 0.35% and 0.72% for
heterogeneous ensemble and by 7.83%, 2.41%, 1.21% and 1.62%
for homogeneous ensemble, respectively;

(2) The DES-CDd-opt system achieved the highest classification
accuracy for 6 datasets for heterogeneous and 7 for homo-
geneous ensembles; it produced statistically significant higher
scores in 27 out of 56 cases;

(3) There is a statistically significant difference between the classi-
fication accuracies of the DES-CS and the DES-CDd-opt systems
in one database for heterogeneous ensembles and in one
database for homogeneous ensemble;

(4) The relative difference between the mean ensemble sizes for
the DES-CS and the DES-CDd-opt systems is on average equal
to 49.21% and 50.79% for heterogeneous and homogeneous
ensembles, respectively;

(5) The relative difference between the mean ensemble sizes for
the DES-CS and the DES-CDc-opt systems is on average equal
to 36.68% and 55.5% for heterogeneous and homogeneous
ensembles, respectively;

Table 4
Dependence of classification accuracies % of the DES-CDd-opt using heterogeneous
ensembles from α threshold.

Benchmark database name 1
M

1
M

þ α′ 1
M

þ 2α′ 1
M

þ 3α′ 1
M

þ 4α′

Breast C.W. 98.27 98.65 98.01 95.37 95.42
Biomed 90.53 90.92 87.63 87.52 87.61
Glass 74.09 74.11 69.54 69.51 69.39
Iris 97.71 97.68 96.81 96.83 96.79
Sonar 83.33 76.48 76.52 76.81 76.63
Ionosphere 90.49 90.51 88.91 86.72 86.61
CNAE-9 88.25 88.36 86.67 85.86 85.21

Table 5
Dependence of classification accuracies % of the DES-CD d-opt using homogeneous
ensembles from α threshold.

Benchmark database name 1
M

1
M

þ α′ 1
M

þ 2α′ 1
M

þ 3α′ 1
M

þ 4α′

Breast C.W. 96.39 96.46 96.53 95.45 95.24
Biomed 87.26 87.88 88.31 87.31 86.91
Glass 73.10 74.41 75.22 73.86 72.91
Iris 91.89 91.87 92.01 91.65 90.84
Sonar 78.50 79.36 81.26 79.16 76.21
Ionosphere 90.43 90.53 90.48 90.21 89.36
CNAE-9 88.39 88.67 85.98 86.29 85.04

Table 6
Dependence of classification accuracies % of the DES-CD c-opt using heterogeneous
ensembles from γ threshold.

Benchmark database name 0:2Dmax 0:4Dmax 0:6Dmax 0:8Dmax

Breast C.W. 97.67 98.01 97.26 95.43
Biomed 89.93 89.27 84.59 83.23
Glass 73.86 75.21 69.83 65.91
Iris 96.81 97.21 96.98 96.57
Sonar 81.03 79.96 74.69 71.59
Ionosphere 87.29 89.97 84.98 79.51
CNAE-9 86.51 87.21 87.55 86.95

Table 7
Dependence of classification accuracies % of the DES-CDc-opt using homogeneous
ensembles from γ threshold.

Benchmark database name 0:2Dmax 0:4Dmax 0:6Dmax 0:8Dmax

Breast C.W. 96.02 95.69 95.23 94.89
Biomed 86.31 86.38 85.27 83.04
Glass 73.08 72.19 67.59 62.67
Iris 90.86 90.37 90.29 88.29
Sonar 74.98 77.05 67.98 65.29
Ionosphere 89.25 89.88 86.27 80.53
CNAE-9 87.05 87.86 85.22 83.23
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Based on these experiments, it can be concluded that DES-CDd-opt

has obtained the best results thanks to a hybrid approach to
the problem. Therefore, the ensemble of classifiers selected by the
proposed method consist of only competent classifiers. At the same
time, those classifiers commit various errors. This is the reason why
the DES-CDd-opt algorithm was able to increase the quality of
recognition. The second proposed algorithm DES-CDc-opt has acquired
worse because choosing a highly diversified classifiers created the
possibility of rejecting competent ones.

5. Conclusion

In this study a novel method for dynamic ensemble selection
has been proposed using probabilistic measures of competence
and diversity of member classifiers. These measures are calculated
on the basis of the original concept of the randomized reference
classifier (RRC). RRC acts – on average – as an evaluated classifier
and hence its probability of correct classification can be considered
as the competence of that classifier and the probability of mis-
classification can be used for the construction of measuring
ensemble diversity.

Results of the experimental investigations indicate that the
proposed method can eliminate weak classifiers and keep
the ensemble maximally diverse. This approach leads to the DES
system for which classification accuracy (for 7 benchmark datasets
regardless of the ensemble type used) is better than the classifica-
tion accuracy of the DES system using only the competence
measure or, on average, is very close to this accuracy but achieved
by means of a smaller number of classifiers in the ensemble.

To the best of the authors' knowledge, the proposed approach
to the DES system construction is the first method that simulta-
neously uses the measure of competence of base classifiers and the
diversity measure of an ensemble.
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