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Abstract
The mechanical behaviour of woven fabric under compression is investigated
using 3D finite element analysis in conjunction with a nonlinear mechanical
model for the yarn. The FE model captures the main fabric compression
response, including geometric and material nonlinearities, yarn interactions and
hysteresis. It is found that the behaviour of fabric in compression is governed
by the stiffness of the yarn cross-section and the transverse–longitudinal shear
modulus. The stiffness along the yarn direction has no noticeable effect. The
model is sufficient to simulate the known responses of a fabric as well as to
predict the behaviour of novel fabrics based on the properties of the component
yarns and yarn interactions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Woven fabric materials find numerous important applications ranging from aerospace and
textile composites to apparel. In recent years, many cutting-edge studies have focused on
certain special-purpose applications of fabrics, such as body armour for ballistic protection [1]
and fabric integrated with flexible electronics for communications [2]. Conversely, engineers
carefully design fabric architectures to obtain the best possible combination for cost, weight,
strength and performance. All these aspects require a thorough understanding of the
mechanical behaviour of woven fabrics. There is thus a significant need for modelling of
the mechanical behaviour and performance of textiles.

Woven fabrics are made of yarns which are woven in one of several different patterns.
Each yarn, in turn, comprises many fibres which are bundled together into a single structure.
The material properties of fabric are greatly affected by their underlying microstructure. There
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are many challenging aspects of modelling fabric behaviour, for example, even the geometry
of relatively simple plain weave fabrics is complicated and requires careful modelling to obtain
realistic results.

The aim of this study is to develop a computational modelling approach for FE analysis of
fabric compression. This will be applied subsequently to determine the mechanical behaviour
of woven fabric under other loading conditions, such as tension, shear and bending, as well as
combinations of these. These simulations are targeted to determine the theoretical dependences
of fabric mechanical performance on its component properties and structural parameters, and
to identify the primary deformation mechanisms under different loading conditions. The
simulations will be used to:

• predict the behaviour of fabrics based on the properties of the component yarns and yarns
interactions;

• assist engineers in selecting yarns and fabric structures for specific applications;
• create a database for fabric and fabric-based material optimization;
• enable a virtual fabric design/testing system to reduce cost and lead-time in introducing

new textiles;
• predict the results of changes of mechanical and geometric properties of a fabric due to a

manufacturing process such as composite forming or automatic material handling;
• provide a detailed understanding of the behaviour of woven fabric under a variety of

external loadings to guide the development of analytical modelling.

The focus of this paper is on prediction of woven fabric compression. There has been
considerable research in this area both in the textiles and composites literature. Studies
generally involve either empirical/semi-empirical analytical modelling or mechanical (finite
element based) modelling. There are many challenges to develop analytical models which can
accurately capture the important aspects of fabric deformation in compression.

van Wyk [3] derived a relation between pressure and volume for a random wool fibre
assembly under hydrostatic compression on the assumption that the compression of the mass
resulted only in bending of the fibres. Toll and Manson [4] related applied pressure P to
fibre volume fraction Vf , using a power law, P = cV n

f , where c and n are empirical constants
to characterize the compressibility of random fibre assemblies. van Wyk’s model and the
power law have been used widely and extended to fit experimental data on textiles and textile
composites, as reviewed by Robitaille and Gauvin [5] and Sherburn [6]. Gutowski and Cai
developed a theory for the deformation behaviour of aligned fibres suitable for production of
composite materials [7,8]. The path of each individual fibre was assumed to follow a sine wave.
However, the above models are unable to predict compression properties without empirical
parameters. To overcome this limitation, several researchers have employed energy methods to
tackle the difficulties in analytical modelling of fabric compression [9,11]. In this method, the
deflection of the fibre elements was assumed to be proportional to the compression of the total
fibre assembly. The energy required to cause this deflection was added for all fibres to obtain
the total energy for fabric compression. The results of this method were not compared with
experimental data. Lee and Carnaby [12, 13] conducted a similar study on uniform random
assemblies of fibres using an energy method; however, this method was not applied to aligned
fibre assemblies.

On the other hand, by taking advantage of the hierarchical nature of fabrics, several
researchers related applied pressure to preform thickness by modelling yarn deformations [14,
15]. They treated a yarn as an elastic beam and employed beam bending theory to model
deformation in compaction of woven fabrics. In Chen and Chou’s model [14], the yarn cross-
section shape can deform, but the yarn cross-sectional area (and thus its fibre packing state)
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remains unchanged during compaction. In that case the compaction of a single layer of
woven fabric is attributed to yarn waveform flattening deformation only. In contrast, Lomov
et al [15] described a predictive model, based on detailed yarn mechanical characterization
data. This included yarn compression and deformation of the yarn waveform (yarn flattening).
Reasonable agreement was reported between experimental compaction data and predictions
for two plain weave fabrics, although it was noted that accuracy of fabric geometry predictions
may be limited by inability to model yarn widening. The model proposed by Chen et al [16]
considered not only the two deformation mechanisms (compression of yarns and change
of yarn crimp) but also the surface area on which the externally applied load acts, as well
as the interaction area of between yarn crossovers. However, in Chen et al’s model, yarn
compaction was modelled using Gutowski’s model [7] and yarn waveform flattening was also
considered via a simple fibre bending model. This was applied to a variety of woven fabrics,
and good agreement with experimental data for a plain weave fabric was reported by selecting
an appropriate value for the empirical fibre waviness parameter. Additionally, a common
limitation of the above models is that the friction between yarns and friction between fibres
within a yarn are ignored. Energy dissipation due to the friction is one of the most important
mechanical behaviours of fabric in compaction, especially for dry fabrics [17].

The use of the three-dimensional finite element method allows better modelling of the
complex weave geometry and the spatially varying properties of the yarn. However, a realistic
description of the weave geometry and the development of appropriate material models can
also be formidable challenges. At present no published studies exist on this topic.

A great deal of research has been performed on analysing the compression behaviour
of fibre assemblies. However, there has been no general detailed modelling study of fabric
compression. The aims of this study are to model woven fabric compression behaviour,
including geometric nonlinearities, material nonlinearities, energy dissipation due to friction
and dependences of fabric mechanical performance on its component properties and structural
parameters.

The organization of this paper is as follows: section 2 describes in detail the proposed
unit cell fabric model, including geometric modelling and material modelling. Modelling of
fabric in compression is discussed in section 3, focusing on the contributions of geometric
nonlinearities and material nonlinearities, followed in section 4 by an investigation of the
significance of different parameters on fabric compression response.

2. Model development

2.1. Geometric modeling

Fabric unit cell geometries were generated using TexGen2, in-house software, which is
described in detailed in [6]. Here, a brief description is given of how the unit cell geometries
were generated for a glass fibre plain weave (Chomarat 150TB) and a satin weave (Chomarat
800S4-F1).

2.1.1. Yarn path. In TexGen, the yarn path is represented by the yarn centre line in three-
dimensional space. Thus the yarn path is defined as position in 3D space as a function of
distance along the yarn. The most flexible and generic way to describe such a yarn path is to
specify a number discrete positions along the length of the yarn, known as master nodes, and to
interpolate between these points. Generally, to obtain an accurate yarn path for woven fabrics

2 TexGen is available as open source at http://texgen.sourceforge.net/
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Figure 1. Elliptical yarn cross-section assumed (a), µCT analysed (b) Chomarat 150TB (top),
Chomarat800S4-F1 (bottom).

it is sufficient to specify one or two master nodes per crossover as long as the interpolation
function is suitable. The interpolation function must have at least continuity C1, i.e. there are no
gaps in the yarn path and the tangent varies smoothly along the length of the yarn. A common
solution to this problem is to use splines (piecewise polynomial functions). In its most general
form a polynomial spline S : [a, b] → R consists of polynomial pieces Pi : [ti , ti+1) → R,
where

a = t0 < t1 < · · · < tk−2 < tk−1 = b. (1)

That is,

S(t) = S0(t), t0 � t < t1,

S(t) = S1(t), t1 � t < t2,

. . . . . .

S(t) = Sk−2(t), tk−2 � t � tk−1. (2)

The given k points ti are called knots. The vector t = (t0, . . . , tk−1) is called a knot vector
for the spline. In this study, b-splines were used to represent yarn centre-lines for the two
weaves.

2.1.2. Yarn cross-section. The yarn cross-section is defined as the 2D shape of the yarn when
cut by a plane perpendicular to the yarn path tangent. In TexGen, yarns are treated as solid
volumes and the cross-section is approximated to be the smallest region that encompasses all
of the fibres within the yarn (it will generally be convex). The outline of the cross-sections can
be defined using 2D parametric equations. Various shapes can be used to accurately represent
the cross-sectional shape of a yarn.

In this study, the yarn cross-section for the plain weave and the satin weave is modelled
as an ellipse which was validated using x-ray microtomography (µCT) analysis [6] as shown
in figure 1. An ellipse can be mathematically described as

C(t)x = w

2
cos(2πt) 0 � t � 1, (3)

C(t)y = h

2
sin(2πt) 0 � t � 1, (4)

where w is the width of yarn cross-section, h is the height of yarn cross-section.

2.1.3. Yarn surface. After the yarn path and cross-section are defined, the two need to be
brought together. The yarn is usually uneven, thus the cross-section of yarn should be defined
as a function of distance along the yarn. TexGen implements a simple geometric algorithm
to deal with this issue, starting with an elliptical geometry which is modelled locally to avoid
interference between yarns volumes [6].
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Table 1. Unit cell geometry.

Yarn spacing Yarn width Fabric thicknessa

(mm) (mm) (mm)

Chomarat 150TB plain weave 1.66 0.82 0.30
Chomarat 800S4-F1 satin weave 3.16 3.16 1.16

a Thickness at pressure of 5 gf cm−2.

Figure 2. Chomarat 150TB (left), modelled unit cell (middle and right).

Figure 3. Chomarat 800S4-F1 (left), modelled unit cell (middle and right).

Table 2. Material properties.

Areal Fibre Total yarn Volume Fibre volume
density density volume of fibres fraction of yarn
(g m−2) (g cm−3) (mm3) (mm3) (%)

Chomarat 150TB
plain weave 150 2.62 1.38 0.74 0.55

Chomarat 800S4-F1
satin weave 780 2.62 115.6 47.54 0.41

2.1.4. Unit cell. The fabric thickness was measured using the Kawabata Evaluation System
for Fabrics (KES-F) [18] at a pressure of 5 gf cm−2. Yarn width and yarn spacing were measured
by ruler rounded to two decimal places. In addition, based on the manufacturers’ specification
the two weaves are assumed to be balanced, i.e. both the warp and weft have the same geometric
and material properties. The measured and modelled fabric geometric parameters are given
in table 1. The fabric unit cells of the plain weave and the satin weave and the corresponding
unit cells generated by TexGen are shown in figures 2 and 3.

Table 2 gives the material properties of the two weaves. The areal density of the fabric was
obtained from the manufacturer’s data sheet, and the density of E-glass fibres was obtained
from Reinhard et al [19]. The yarn volume was calculated from the geometric model. Fibre
volume fraction Vf was calculated by

Vf = total yarn volume/fibre volume.
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2.2. Material modelling

2.2.1. Linear elastic orthotropic material model. In this study, yarns are modelled as
continuum solid bodies. In a continuum description, the yarn is treated as an orthotropic
material. The longitudinal direction is defined by 11, which is parallel to fibres; the transverse
plane is described by the directions 22 and 33, which are characterized by a plane of isotropy
at every point in the material.

The orthotropic behaviour of the yarn is typically described using a 3D stiffness matrix
containing nine independent constants [20]:




ε11

ε22

ε33

ε23

ε13

ε12




=




1

E11
− ν12

E11
− ν13

E11
0 0 0

− ν12

E11

1

E22
− ν23

E22
0 0 0

− ν13

E11
− ν23

E22

1

E33
0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G13
0

0 0 0 0 0
1

G12







σ11

σ22

σ33

σ23

σ13

σ12




. (5)

The yarn is transversely isotropic, hence

E22 = E33, ν12 = ν13, G12 = G13.

When loading starts, the fabric is compressed, and the cross-sectional shape of the yarn changes
as the yarn itself is compacted. Hence, the longitudinal Young’s moduli and shear moduli of
the yarn increase with increasing fibre volume fraction.

The longitudinal modulus E11 can be approximated as a linear function of fibre volume
fraction Vf of a yarn [20] and fibre modulus Ef by the following equation:

E11 = EfVf . (6)

This assumes all fibres within a yarn are perfectly parallel and hence no stiffening of the yarn
occurs due to fibre straightening at low strains.

In this study, for simplicity a constant E11 (E11 = EfVf0, Vf0 is initial fibre volume fraction
of the yarn) was used in the simulations.

The yarn transverse–longitudinal shear behaviour is governed mainly by the sliding of
fibres relative to each other. As such this cannot accurately be represented by an elastic
modulus G13 alone. There are no experimental data available for yarn transverse–longitudinal
shear modulus. McBride assumed that the longitudinal shear modulus is proportional to the
transverse shear modulus by a constant of proportionality set to a value of 2 with no further
explanation [21]. Boisse et al [22] used a small value for the property but they did not specify
the value used in plain weave glass fabric tensile FE modelling. This issue is explored later in
this study.

2.2.2. Nonlinear material behaviour. The transverse stiffness, E33 (E22 = E33), increases
during compaction as the gaps between fibres are reduced. Finally, the stiffness tends to an
asymptotic value, which is very large in comparison with that at low strain. It has been shown
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Figure 4. Simulation set-up for plain weave unit cell compression.

that the compaction curve of pressure, P , versus fibre volume fraction, Vf , can be approximated
by a power law requiring only two fitting parameters, a and b [4]:

P = aV b
f . (7)

In order to create a constitutive material model based on equation (7), it is necessary to convert
it into a relationship between stress and strain, providing modulus E33 as a function of strain.
The details of this procedure are described in [6]. The result is

E33(ε33) = σ33

ε33
= −a(Vf0/eε33)b + a(Vf0)

b

ε33
. (8)

The initial value of E33 is

E33(0) = lim
εT →0

σT

εT
= dσT

dεT
= ab

(
Vf0

eε33

)b

, (9)

where Vf0 is initial fibre volume fraction; a and b are experimentally determined parameters.
The parameters a and b in the expression may exhibit dependence on the fabric state. In the
current model implementation, these parameters are considered as constant material properties,
with values a = 1151, and b = 12.24 obtained by fitting McBride’s E-glass yarn compression
data [21] using the power law (equation (7)).

Due to the transverse isotropy, the transverse shear behaviour is characterized by

G23 = E33

2(1 + ν23)
. (10)

The constitutive yarn models (equations (8) and (10)) have been implemented into
ABAQUS/Standard, an implicit finite element code, through a user-defined material subroutine
(UMAT).

2.3. FE implementation

The plain weave and the satin weave unit cells were discretized using 8818 and 32384
4-noded tetrahedral three-dimensional continuum elements, respectively. The predictions were
practically insensitive to further refinement in mesh density. Two compression platens were
created using rigid elements with steel properties (E = 200 GPa and Poisson’s ratio = 0.3).
The unit cell was placed between the two platens as shown in figure 4. The lower platen
was fully constrained. Compression was applied at a constant displacement rate of the upper
platen. The initial platen separations were 0.302 mm and 1.19 mm for the plain weave and
the satin weave simulations, respectively, as used in experimental studies for validation. Due
to geometrical nonlinearities, the model is analysed according to large strain theory, i.e. the
nonlinear geometry option was used. Node sets were generated at the ends of each yarn. Tie
constraints were applied to the node sets using a master–slave surface approach to implement
periodic boundary conditions to reflect the repeating nature of woven fabric. Multiple contacts
were defined between yarns and the unit cell surfaces with the platens using the surface–surface

7
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Table 3. Input data for geometric nonlinearity simulations.

E11 (MPa) E33 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

Plain 40150 75 5 31.25 0.2 0.2
Satin 29930 15 5 6.25 0.2 0.2

approach. Average frictional coefficients (0.3) and (0.5) were chosen from testing results for
contacts between yarns and yarns with the platens, respectively [23].

An automated modelling approach developed by Crookston et al [24] has been employed
in this study. A Python scripting interface was created to enable TexGen textile models to
be reproduced within a mechanics modelling environment in an automatic way. The unit cell
geometry generated by TexGen is saved and the script reads the file. Subsequently, the script
loops over the textile hierarchy and retrieves the geometric data defining the outer surfaces of the
yarns. These points are used for lofting solid yarn bodies within Abaqus/CAE. Subsequently,
operations are incorporated which perform Boolean subtraction to trim yarns to a single unit
cell and to generate the platens, and to define materials and boundary conditions as well as
contact between the yarns and the platens. Mesh generation operations are also undertaken in
the script. The script creates a job which is submitted for analysis.

Simulations were performed for the following properties:

1. unit cell compression with a linear elastic orthotropic material model (equation (5));
2. unit cell compression incorporating nonlinear transverse behaviour (equations (8) and

(10));
3. unit cell compression with different yarn mechanical properties and geometries.

3. Modelling of fabric compression

3.1. Geometric nonlinearity

A set of uniaxial deformations were applied in order to assess the geometric response. Here, the
material parameters for the unit cell model were specified as in table 3. Longitudinal modulus,
E11, was calculated using equation (6), using Ef = 73 GPa. E33 was simply selected to achieve
a reasonable comparison with experimental results. Data for the yarn transverse–longitudinal
shear behaviour, G12 (G12 = G13), were not available in the literature, hence a small value
(5 MPa) was used. A Poisson’s ratio of 0.2 for both transverse and longitudinal directions of
the yarns was selected from the literature [25].

Compression tests on the plain weave and the satin weave were carried out on standard
testing equipment (Hounsfield). Fabrics were compressed between two parallel plates, with
force measured using a load cell and displacement measured using a displacement transducer
(LVDT).

A comparison between the predicted and measured pressure–strain curves is given in
figure 5 for the plain weave and the satin weave using the linear material model, i.e. the
six engineering constants. Strains were calculated from displacement divided by unit cell
thickness. This figure shows that the linear elastic orthotropic material model is suitable for
the first deformation/small load regime only, as expected. Geometric nonlinearity effects alone
are significant in the compression response of the two weaves. These effects arise from the
undulation of the yarns and are a significant factor in compressive behaviour. However this is
not enough on its own to characterize fabric compression behaviour; proper modelling of the
material nonlinearity is essential.

8



Modelling Simul. Mater. Sci. Eng. 16 (2008) 035010 Hua Lin et al

1050 15 20 25 30 35 40
0.0

0.5

1.0

1.5

2.0

2.5

3.0
 EXP
 FE

P
re

ss
ur

e 
(M

P
a)

Strain (%)

0.0
0 10 20 30 40

0.5

1.0

1.5

2.0

2.5

 EXP
 FE

P
re

ss
ur

e 
(M

P
a)

Strain (%)

Figure 5. Comparison between experimental data and FE analysis for a plain weave (left) and satin
weave (right) using the linear material model.
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Figure 6. Comparison between experimental data and FE analysis for the plain weave (left) and
the satin weave (right) using the nonlinear material model.

3.2. Material nonlinearity

Using equations (8) and (10) to calculate E33 and G23 separately, figure 6 shows that the
nonlinear material model gives an improved prediction of the pressure–strain behaviour of
both woven fabric unit cells. Comparison between figures 5 and 6 indicates that nonlinearity
of yarn compression is predominant, while the geometric changes and contact nonlinearity are
also important. It should be noted that no curve fitting was required to obtain the agreement
displayed in figure 6. All properties were taken from table 3, apart from E33 which was based
on published yarn compaction data as described in section 2.2.2.

3.3. Localized deformation

The simulated deformed unit cells for the plain weave and the satin weave are shown in figure 7.
Contact stresses in crossover regions are shown in figure 8.

In the case of fabric compression, the stress is localized in a small area in contact with the
upper platen. This, in fact, shows that the capability of the fabric to sustain loads is limited
by this localized behaviour. In compression, the central part of the yarn cross-section carries
the load. First a flat region is developed on a yarn cross-section in two component yarns
(figure 7), and as a result the cross-section deforms and the yarn is compacted. At this time the
two side parts of the yarn cross-section deform due to the action of lateral compression, but
no compaction occurs in these areas because the fibres do not carry any load. The deformed

9
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Figure 7. Predicted displacement distribution in the unit cells (left) plain weave, (right) satin
weave.

Figure 8. Predicted pressure (MPa) distribution in yarn contact regions for the plain weave.

cross-section is assumed to have different fibre volume fraction in different areas. The fibre
volume fraction of the contact area of the central region, Vf , increases during the process of
compaction, while that at the yarn edges remain at the initial fibre volume fraction, Vf0.

The compressive force is not evenly distributed between regions of warp–weft contacts
(figure 8). Compressive force acting on yarns is distributed over a small area of warp–weft
contacts, while the area of the contact region is dependent on the geometry and mechanical
properties of the yarns, as well as the loading condition.

These simulations reveal that during compaction, not all the sections of a yarn carry
the same load simultaneously, and only those at yarn crossovers carry the external load. The
external load is equivalent to the internal forces acting on the fabric mesostructural components
(yarns). These forces are due to yarn tension, yarn bending moments, moments between yarns
and contact forces. However, which internal forces dominate the deformation depends on the
loading conditions. In the case of unit cell compression, yarn bending and compression are
thought to have a significant effect on the global deformation [26, 27]. The change in fabric
thickness arises from yarn compression and changes in yarn crimp. The compression force
changes the dimensions of compressed yarn cross-sections and changes the yarn crimp height,
leading to fabric thickness reduction.

Additionally, the area for carrying external load for the satin weave is greater than that
of the plain weave, i.e. the compressive force is distributed in larger regions of warp–weft
contacts for the satin weave. This could be one of the reasons why the satin weave is more
compliant (see figure 6).

3.4. Energy dissipation

The whole system energy and strain energy are plotted in figure 9 for the plain weave model.
The strain energy is obtained as the sum of the energies of all elements within the unit cell,

10
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Figure 9. Energy in the system for plain weave unit cell compression.
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Figure 10. Predicted loading and unloading cycle for plain weave.

comprising yarn tension, compression, shearing and bending. The compaction of a single
layer of woven fabric involves two important deformation mechanisms, yarn cross-section
deformation and compaction and yarn bending deformation accompanied by yarn flattening.
Hence, compression strain energy is mainly from yarn compression and yarn bending. Within
the high-stress deformation regime, the energy associated with yarn bending is small compared
with that associated with yarn compression. The contribution of bending deformation to
compression is mainly from the free zones.

The difference between external whole system energy and strain energy is due to friction
dissipation between yarns. Friction dissipation is also shown in a loading and unloading cycle
(figure 10). In comparison with experimental data [17], friction dissipation is underestimated
as friction between fibres within yarns was not included in the simulation due to yarns being
modelled as continua. A more sophisticated yarn model, which models inter-fibre friction, is
needed to accurately predict hysteresis in fabric compression behaviour.

4. Parametric study

To evaluate the influence of material and geometric parameters on the overall mechanical
behaviour of the unit cell in compression, a parametric study was carried out for the plain
weave model.
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Figure 11. Effect of E11 on plain weave unit cell compression.

Figure 12. Effect of E33 on plain weave unit cell compression.

4.1. Effect of material properties

A set of nonlinear elastic uniaxial deformations was applied in order to assess the dependence
of material compression on stiffness in different directions.

Figure 11 shows that variation of E11 has no effect within a large range of values.
This is due to the fact that material behaviour and loading conditions both determine the
response of the material. Here the compressive load causes the through-thickness strain to
be much greater than in the longitudinal direction (no external loading in the longitudinal
direction). The material used in this study is strongly orthotropic, i.e. the stiffness in
the longitudinal direction is much greater than that transverse to the yarn, consequently,
the longitudinal strain is negligible. The assumption that the compression property is
independent of the tension is reasonable at low load range as described in Kawabata’s analytical
modelling [28].

Figure 12 illustrates the effect of using different initial fibre volume fractions (Vf0) in
equation (8). This shows that the transverse Young’s Modulus, E33, dominates the compressive
behaviour of the fabric, as expected.

In the material law for an orthotropic material, equation (5), there are no coupled terms
in the stress–strain relationship. If a load is applied in three principal directions on a straight
yarn, there is no shear deformation. However, in the simulations, the yarns are not only
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Figure 13. Effect of G13 (G13 = G12) on plain weave unit cell compression.
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Figure 14. Effect of yarn height on plain weave unit cell compression.

in compression but also in shear. This is because the yarns are curved. Consequently, the
transverse–longitudinal shear modulus influences the compression behaviour as shown in
figure 13. However it is clear that the dependence is relatively weak and that yarn compression
is by far the most important mechanism.

4.2. Effect of yarn shape

The relationships between yarn height and pressure are shown in figure 14 using the nonlinear
material model and keeping other parameters constant. The model with greatest yarn height
was shown to be the most difficult to compact, while the thinnest unit cell was easiest
to compact. The physical basis for this result is that the yarns were modelled as elastic
orthotropic solid bodies. Hence the thicker yarns have greater bending rigidity and the meso-
bending deformation of the yarn physically contributes much less to resisting macro unit cell
compaction. Consequently, the fabric compressibility can be reduced when the yarn height is
increased.

Moreover, the yarn height directly influences yarn crimp interchange which is important
since this directly affects the in-plane stiffness and the geometric nonlinearity. The yarn crimp
amplitude increases with increasing yarn height, and consequently the pressure–displacement
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Figure 15. Effect of yarn width on plain weave unit cell compression.
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Figure 16. Effect of yarn spacing on plain weave unit cell compression.

response contains a larger average geometric nonlinear response. The thinner yarn gives a
smaller average effect of geometric nonlinearity.

The influence of varying yarn width is shown in figure 15 under the same yarn spacing
and height. Fabric with wider yarns is stiffer for two reasons. From the mechanics viewpoint,
the bending rigidity increases linearly with yarn width. From the geometric point of view,
the contact area at crossovers increases with increasing yarn width. The yarn meso-bending
deformation will dominate the compressive behaviour of the unit cell when the yarn width is
sufficiently small.

4.3. Effect of yarn spacing

Clearly, due to meso-bending deformation, the contribution of the curved yarn segment to
compaction of the unit cell is quite different from that of the straight segment. Thus unit
cells with larger yarn spacing are more compliant due to a higher ratio of free segment to
contact region. The meso-bending deformation of the yarn physically contributes much more
to compaction resistance, which results in greater capacity to resist compression as shown in
figure 16.
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5. Discussion and conclusions

A FE unit cell compression model has been developed for woven textiles. One of its major
advantages over other approaches is that it is able to capture the most important characteristics
of the material under compressive loading. Nonlinear geometric and nonlinear material
behaviours are the most important features to be modelled. Yarn compaction and, to a lesser
extent, yarn bending deformations are the main mechanisms which influence the compaction
behaviour.

The model results have confirmed that unit cell compression behaviour is controlled by
the transverse yarn stiffness and transverse–longitudinal shear behaviour. Yarn longitudinal
stiffness has essentially no influence. Friction between yarns has a small effect during cyclic
loading. The compression behaviour of a unit cell also depends on yarn shape and yarn spacing.
These findings could inform analytical modelling development and, ultimately, textile design.

Although the model presented here is able to capture the most important responses of
a unit cell to compressive loading, a fundamental issue is that the yarn was modelled as a
continuum solid body which is unable to accurately capture real yarn deformation mechanisms.
A yarn is a bundle of fibres. The meso-bending and shearing behaviour and cross-section
compaction behaviour of the yarn are very complex. The internal fibre strains cannot be
correctly represented by traditional continuum elements. Development of a finite element
which can capture the internal fibre strains either by replacing continuum elements or by
working in conjunction with them may solve the issue. This may be achieved, for example,
by embedding truss elements inside continuum elements to represent each individual fibre or
a group of fibres. The truss elements could represent the tensile and flexural modulus of the
fibres. Another hurdle is in finding data for transverse–longitudinal shear behaviour for yarns.
This indicates a requirement for fundamental modelling of yarn behaviour. The authors are
currently studying this problem as part of collaborative research.
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