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Conceptual cost estimates are important to project feasibility studies and impact upon final project suc-
cess. Such estimates provide significant information that can be used in project evaluations, engineering
designs, cost budgeting and cost management. This study proposes an artificial intelligence approach, the
evolutionary fuzzy hybrid neural network (EFHNN), to improve conceptual cost estimate precision. This
approach first integrates neural networks (NN) and high order neural networks (HONN) into a hybrid
neural network (HNN), which operates with alternating linear and non-linear neuron layer connectors.
Fuzzy logic (FL) is then used in the HNN to handle uncertainties, an approach that evolves the HNN into
a fuzzy hybrid neural network (FHNN). As a genetic algorithm is employed on the FL and HNN to optimize
the FHNN, the final version used for this study may be most aptly termed an ‘EFHNN’. For this study, esti-
mates of overall and category costs for actual projects were calculated and compared. Results showed
that the proposed EFHNN may be deployed effectively as an accurate cost estimator during the early
stages of construction projects. Moreover, the performance of linear and non-linear neuron layer connec-
tors in EFHNN surpasses models that deploy a singular linear NN.

Crown Copyright � 2009 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Cost estimates are fundamental to all project-related engineer-
ing and greatly influence planning, design, bidding, cost manage-
ment/budgeting and construction management. Such estimates
allow owners and planners to evaluate project feasibility and con-
trol costs effectively in detailed project design work. Due to the
limited availability of information during the early stages of a pro-
ject, construction managers typically leverage their knowledge,
experience and standard estimators to estimate project costs. As
such, intuition plays a significant role in decision making.
Researchers have worked to develop cost estimators that maximize
the practical value of limited information in order to improve the
accuracy and reliability of cost estimation work and thus enhance
the suitability of resultant designs and project execution work.

Statistical methods have traditionally been used to develop cost
estimating models (Singh, 1990). While regression analysis repre-
sents a common alternative (Bowen & Edwards, 1985; Khosrow-
shahi & Kaka, 1996), an inherent disadvantage is the requirement
of a defined mathematical form for cost functions. In general, all
traditional methods are hampered in estimating accurate project
costs by the large number of significant variables and interactions
009 Published by Elsevier Ltd. All
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between these variables. Traditional methods, as a result, face sig-
nificant limitations in application.

Artificial intelligence approaches are applicable to cost estima-
tion problems related to expert systems, case-based reasoning
(CBR), neural networks (NNs), fuzzy logic (FL), genetic algorithms
(GAs) and derivatives of such. Many research studies have been
done in this area. For instance, an integrated knowledge-based sys-
tem for alternative design decisions, materials selection and cost
estimating used mainly in pre-design analysis was proposed by
Mohamed and Celik (1998). Serpell (2004) proposed a model of
this problem based on existing knowledge and demonstrated
how the model could be used to develop a knowledge-based
assessment system. Arditi and Suh (1991) developed an expert sys-
tem that proposed decision criteria used in the classification of
available cost estimating packages. An, Kim, and Kang (2007)
developed a case-based reasoning model that incorporated experi-
ence using an analytic hierarchy process. Yau and Yang (1998) ap-
plied CBR to estimate construction project implementation
duration and costs during the preliminary design stage. NNs repre-
sent the most frequently applied approach in this type of applica-
tion. Wilmot and Mei (2005) developed an NN model to estimate
highway construction cost escalation over time. Adeli and Wu
(1998) also employed NNs to estimate highway construction cost
and identified noise in the data. Williams (1994) used NNs to pre-
dict change in the ENR construction cost index and concluded that
rights reserved.
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Fig. 1. EFHNN architecture.
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the back-propagation neural network model cannot accurately
predict cost index movement due to the complexities involved.

Hybrid models have also been developed to estimate construc-
tion costs. Rao, Grobler, and Kim (1993) developed a hybrid neural-
expert system approach to obtain conceptual cost estimates for
construction projects. Hegazy and Ayed (1998) used NNs to devel-
op a parametric cost estimating model for highway projects, with
NN weightings optimized by GA. Kim, Seo, and Kang (2005) applied
hybrid NN and GA models to residential building cost estimation in
order to predict preliminary cost estimates. One of the models used
GA to optimize back-propagation network parameters and the
other employed GA to determine NN weightings. Boussabaine
and Elhag (1997) developed a neurofuzzy system to predict con-
struction project cost and duration. Yu, Lai, and Lee (2006) pro-
posed a web-based intelligent cost estimator incorporating a
neurofuzzy system.

In past research, NN, GA and FL have been employed due to
their powerful abilities to estimate construction costs. They are
also widely applied to other issues and to fields not construction
industry-related. NN affords a capacity to learn from past data
and generalize solutions for future applications; FL allows for toler-
ance of real world imprecision and uncertainties; and GA facilitates
global optimization of parameters. The feasibilities of these three
approaches have already been evidenced, although none represent
an ideal solution when applied alone.

Various critical factors must be identified in order to estimate
construction costs effectively. Factors that impact on various pro-
ject stages (i.e., conceptual, design, tendering, and preconstruction)
should be identified individually to improve estimation accuracy
(Liu & Zhu, 2007). Because preliminary estimates greatly influence
subsequent cost management efforts, the accuracy of preliminary
estimation work is of critical importance. Therefore, conceptual
cost estimate accuracy at the early stage of construction projects
has been a major concern and focus of study over the past four
decades.

High order neural networks (HONN) typically introduce a non-
linear equation into a specified layer, which allows networks to
capture high order correlations easily and attain non-linear map-
ping effectively. As HONN uses high order correlations, it holds
the potential to perform better than linear NN (Zurada, 1992).
HONN not only allows a fuller degree of adaptability than linear
model in terms of non-linear mapping, but further features a struc-
ture that makes it easier to determine how network inputs are
actually mapped into network outputs (Abdelbar & Tagliarini,
1996).

Previous studies (Cheng, Tsai, Ko, & Chang, 2008; Cheng, Tsai,
& Liu, 2009) contributed by the authors have addressed the
application of GA-optimized Neural-fuzzy models to various
engineering problems. The current study incorporates linear neu-
ral networks (NN) and high order neural networks (HONN) into a
hybrid neural network (HNN). Each HNN layer connector is dom-
inated by an alternating linear or high order layer connector. The
participation of fuzzy logic facilitates HNN model evolution into
a fuzzy hybrid neural network (FHNN) model. Within the pro-
posed evolutionary fuzzy hybrid neural network (EFHNN) model,
we further employed GA to optimize FL membership functions
and HNN connection types, topology, and coefficients. This study
further applied the proposed EFHNN in conceptual cost estima-
tion. Both overall (total cost) estimates and (engineering) cate-
gory estimates were provided at the planning/preliminary
design stage. An overall cost estimate was provided for each con-
struction project, with the value of construction cost per unit of
area calculated to reflect in situ conditions and preliminary de-
sign concepts. In addition, category cost estimates were deter-
mined based on various engineering categories (i.e., temporary,
geotechnical, structural, decorative, electromechanical, miscella-
neous, and indirect construction). Category estimates offer great-
er reference opportunities than overall estimates due to the more
detailed data involved.
2. The evolutionary fuzzy hybrid neural network (EFHNN)

The proposed EFHNN incorporates four artificial intelligence ap-
proaches, namely the neural network (NN), high order neural net-
work (HONN), fuzzy logic (FL), and genetic algorithm (GA) (see
Fig. 1). NN and HONN comprise the inference engine, i.e. the pro-
posed hybrid neural network (HNN); FL dominates fuzzifier and
defuzzifier layers; and GA optimizes the HNN and FL. In accordance
with the definition of ‘‘neuro with fuzzy input–output” given by
Hayashi, Umano, Maeda, Bastian, and Jain (1998), this study pro-
poses a fuzzy hybrid neural network (FHNN) comprising an HNN
with fuzzy inputs and fuzzy outputs (see Fig. 2). Each NN connec-
tion may select a linear or high order NN connector. Sequentially,
the FHNN is optimized through a GA adaptation process (see
Fig. 3). The process uses GA to search simultaneously for optimum
FL membership functions, defuzzification coefficients, HNN topolo-
gies, and HNN parameters (including linear/high order connection
types), with P(t) denoting a population at generation t, PO(t) an off-
spring population at generation t, and PM(t) a mutation population
at generation t. Details of FL and HNN and GA are described in the
following sections.
2.1. Proposed hybrid neural network

The term ‘‘hybrid” typically refers to anything derived from
heterogeneous sources or composed of different or incongruent
elements. For the proposed HNN, ‘‘hybrid” refers to the combin-
ing of traditional neural and high order neural networks. The
high order neural network that this paper uses was proposed
by the HONEST model (Abdelbar & Tagliarini, 1996), and is con-
structed of three layers with a high order connection and a linear
connection between the 1st and 2nd layers and 2nd and 3rd lay-
ers, respectively. This study extends the use of high order con-
nections for all connection alternatives, i.e. all layer connections
can switch between linear and high order formats (see Fig. 2).
An HNN neuron is dominated by an alternative of the following
equation:



Fig. 2. FHNN with FL and HNN.

Fig. 3. EFHNN adaption process.

Fig. 4. A HNN neuron.
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Linear connection : yj ¼ f
X

wjixi þ bj0 � 1
� �

ð1Þ

High order connection : yj ¼ f
Y

x
pji

i � 1bj0

� �
ð2Þ

Activation function : f ðxÞ ¼ 1
1þ e�ax

ð3Þ

where yj is a HNN neuron output calculated by neuron inputs xi. cji

represents a coefficient of an interconnection, which can be in linear
or high order format based on the weight wji or exponent pji, respec-
tively (see Fig. 4). An activation function f uses a sigmoid function
with a slope coefficient of a. Therefore, each layer connection fea-
tures an attached connection type that represents the correspond-
ing operation selection (see Fig. 2). All HNN parameters are then
optimized by GA evolution. As noted above, a HNN with 2 layers
may select either a linear layer connection (L) or high order connec-
tion (HO). Four possible scenarios, based on connection type, exist
for 3-layer HNN models, including L–L, L–HO, HO–L, and HO–HO.
If N is adopted as the maximum HNN layer number (i.e., the final
HNN model is an HNN with a number of layers not greater than
N), then the number of HNN model candidates are 21, 22, . . .,2N�1,
respectively, related to HNN 2,3, . . .,N layers. In sum, of the 2N � 2
HNN model candidates, only N � 1 models select all L connections.
All others are categorized into high order neural networks in this
study. The proposed HNN includes all linear and high order neural
networks according connection type selections.
2.2. Fuzzy logic facilities

Zadeh (1965) first proposed Fuzzy logic as a tool with which to
describe uncertainty and imprecision. In Fig. 2, the HNN is enclosed
between fuzzification and defuzzification layers. The complete
structure is a fuzzy hybrid neural network. In the defuzzification
layer, the membership function (MF) initially assigns inputs into
one of several membership grades. In this study, a complete MF
set using trapezoidal MF has been adopted. A general approach
to describing MF shapes is to depict MF summit positions (smi)
and widths (wdi) (Ishigami, Fukuda, Shibata, & Arai, 1995; Hayashi
et al., 1998). An input can be assigned to several membership
grades with MF. Initially, MF inputs are bound between the range
of layer inputs, and membership function inputs are usually set
within [0,1]. However, owing to adopted Eq. (2), if one of the mem-
bership function outputs has a value of zero, related HNN neurons
will output zero values through the sigma-pi P operator. To pre-
vent such, this study modified the original MF to the output range
of [0.0001,1] (see Fig. 5). Following the aforementioned descrip-



Fig. 5. Membership function examples.
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tions, all membership functions are characteristic of values of sm
and wd. In the defuzzification layer (see Fig. 2), this study adopted
a weighted average formula, as follows:
yi ¼ wðxÞ ¼
P

ajixiP
aji

ð4Þ
where w is a defuzzification function; a represent defuzzification
weights; x denotes the eventual outputs of HNN; and y are final
FHNN outputs. Consequently, GA evolution will dominate sm, wd,
and a.
Table 1
Overall estimator impact factors.

Features Impact factors Values or units

Quantitative
factors

1. Floors underground Floors
2. Total floor area Meter2
3. Floors aboveground Floors
4. Site area Meter2
5. Number of households Households
6. Households in adjacent
buildings

Households

Qualitative
factors

7. Soil condition Stiff, medium, soft
8. Seismic zone Type A, B
9. Interior decoration Luxurious, common,

basic
10. Electro-mechanical
infrastructure

Luxurious, common,
basic
2.3. Genetic algorithm facilities

Genetic Algorithms (GA), which imitates elements of the natu-
ral evolution process, were first proposed by Holland (1975). To ap-
ply GA to problem optimization, one must identify all essential
parameters to determine chromosome length. The chromosome
(i.e., one individual) in this study represents an FHNN with HNN
and FL parameters. HNN parameters have interconnection coeffi-
cients c (w and p), connection types (CT: L or HO), slope coefficient
of activation function a(1–6), and network topology (total layers
and layer neurons). FL’s parameters include MF summit points
(sm), MF widths (wd), and defuzzification weights a. It deserves
mentioning that an interconnection coefficient c can be used for
alternatives w or p. However, w and p perform totally differently,
as they must be recorded in different sub-strings. Therefore, the
aforementioned c should be a combination of w and p. Once an
individual’s chromosome is identified, FHNN can be optimized
through the adaption process with crossover, mutation, and selec-
tion mechanisms (see Fig. 3). Each model result is evaluated using
root mean square error (RMSE).
3. Conceptual cost estimators

Two conceptual cost estimators, i.e. overall and category esti-
mators, were developed as the basis of conceptual construction
cost. Various factors must be identified to describe these two con-
struction cost estimates at the planning (or preliminary design)
stage. In the planning stage (i.e., the stage prior to developing an
initial design), the overall estimator can be identified by six quan-
titative and four qualitative factors (listed in Table 1). These factors
are treated as EFHNN inputs.

Once a project design has been drafted, category cost estimators
can be employed to calculate engineering cost by category. As an
alternative to the overall estimate, all category estimates can be
summed. Therefore, the category estimators are more applicable
and useful for whole project management. One category estimate
is evaluated for each engineering category according to particular
factors. There were seven types of engineering work generalized
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for category construction cost estimates. Their impact factors are
listed in Table 2 (by category).

The range of construction project data used in this study spans
the years 1997 through 2001. The construction cost range was
limited to between NTD40,179 and NTD98,285 per square meter.
All 28 projects identified were designed using reinforced concrete
for main structural members. We employed 23 cases for training
purposes, with the remainder (5) used for testing the approach.
As shown in Table 1, 10 inputs were set as the overall construc-
tion cost estimator and one output served as the overall estimate
of total unit cost (i.e., construction cost per square meter). Seven
category estimates (respective outputs, i.e. unit cost by category)
were calculated by engineering category in Table 2, where 4 in-
puts were for temporary construction; 7 inputs were for geotech-
nical construction; 8 were for structural construction; 9 were for
interior decoration; 8 were for electromechanical infrastructure;
5 were for miscellaneous construction; and 4 were for indirect
Table 2
Category estimator impact factors.

Engineering Features Impact factors

Temporary construction QT 1. Site area
QT 2. Floors underground
QT 3. Floors aboveground
QT 4. Total floor area

Geotechnical construction QT 1. Site area
QT 2. Excavation depth
QT 3. Floors underground
QT 4. Households in adjacent buildings
QL 5. Soil condition
QL 6. Bracing system
QL 7. Retaining structure

Structural construction QT 1. Total floor area
QT 2. Floors underground
QT 3. Floors aboveground
QT 4. Area of exterior wall
QL 5. Seismic zone
QL 6. Soil condition
QL 7. Type of foundations
QL 8. Type of Excavation

Decorative construction QT 1. Total floor area
QT 2. Area of exterior wall
QT 3. Households planned
QT 4. Type of flooring
QT 5. Type of ceiling

QT 6. Interior wall decoration
QT 7. Exterior wall decoration

QT 8. Material of doors
QT 9. Material of Windows

Electro-mechanical
infrastructure

QT 1. Total floor area
QT 2. Households planned
QT 3. Elevators
QL 4. Air conditioner
QL 5. Kitchen
QL 6. Shower room
QL 7. Fire control
QL 8. Parking

Miscellaneous construction QT 1. Site area
QT 2. Total floor area
QT 3. Households planned
QT 4. Floors underground
QT 5. Floors aboveground

Indirect construction QT 1. Total floor area
QT 2. Floors underground
QT 3. Floors aboveground
QL 4. Type of excavation

Notations: QT – quantitative factor; QL – qualitative factor.
construction. Construction costs used as training targets reflect
Taiwan’s published price index for calendar year 2001. Therefore,
proposed estimators are capable of dealing with fluctuations in
unit costs for labor and materials. These estimators were devel-
oped to meet the goal of assisting construction project planning
and design through the use of evaluated cost estimates. In
Fig. 6, an overall construction cost estimator was used in the pre-
liminary planning stage, before detailed project plans had been
drafted. Preliminary plans can be drafted based on in situ inves-
tigations and identified demands, after which the overall cost
estimate generated can be used to check plan relevance and accu-
racy. Initial design will be handled in the planning stage, which
immediately follows, when demands and designs will be checked
against category estimates. Detailed planning and design can be
executed once all data and estimates meet project management
needs. These conceptual estimates influence project construction
and management significantly.
Values or units

Meter2
Floors
Floors
Meter2

Meter2
Meter
Floors
Households
Stiff, medium, soft
Tied-back, Inside bracing
None, sheet-pile, soldier pile, rail pile, diaphragm wall, others

Meter2
Floors
Floors
Meter2
Type A, B
Stiff, medium, soft
Raft, pile
Partial-braced, top-down, bottom-up, slope excavation

Meter2
Meter2
Households
Ceramic tile, archaized brick, quartz tile, terrazzo tile, wooden, granite tile
Emulsion paint, light rigid frame, waterproof, wood board, calcium silicate
board, metal
Emulsion paint, ceramic tile, granite tile
Strip tile, facial cut terrazzo, facial washed terrazzo, granite tile, curtain
wall, cast plate
Wooden, aluminum, copper vitriol, stainless steel, fireproof
Aluminum, plastic-steel, airtight, stainless steel

Meter2
Households
Number
Non-central, central
Luxurious, common, basic
Luxurious, common, basic
Common, basic
Mechanic parking system, parking lot

Meter2
Meter2
Households
Floors
Floors

Meter2
Floors
Floors
Partial-braced, top-down, bottom-up, slope excavation



Table 4
Testing results for overall estimates.

Case
no.

Actual output (NTD/
m2)

Desired output (NTD/
m2)

Diff. (NTD/
m2)

1 49697 61591 �11894
2 63763 56334 7429
3 51988 49139 2849
4 87454 84631 2823
5 63654 70843 �7189

Note: Diff. = Actual–Desired.

Fig. 6. Cost estimators during the project planning stage.

Fig. 7. FHNN model phenotype of overall cost estimation.
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4. Results and comparisons

This study developed two distinct estimators using 23 training
cases and 5 testing cases. While EFHNN was employed to obtain
these estimates, this approach is time-consuming due in large part
to its use of GA. Therefore, experiments run should set parameters
within a practicable range (see Table 3). Results obtained were
compared with those obtained using the evolutionary fuzzy neural
inference model (EFNIM), which did not employ high order neural
network and changes to FL and GA.

4.1. Overall construction cost estimator results

The ability to estimate construction cost while a project is in the
preliminary concept stage (before categorized engineering plan de-
tails have been made) can help engineers adjust planning details
appropriately to improve the chances of project success. After an
evolutionary training process using the 23 training cases, five test-
ing results were obtained (Table 4). Fig. 7 shows the resultant mod-
el for the overall cost estimate.

4.2. Category construction cost estimator results

Although an overall construction cost estimator had been devel-
oped, construction plans in each category remained to be designed.
Table 3
EFHNN parameter settings.

Parameters Values

No. of input neurons Number of factors influenced
No. of output neurons 1
Maximum hidden layers 5
Maximum neurons in each layer 5
Selected activation function Logistic sigmoid function
Activation function slope 1–6
Membership function shape Trapezoidal
Number of membership functions 5
Crossover rate 0.9
Mutation rate 0.025
Population size 50
Iteration set 5000
Construction costs for engineering categories should be estimated
to ensure costs are controlled effectively and facilitate project
management. Although it is difficult to assign construction work
neatly into distinct project type categories, such is essential in or-
der to estimate category cost values and facilitate project planning
and design. Table 5 shows both estimation results and category
cost ratios. It is apparent that category cost ratios bear significantly
on project planning and design. This result allows cost manage-
ment to be implemented effectively in construction engineering
categories. Seven cost estimation models were learned. Structural
construction cost, which bears significantly on total cost, is shown
in the model structure in Fig. 8.
4.3. Comparing EFHNN and EFNIM

In practice, overall estimates accurate to within 25% and cate-
gory estimates accurate to within 15% obtained based on engineer
experience are typically considered acceptable. Estimators devel-
oped in this paper achieved high levels of precision for construc-



Table 5
Testing results of category estimates.

Engineering
categories

Case
no.

Actual
output
(NTD/m2)

Desired
output
(NTD/m2)

Diff.
(NTD/
m2)

Ratio of
category
cost (%)

Temporary
construction

1 1352 1863 �510 2.18

2 2783 2868 �84 4.69
3 1594 1120 474 3.11
4 1623 1803 �179 2.17
5 1649 1921 �271 2.51

Geotechnical
construction

1 5141 5275 �133 8.27
2 3326 2918 408 5.60
3 5979 4411 1568 11.66
4 10316 14,610 �4293 13.77
5 6252 5658 594 9.53

Structural
construction

1 17398 18843 �1444 28.00
2 16,721 15,795 926 28.15
3 15,725 15,781 �55 30.67
4 15,726 14,531 1195 20.99
5 17,416 17,777 �360 26.54

Interior
decoration

1 16,811 14,724 2087 27.05
2 18,330 18,756 �425 30.86
3 14,359 17,850 �3490 28.01
4 24,076 25,650 �1573 32.13
5 18,848 21,072 �2223 28.72

Electromechanical
infrastructure

1 14467 14582 �114 23.28
2 11,293 9400 1893 19.01
3 8185 6938 1247 15.96
4 15,978 19,101 �3122 21.32
5 12,430 14,553 �2122 18.94

Miscellaneous
construction

1 2042 2079 �36 3.29
2 2766 2787 �20 4.66
3 2202 728 1474 4.30
4 1995 3493 �1497 2.66
5 3238 2652 586 4.94

Indirect
Construction

1 4932 4225 707 7.94
2 4183 3809 374 7.04
3 3227 2311 916 6.29
4 5225 5443 �217 6.97
5 5785 7211 �1425 8.82

Total construction
cost

1 62,145 61591 554 100
2 59,404 56,333 3071 100
3 51,275 49,139 2136 100
4 74,943 84,631 �9687 100
5 65,620 70,844 �5223 100

Fig. 8. FHNN model phenotype of structural cost estimation.

Table 6
Comparison of results obtained by overall and category estimates.

Case
no.

EFHNN EFNIM

Overall
estimate
error (%)

Total category
estimate error
(%)

Overall
estimate
error (%)

Total category
estimate error
(%)

1 19.312 0.900 20.541 2.504
2 13.187 5.452 23.783 7.458
3 5.797 4.349 21.201 9.699
4 3.336 11.447 5.082 10.018
5 10.148 7.373 9.755 4.082
Avg. 10.356 5.904 16.072 6.753
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tion cost estimation during the early stages of a project (see Table
6). Estimating construction costs more precisely will help make de-
signs more feasible and projects more efficient by enhancing
project management. Moreover, the proposed EFHNN, which em-
ploys both linear and non-linear layer connectors, surpasses the
previously developed EFNIM, which only uses traditional NN
connections in conceptual cost estimation (Cheng, Tsai, & Hsieh,
2009).
5. Conclusions

This paper presents comprehensive descriptions of the pro-
posed Evolutionary Fuzzy Hybrid Neural Network (EFHNN) and
its application in conceptual cost estimation for construction pro-
jects. The EFHNN mechanism integrates HNN, FL, and GA. In the
proposed EFHNN, HNN includes both traditional neural (linear)
and high order neural networks; FL uses fuzzification and defuzz-
ification layers to sandwich the proposed HNN; and GA optimizes
FHNN parameters. The proposed EFHNN is innately different from
various GA-FL-NN approaches, even the previously proposed EF-
NIM, due to unique HNN layer connection types, modification of
FL membership functions, and GA-optimized parameters. There-
fore, EFHNN is able to address problems in greater depth with its
large number of HNN models, fuzzy concepts and GA optimization.

This study proposed two distinct construction cost estimators.
The overall construction cost estimator was established to estimate
total cost in the absence of categorized engineering plans. Category
estimators, relying on additional data inputs, were designed to
evaluate engineering costs within categories. The advantages of
proposed estimators include:

1. Overall construction cost estimates can be provided during the
preliminary project planning stage to facilitate project execu-
tion, even when only a minimal amount of available data is
available.

2. Category construction costs, categorized by engineering type,
offer an alternative to overall estimates that provides results
that are more reasonable and practicable.

3. Category estimators supply useful information on the relative
ratios of engineering categories, which is essential for detailed
construction cost management.

4. All estimates derived from EFHNN results address problems
with a newly developed HNN architecture able to perform
input–output mapping with both linear and non-linear layer
connections.
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5. EFHNN results for construction conceptual cost estimates sur-
pass results obtained using EFNIM, which uses only traditional
NN connections. Such evidences that the HNN concept not only
makes NN-related parts innately different, but also performs
well in EFHNN with both FL and GA.

This paper presents an EFHNN application able to estimate con-
struction costs during the early stage of construction projects in or-
der to improve the ability of designers, owners and contractors to
make decisions that enhance the chances of project success. Re-
sults show that EFHNN is relevant and applicable to construction
management in Taiwan and may be implemented worldwide with
modifications to account for specific regional/national factors.
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