Resolution enhancement of images using fractal coding
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ABSTRACT

The code generated by fractal coding of a digital image provides a resolution-independent representation of the image
as this code can be decoded to generate a digital image at any resolution. When the image is decoded at a size larger
than the original encoded image, image details beyond the resolution of the original image are predicted by assuming local
self-similarity in image at different scales. In this paper, we (1) present a formulation of how decoding may be done at a
higher resolution, (2) evaluate the accuracy of the predicted details using a frequency analysis of fractally enlarged test
images, and (3) propose a method for fractal resolution enhancement without the low-frequency loss of information due to
fractal coding.
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1 CLASSICAL IMAGE INTERPOLATION

Image Interpolation is an important operation in image processing and is used for image enlargement. One classical
method for image interpolation is based on sampling theory and is done by using the frequency components of the smaller
image for the low frequency components of the enlarged image, and by assuming that the high-frequency components of
the enlarged image are all zero.! This principle is shown in Figure 1. In this approach, it is basically assumed that the
enlarged image is bandlimited. The high-frequency components of the enlarged image are assumed to be zero because these
information of the original image have been lost in the sampling process. Although bandlimitedness is usually assumed
in the Fourier or DCT domain, it may also be assumed in the wavelet domain. For example, interpolation assuming
bandlimitedness in the Haar wavelet domain is equivalent to image enlargement by pixel repetition. The bandlimitedness
assumption, however, is not generally true, and if the enlarged image had been obtained by a direct sampling of a continuous
image, it would have had non-zero high-frequency components.

2 FRACTAL CODING

The essence of most fractal-based image coding methods is to approximate each segment of the image by applying a
(contractive) transformation on some bigger segment(s) in the image. One can then reconstruct the image (with some
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Figure 1: Classical image interpolation

error) by using only the parameters of the transformations.? In these methods, most of the information in the image is
encoded by coding relationships among different segments (of different sizes) of the image. These methods are based on
Local Iterated Function Systems.® The first automatic image compression algorithm based on this theory was implemented
by Jacquin.?

Fractal coders typically encode an image by representing it with the parameters of a dynamical system whose attractor
is close to the given image. The analysis provided in this paper is for the 1-D case. For the 2-D case the analysis and the
properties are very similar to that of the 1-D case.

We begin with real discrete-time signals of finite length N. These signals may be represented by N-dimensional vectors
in R". Let

TN

be such a signal. (In the 2-D case, x may, for example, be generated by scanning an image row-by-row.) Then x may be
coded by designing a transformation 7 such that the dynamical system described by the equation

Xn+1 = T(xn) (1)
has the property that for any initial vector xo € R,
T (x0) = x,

and the number of bits needed for representing 7 is smaller than that of x. The Contraction Mapping Theorem? provides
a sufficient condition for convergence of (1).

In practice, linear transformations are usually used, so 7 may be represented by matrices A and B such that
T(x)=Ax+B

and (1) may be written as
Xn4+1 = Axn + B.



In fractal image compression, each signal is typically partitioned into K range blocks x;, 4 =1, 2,..., K, each of size
M, ie.,

N = KM,

T(i—1)M+1
T(i—1)M+2
X = . y

L T(i-1)M+M

and for each x;, a domain block d; of size LM (with L > 1) and an operator 7; : R*™ — RM is found such that

xzzﬂ(dl):aszGdl—f—B“ 1=1,2,..., K.
B; is a shift in grayscale
bi
bi
Bi = : )
bi Jarx

and «; is a scalar factor. P; is an M x M matrix generated by a permutation of the rows of the identity matrix. It
corresponds to a shuffling of the elements of the domain blocks, and in the 2-D case can, among other things, apply
rotation of blocks by multiples of 90 degrees, and/or reflection against vertical, horizontal, or diagonal axis.

G is a shrinking matrix, which in the 1-D case typically has the form

w 0 --- 0 O
O w -+ 0 O
G = ,
0 o0 w 0
0 o 0 W | srm
where
i 1 1
W_I:f T f]le'

However, G may be generalized to represent decimation, i.e., lowpass filtering followed by subsampling, in which case it

may be written as
Guxim =SuximFruxoum

where F is the lowpass filtering operator and S is the subsampling matrix and may be written as:

s 0 --- 0
0 s -~ 0
S = . ,
00 S dyxim
where
s=[1 00 -~ 0] .
In the 2-D case, F should represent a 2-D filtering operator and S should represent a 2-D subsampling by a factor L. The
operator 7; transforms a domain vector d; to an approximation of a range vector x;. All the operators 7;,1=1,2,..., K,

together define a transformation 7 for x such that

x & T(x) (2)



where
Tx) = > Hi(Ti(di)

= Z H; ((a;P:Gd;) + By)

i=1

K K
i=1 i=1

K;,i=1,2,..., K are fetch operators, generating d; from x, i.e., d; = K; x. If we denote the index of the first element
of the domain block corresponding to x; by I;, then

K; = [ Ormxi—1) Iomxem  Opmx(N—(1;—1)-LM) ]

LMxN "~
H;,i=1,2,...,K are put operators generating a component of x from x;, i.e.,
OG-1)mx1
Hx; = X; ,
Ok—iymx1 1 ny1
OG-1)mxm
H, = Tnvexm .
Ok—iymxm | yy s
Note that (3) has the form
T(x) = AnxnX+ Byx1 (4)
where A is of the form LM
a1P1G l M M
a2 PG M
A = asP3G M
axPrG M

and the horizontal location of each matrix a;P;G is determined by I;. B has the form

B:

B:
B =

Bk

Nx1



In fractal coders, the matrices G and H;, i = 1, 2,..., K are typically independent of x and are fixed both at the
encoder and the decoder, and are not part of the code. But matrices B;, K;, P; and values «;, for i =1, 2,..., K, need
to be specified for the decoder through the code.

Due to the structure of B;, it can be specified by sending b;, i = 1, 2,..., K, i.e., for each range block specify the offset
of the mean of the range block with respect to the mean of the domain block. To specify K;, one needs only to specify
Ii,i=1,2,...,K, ie., for each range block specify the address of its domain block. P; typically represents one of a few
types of permutations, and one needs to specify which one is used for each range block. Many researchers use only P; =1,
and do not need to specify it in the code. «; is quantized and included in the code.

So the information needed to fully define 7 for the decoder, are {(a, b;, I;, P;), 1 =1,2,...,K}.

3 PREDICTION OF HIGHER RESOLUTION INFORMATION
FROM LOWER RESOLUTION

Multiresolution analysis has many applications in image coding and analysis. Some wavelet-based multiresolution
image compression methods, like zerotree,® implement some type of prediction of higher resolution information from lower
resolution information. Fractal coders also do this type of prediction, though in a different way.%7

The fractal code generated by fractal encoding of a digital image describes relationships (in the form of affine functions)
between various segments of the image and is independent of the resolution of the original image. In other words, the fractal
code is a resolution independent representation of the image and theoretically represents an approximation of the original
image inthe continious-space domain. A decoder may decode this code to generate a digital image at any resolution. The
resolution of the decoded image may be higher than the resolution of the original image. This increase of resolution is
sometimes referred to as fractal zoom. This concept must be distinguished from the fractal interpolation that is studied in
the mathematical literature.

The higher resolution obtained is not created by a simplistic technique such as repeating the pixels of the image, but by
actually generating more detail. In fact, the additional higher resolution information is generated using information from
the lower resolution image. When an image is reconstructed at the same resolution as the originally encoded image, in the
decoding process the domain blocks of the image are shrunk (lowpass filtering followed by subsampling), which eliminates
some of the details of the domain blocks. However, if the image is reconstructed at a higher resolution, in the shrinking
of the domain block, the details of the domain block are only shrunk to generate the extra resolution in the range block.
In fact, details of the domain blocks are used for missing details of the range block. The details in the domain block are
also generated to some extent from details of other domain blocks, used for encoding each part of it. In other words, it
is implicitly assumed that if the range block is similar to its corresponding domain block, then the details of the range
block (which are beyond the resolution of the originally encoded image) are also similar to the details of the domain block
(which are within the resolution of the encoded image). This principle is demonstrated in Figure 2. This assumption is
a typical property of self-similarity of fractal sets at different scales, and the resolution independence is a property of the
code generated by fractal-based methods.

For fractal-based resolution enhancement, an N7 x N> image is first coded using the fractal method to generate a code.
Then the decoder generates an s/N1 X sIN» image using this code. This process is shown in Figure 3. In this system, the
encoder part is that of a fractal image compression system. However, the decoder needs special provisions. The decoder
has a priori knowledge of G,H;, 7 =1, 2,..., K, and the code is made up of information that specifies {«a;, b;, ;, P;, i = 1,
2,...,K}. This information specifies the transformation 7 : RY + R™. The decoder uses the information to construct
another transformation 7 : R*" + R*N where 7 can be written similar to (3) and (4) as

=

= Asnxsnx+ Bsnxi (5)
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Figure 2: A demonstration of a simplified version of the resolution enhancement method: (a) approximate each range
block in the original image with a decimated domain block in the same image, and (b) use the domain block in place of

the range block for a higher resolution.
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Figure 3: Block-diagram of a fractal-based resolution enhancer
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Regarding P;, it must represent the same operation that P; does, but for a sM x sM block. In the 1-D case, for

example,

gives

P, =Tuxum

P; = Livxsu,



and

0 0 0 1
0 0 10
P, =
01 0 0
1 0 0 0] rum
gives
0 0 0 1
0 0 1 0
Pi=| 0t ot
01 -~ 0 0
1 0 00 sSMXsM

It can be shown that decimating X, by applying an averaging filter of length s followed by subsampling converts Xo, to
Xoo. The operator for this decimation has the form

v 0 00
0 v 0 0
Vo= P :
0 0 v 0
0 0 0 v NxsN
— 1 1 1
v = [; s z]lxs

In other words

4 PROPOSED METHOD

There have been many publications on fractal image coding, but there have not been any published studies on the
resolution enhancement feature of the fractal coders. Given a digital image, in order to evaluate the quality of an interpo-
lated version of this image, we need to know what the larger image would be if it was obtained directly by sampling of a
continuous-space image at the higher rate of the larger image. Therefore, we first take an image O, of size n X n, assuming
it is the real larger image. We then decimate (shrink) it using the classical method of lowpass filtering (to avoid aliasing)
followed by subsampling to obtain the smaller m x m image. Note that the decimation process removes the high-frequency
components of the larger image. This decimation may be done using ideal lowpass filters, for example, in the DCT domain
or in the Haar domain. In the DCT case, we denote the resulting image by Cp«rnOpr, and in the Haar case by Hyp«pn Oy, .
We then take Cpr,Op or Hpr, Oy, as the initial image, encode it using a fractal coder to obtain a fractal code, and
decode the code using the fractal decoder/magnifier back to size n x n. We denote the enlarged images by FremCmnOn
and FremHmenOn.

We can also enlarge Cr 7O, and Hy Oy, by classical interpolation where we denote the results by CremCm«nOn
and HpmHmenOrn. Note that Cp«m Cm«nOyp is an ideally lowpassed version of O, in the DCT domain, and Hp+m HpmenOn
is an ideally lowpassed version of Oy, in the Haar domain. We may then compare O,, with F,, , CppnOpn and Crpem CrenOn
at different DCT frequency bands, or compare O, with Fj, HynenOn and Hy e Hpn Oy at different Haar wavelet
bands. Note that Cr«mCm«nOn and O, are exactly the same at low DCT frequencies and at high frequency bands
CremCmenOy is all zero, and similarly for the Haar case. However, this is not true between F,« ,CpenOn and O, or
between Fi«mHpmenOn and O,.

With a coding application in mind, the final result of the final interpolation is Fr«mCm«nOn or FpemHpmenOpn. The
fractal coding is typically lossy, which means that in contrast to0 Cr«mCrm«nOn and HpmHpmnOrn, which have exactly
the same low frequency components as in O,,, the low-frequency components of the Fy,« m CrnOn and Fy p Hpn, Oy, are
different from that of O,,.! This means that decimation of Fpe mCmenOn 0 FocmHmenOn does not result in CmenOn
and Hype nOy.

However, for the typical fractal coders, the Haar transform has the property that low-frequency components of Fp«m HumnOn
are the same as the whole frequency components of Fp+ m HpmnOnr, but this is not true in DCT domain.



Table 1: Rms of the Original 512 x 512 image Osi2 and the rms error of its approximations obtained from interpolation
by a factor of 2 (i.e. rms of Oz12 — Hy10 256 Has65120512 and Os12 — F512<_255H255<_5120512), and by a factor of 4 (i.e.,
rms of Os12 — Hs12 128 H128 5120512 and Os12 — Fs12 128 H1285120512) at different Haar frequency bands.

[ [ ool di| o] m] an] do] vof ho| aof] ds| ws| ha[ as]
[ rmsof original Os12 || 133. [[ 4.0 | 10.6 | 7.3 | 266. || 12.1 | 29.6 | 19.1 | 530. || 32.9 | 77.7 | 48.2 | 1055. ||
classical || 6.7 [ 4.0 [10.6 [ 7.3 | 0.0 ] 00] 00] 00] 00] 00] 00] 00] 00
G&H 68 |49 ] 96 [64] 53] 50| 60| 51| 52| 55| 62| 52| 33
Factor | rms IS 63 || 38| 7.7 53] 75| 51| 77| 50| 106 | 78| 87| 6.0 166

2 error Fisher 6.9 || 4.5 8.7 163 7.5 7.3 8.4 7.6 6.7 7.8 7.3 7.3 3.4
Fisher pp 6.7 || 4.4 82159 7.5 7.0 8.2 7.2 7.3 8.0 7.8 7.3 6.0

N&G 8.2 || 44 9.2 163 | 11.1 9.5 | 12.4 | 10.5 | 11.9 || 11.5 | 10.3 | 11.3 14.3
classical 11.5 || 40 | 106 | 7.3 | 18.6 || 12.1 | 29.6 | 19.1 0.0 0.0 0.0 0.0 0.0
Factor | rms ISI 9.6 || 4.2 89 [ 63 | 15.2 || 11.6 | 224 | 14.7 8.1 5.5 5.9 5.8 12.7

4 error Fisher 12.1 || 48 | 106 | 7.7 | 19.8 || 13.0 | 25.3 | 17.1 | 21.5 || 21.0 | 244 | 21.0 19.5
Fisher pp || 11.8 || 4.8 | 10.3 | 7.5 | 19.2 || 12.8 | 24.3 | 164 | 21.2 || 20.7 | 23.9 | 204 19.6
N&G 13.7 || 46 | 11.0 | 7.5 | 23.5 || 13.1 | 26.9 | 17.4 | 31.9 || 27.8 | 35.4 | 30.1 33.9

Table 2: Rms of the Original 512 x 512 image Os12 and the rms error of its approximations obtained from interpolation
by a factor of 2 (i.e. rms of Os12 — Cs12 256 C2565120512 and Os12 — F512&2560256F5120512), and by a factor of 4 (i.e.,
rms of Os12 — Cs12128C1285120512 and Os12 — Fs12128C1285120512) at different DCT frequency bands.

[ | aof] di| o] M| aaf] dof wo| hof ao ] da| ws| ha| as]
[ rms of original Os12 || 133. || 3.0 | 3.9 | 6.4 | 266. || 11.4 | 13.2 | 225 | 531. || 35.8 | 34.8 | 63.7 | 1059. |

classical 4.0 || 3.0 3.9 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G&H 7.2 || 5.1 6.5 9.6 7.0 6.9 6.3 8.4 6.3 6.5 6.1 6.7 5.7
Factor | rms ISI 59 || 3.4 4.3 6.8 8.2 6.6 5.5 9.2 | 10.6 8.1 5.1 8.3 17.0
2 error | Fisher 74 || 44 6.3 9.0 8.9 8.5 8.6 | 10.2 8.0 9.2 8.1 8.8 5.4
N&G 8.4 || 4.2 6.1 8.8 | 124 || 10.2 | 109 | 13.6 | 14.2 || 14.1 | 124 | 13.0 16.9

classical || 11.5 || 4.0 | 10.6 7.3 | 186 || 12.1 | 29.6 | 19.1 0.0 0.0 0.0 0.0 0.0
Factor | rms ISI 10.1 || 4.6 4.9 7.2 | 176 || 12.3 | 16.3 | 26.7 | 104 || 10.9 6.7 9.5 13.3

4 error | Fisher 13.0 || 4.7 7.2 (102 | 223 || 145 | 17.6 | 27.8 | 26.3 || 25.5 | 23.7 | 31.7 23.5
N&G 14.3 || 4.2 6.6 | 10.0 | 25.7 || 14.0 | 17.3 | 28.4 | 36.6 || 32.8 | 31.2 | 41.2 40.3

However, when an interpolation-only application is in mind, the fractal coder may still be used without loss in low-
frequency components by replacing the low-frequency components of Fy mCmenOn or FypmHpmenO, with frequency
components of CrnOp and Hp Oy, which is the frequency decomposition of the smaller image that is known by the
interpolator. However, this method cannot be used in coding applications as the CpnOpn and Hyp O, are not available
to the decoder.

5 EXPERIMENTAL RESULTS

The 512 x 512 test image Lena was used as O, with n = 512. Then CrenOn, HnenOny, CrnemCmenOnr, and
Hy e mHprn 0, were computed for m = 256 and m = 128. Four different fractal coding algorithms® ' were used and
for each of them F,« 1 CrnenOrn and Fppm Hpn On were computed. The resulting images were then transformed into
frequency domain (DCT domain for C cases and Haar wavelet domain for H cases). The rms error at different frequency
bands between the results and O, were computed. These results are shown in Tables 1 and 2. The frequency bands a;,
v;, h;, and d; are shown in Figure 4. In these tables, the "rms of original” is rms of the original Os12 image signal,
while the rms error of the methods is the rms of the difference between the original image and the interpolated images.
The method ” G&H?” refers to,® “Fisher” refers to'® (“pp” stands for ”with postprocessing”), “ISI” refers to,? and “N&G?”
refers to.!' The original image Os12, and the interpolated image by classical method Csi2 256C256 5120512 are shown
in Figure 5. The fractally interpolated images Fsi2+256C256 5120512 from the 256 x 256 image Case+5120512 using four
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Figure 4: Frequency bands of Tables 1 and 2

different fractal coding methods are shown in Figure 6. These images after subband replacement from the Cas6 5120512
image are shown in Figure 7.

The results show that for all the fractal enhancement methods, the energies of error in the predicted bands (bands dy,
v1, and hi, for the Fs12.256Ca256+5120512 and Fsi2 256 Has6+5120512images, and bands di, v1, hi, d2, v2, and ha for the
Fs12128C128 5120512, and Fs12.128C1285120512 images) are nearly as strong as the energies of the original Os12 signal
in those bands. However, by definition, this is also true for the classical interpolation methods.

The prediction of the high-frequency bands by the Fsi12¢m Hm«5120512 is slightly better than Hsi2cm Hm« 5120512
for the case of m = 256, but worse for m = 128. In the case of DCT domain, Fs12¢mCm«5120512 is slightly worse than
Cs12m Cm«s5120512 for both m = 256, but clearly worse for m = 128.

In the Haar domain, the results suggest that prediction of high frequency bands from one band lower in frequency is
much better than prediction from several bands lower. This implies that blocks in frequency bands are more similar in
closer bands and suggests that a better fractal resolution enhancer may be obtained if blocks in high-frequency bands are
approximated by blocks in only one band above them. This is in contrast to matching blocks of different sizes in spatial
domain which corresponds to matching trees of blocks in the Haar domain.

6 CONCLUSIONS

The resolution enhancement feature of fractal coders is analyzed and evaluated against the classical interpolation
method using four different fractal coding methods. In the Haar wavelet domain, the fractal enhancement shows slightly
better results when change of scale is by a factor of 2. However, in other cases, the classical interpolation method performs
better. Our study suggests a new type of fractal coder operating directly in the frequency domain.
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Figure 6: Fs129256C2565120512: 512 X 512 images interpolated from the 256 x 256 image, using four different fractal
methods.
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Figure 7: Subband replaced Fsi2c256C256—5120512: 512 X 512 images interpolated from the 256 x 256 image, using four
different fractal methods, with subband replacement.



