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Abstract. Open learning environments provide a large amount of free-
dom and control, which can be beneficial for students who are able to
explore the environment effectively, but can also be problematic for those
who are not. To address this problem, we have designed a student model
that allows an open learning environment to provide the students with
tailored feedback on the effectiveness of their exploration. The model,
which uses Bayesian Networks, was created by an iterative design and
evaluation process. The successive evaluations were used to improve the
model and to provide initial support for its accuracy and usefulness.

1 Introduction

Open learning environments are computer-based educational systems that place
less emphasis on supporting learning through explicit instruction and more on
providing the learner with the opportunity to explore the instructional domain
freely, acquiring knowledge of relevant concepts and skills in the process [4][7].
In theory, this type of active learning should enable students to acquire a deeper,
more structured understanding of concepts in the domain [7]. Also, owing to the
unguided nature of the interaction, the hope is that, in addition to skills in the
target instructional domain, the learner can practice and acquire meta-cognitive
skills associated with effective exploration [4].

Empirical evaluations, however, have shown that a student’s ability to ben-
efit from interacting with open learning environments depends on a number
of student-specific features, including activity level [4][7], whether or not the
student already possesses the meta-cognitive skills necessary to learn from ex-
ploration [7] and general academic achievement [6]. Students who are inactive
or lack the necessary cognitive skills often fail to initiate enough meaningful ex-
periments; they can have difficulty interpreting and generalizing the results of
the experiments that they do initiate [7][8], thus incurring sub-optimal learning.

The above findings indicate that the effectiveness of open learning environ-
ments could be improved by providing real-time support for the exploration
process, tailored to each student’s individual needs. Such support should be pro-
vided only when necessary, to avoid interfering with the unrestricted nature of
this learning activity. Therefore, having a student model that can detect when a
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student is not benefitting from the exploration process is crucial. In this paper,
we describe such a model. Our model relies on Bayesian Networks to assess the
effectiveness of the student’s exploration process and was built using an iterative
design and evaluation process. Two successive user evaluations were conducted
to define the structure of the model and to validate our approach. The model has
been implemented in the Adaptive Coach for Exploration (ACE) [2]. Using the
Student Model’s assessment, ACE provides tailored hints to guide and improve
the students’ exploration of mathematical functions.

Modelling students’ exploration presents unique challenges, for two main rea-
sons. First, in more structured educational activities, such as problem solving
and question answering, there is usually a definition of correct behaviour, which
allows this behaviour to be represented and recognized in a formal model. In
contrast, in open learning environments there is no clear understanding of what
constitutes successful exploration in general. Second, it is hard to obtain reliable
information on the student’s exploratory behaviour. The amount and quality of
information available to a user model to perform its assessment is referred to
as the bandwidth issue [9]. The less explicit information on the user’s relevant
traits or behaviours the model is able to obtain, the higher the uncertainty in
the modelling process. The bandwidth problem is especially difficult for stu-
dent modelling in open learning environments. Both exploratory behaviour and
related meta-cognitive skills necessary for effective learning are not easily observ-
able unless the environment’s interface forces students to make them explicit.
However, forcing students to articulate their exploration steps clashes with the
unrestricted nature of open learning environments. Thus, a model for exploratory
behaviour is bound to deal with low bandwidth information, which introduces a
high level of uncertainty into the modelling task.

Because of these challenges, there has been little work on how to monitor and
assess student behaviour in open learning environments. ALI’s student model [3]
indicates whether or not the student has encountered the important concepts in
the target environment and understood them through experimentation. This
model, however, deals with quite high bandwidth information obtained directly
by both engaging students in tutorial dialogs and requiring them to take quizes.
Other systems tackle a restricted version of the problem of modelling exploration.
A student model that can assess a student’s ability to either confirm or reject
hypotheses is described in [10]. Smithtown [7] tracks when a student violates
rules of good experimentation, such as manipulating more than one variable
at a time. Neither model, however, addresses the issue that some students are
inactive in open learning environments and can have difficulty initiating a set of
experiments that effectively covers the exploration space.

The rest of the paper describes how we tackle the challenges of modelling
exploratory behaviour in ACE’s student model. We formalize effective explo-
ration behaviour by designing the student model iteratively using the results of
an evaluation with human subjects. We address the uncertainty owing to the
low bandwidth problem using Bayesian Networks.
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Fig. 1. The Machine Unit (a) and the Plot Unit (b).

2 The ACE Open Learning Environment

ACE [2] is an intelligent open learning environment for the domain of mathe-
matical functions. ACE’s activities are divided into units and exercises. Units
are collections of exercises whose material is presented with a common theme
and mode of interaction. Exercises within the units differ in function type and
equation. Currently, ACE supports only different types of polynomial functions.

Figure 1 shows the main interaction window for two of ACE’s units: the Ma-
chine Unit and the Plot Unit. ACE also has a third unit, the Arrow Unit, not
displayed for lack of space. We have also omitted the help pages and the feed-
back panel, which normally appear to the right of and below the main window,
respectively. The Machine Unit (fig. 1(a)) and the Arrow Unit allow the student
to explore the relationship between an input and the output of a given function.
In the Machine Unit, the exploration consists of dragging any number of inputs
displayed at the top of the screen to the tail of the function “machine” (the large
arrow shown in fig. 1(a)), which then computes the corresponding output. The
Arrow Unit allows the student to match a number of inputs with the correct out-
puts and is the only activity within ACE that has a clear definition of correct
and incorrect behaviour. In the Plot Unit (fig. 1(b)), the student can explore
the relationship between the graph of a function and its equation, as well as
graph properties, such as slopes and intercepts. The student can manipulate a
graph either by dragging it around the screen (using the mouse) or by editing
the equation box.

3 The Student Model

The Student Model aims to generate an assessment of the student’s exploration
of the ACE environment that the system can use to support the student’s explo-
ration. As the description of the ACE interface in section 2 shows, the student’s
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Fig. 2. A High-Level Description of the First and Second Versions of the Student Model

actions within the available activities have low bandwidth because, although
they are easy to track, they provide limited information about the student’s rea-
soning. The Student Model uses Bayesian Networks to model and manage the
resulting uncertainty[5].

One of the main challenges in using Bayesian Networks is to define the net-
work’s structure to accurately represent the probabilistic dependencies among
the variables of interest. In our model, this problem is exacerbated by the dif-
ficulty of defining correct exploratory behaviour (see sec. 2). Our approach was
to use an iterative design process, which we describe in this section. We first
built a version of the Student Model using our intuition of what constitutes ef-
fective exploration in ACE and evaluated the model in a formal study. We then
used the study results to redesign the model and conducted an evaluation of the
changes. By building and evaluating two versions of the model, we were able
to gain valuable insight into (i) what factors contribute to effective exploration
of the ACE environment and (ii) how to formalize these factors in the Student
Model. Because of space limitations we are not able to describe all the details of
this iterative process. Further information can be found in [1] and [2].

3.1 Version 1 of ACE’s Student Model

Figure 2 (Version 1) shows a high-level description of the types of nodes in the
first version of the model’s Bayesian Network and the influences among them.
There are two classes of nodes: exploration nodes and knowledge nodes. To as-
sess exploration, the model uses the student’s coverage of the relevant exploration
cases. Relevant exploration cases represent the salient function-related concepts
that should be explored in each exercise to gain a thorough understanding of the
target material. Exploratory behaviour is modelled at different levels of granular-
ity, including the exploration of individual exercises (“Exploration of Exercises”
in fig. 2), of groups of related exercises (“Exploration of Units” in fig. 2) and of
exploration cases that appear across multiple exercises (“Exploration of Cate-
gories” in fig. 2). The set of relevant exploration cases for a particular exercise
depends on both the unit the exercise belongs to and the type of function pre-



sented in the exercise. For example, in the Plot Unit, if the student is exploring
a constant function, she should experiment with positioning the graph at both
positive and negative intercepts, while a linear function would also require ex-
perimenting with different slopes. Exploration cases in the Machine and Arrow
units involve different categories of inputs, such as small positive numbers and
large negative numbers. All exploration nodes are binary variables where a True
value represents the probability that the student has effectively explored the
corresponding item (i.e., an exploration case, exercise, unit or category). Knowl-
edge nodes (“Knowledge” in fig. 2) represent the knowledge of function related
concepts. These nodes are updated using a combination of student actions that
indicate exploration and any explicit evidence of their knowledge (“Correct Be-
haviour” in fig. 2). In this version of ACE, explicit evidence of knowledge is
available only in the Arrow Unit. A True value for a knowledge node means that
the student understands the related material. The Conditional Probability Ta-
bles (CPTs) in the Bayesian Network were constructed using our best estimates
of the corresponding probabilistic dependencies, which were tested and refined
through the evaluation described later.

Figure 3 shows a more detailed portion of the network representing the ex-
ploration of two exercises in the Machine Unit (nodes “e;” and “ey”). The ex-
ploration case nodes for each exercise (nodes “e;Case;” in fig. 3) influence both
their corresponding exercise node and the exploration category that they be-
long to. For example, “e;Case;” is a relevant exploration case in exercise “e;”
and is an instance of the exploration category consisting of small positive inputs
(“exploredSmallPosInputs” in fig. 3).

Direct evidence of the students’ exploration is introduced into the network
through the relevant exploration case nodes. The value of a relevant exploration
case node is changed to True when the student performs interface actions that
the system considers to be an indication of the student having explored that
case. Each unit in ACE has a different interpretation of what this entails. For
example, in the Machine Unit, a case is considered explored when the student
drags an input to the “machine” that is an instance of that case. For instance,
in figure 3, the node “e;Case;” would be set to true when the student drags a
small positive input. In the Plot Unit, a case is considered explored when the
student either drags and drops the graph to a position belonging to a particular
case (e.g., drags the line to a location where it has a positive y-intercept) or edits
the function equation to change the graph in a meaningful way (e.g., changes
the equation so that the slope of the graph is negative).

The Student Model’s assessment is used by ACE’s coaching component [2]
to support the student’s exploration in two ways. The first is through tailored
hints, which the student can obtain on demand. The Coach determines the focus
of a hint (i.e., what aspect of the current exercise should explored further) by
searching the Bayesian Network for a relevant exploration concept node that
has a low probability. The second kind of support is provided when a student
tries to move on to a new exercise. When this happens, the Coach examines the
probability that the student has effectively explored the current exercise. If that
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Fig. 3. A Portion of the Network Related to Exercise Exploration in the Machine Unit

probability is too low, the Coach generates a warning to explore the exercise
better and to ask for a hint if needed.

The first version of ACE’s Student Model was evaluated in a formal study
described in [2]. Subjects in the study were first-year university students who had
not taken a university math course. Two of the statistically significant results
from the study provided initial support for the Student Model’s accuracy and
usefulness:

1. The more exercises the students effectively explored according to the Student
Model, the more they improved on the post-test.

2. The more hints the students asked ACE for, the more they improved on the
post-tests. Since the concepts targeted by the hints are based on the Student
Model’s assessment, this is an indication that the model can enable the Coach
to provide relevant feedback that helps guide the students’ exploration.

Analyzing students’ behaviour during the study also uncovered two main
problems with the model’s assessment. First, a category of exploration assess-
ment was missing from the model. Second, the model under-estimated the ex-
ploratory behaviour of knowledgeable students. In the next section, we describe
these inadequacies and the new version of the model that we built to address
them.

3.2 Version 2

Figure 2 (Version 2) shows the high-level structure of the second version of the
Student Model. The differences between this model and the previous version
are the addition of “General Exploration Concepts” nodes and the dependencies
between the knowledge nodes and exploration nodes. We now describe both of
these changes.

General Exploration Concepts The study uncovered that some students
thoroughly explored many exercises but consistently exhibited poor exploration
of exercises that targeted the same general concepts (e.g., exercises with constant
functions). The Coach could determine that the student had exhibited poor ex-
ploratory behaviour in a couple of exercises. However, since the first version of
the model maintained an assessment of cross-exercise exploration only through
categories of relevant exploration cases (see fig. 2 (Version 1)), the Coach had
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Fig. 4. Example Portions of the Bayesian Network in the Second Version of the Model
Showing (a) the General Exploration Concepts and (b) the Knowledge Nodes

no way of knowing that both exercises targeted the same general concept. We
addressed this Student Model inadequacy by adding a new type of node to the
network, which represents the exploration of general concepts (“Exploration of
General Concepts” in fig. 2 (Version 2)). These nodes allow the model to main-
tain an assessment of how effectively students are exploring concepts that appear
in multiple exercises or units, but that do not correspond to any of the relevant
exploration cases within the exercises. Figure 4(a) illustrates how these general
exploration concepts appear in the network, which in this example involve the
exploration of input/output in constant and linear functions (“constantFuncIO-
Exp” and “linearFuncIOExp” in fig. 4(a)).

Knowledge Nodes The study also revealed that several highly-knowledge-
able students (identified via a pre-test) rightfully ignored unnecessary warnings
from the Coach to explore an exercise further, and chose not to explore concepts
they already understood. The model’s inadequacy in these situations was that
its exploration assessment was based solely on how active students were during
the interaction, captured by the relevant exploration case nodes. The model did
not take students’ knowledge into account in deciding if and how much they
actually needed to explore to improve their understanding.

We modified the second version of the Student Model to incorporate infor-
mation on the student’s knowledge into the model’s assessment of effective ex-
ploration. Thus, in the new model, low exploration activity on certain concepts
is only a sign of poor exploration if the student does not already know those
concepts. Student knowledge is incorporated into the assessment by having each
exploration node influenced by a set of related knowledge nodes.

The semantics of both knowledge nodes and exploration nodes also changed
in the new model. In the previous version, knowledge nodes represented general
knowledge of material assessed through both exploratory behaviour and explic-
itly correct behaviour, when demonstrated (e.g., in the Arrow Unit). In the new
model, knowledge nodes represent only knowledge related to non-exploratory ac-
tivities and receive evidence only from the students’ explicitly correct behaviour
(including pre-test results, when available). Similarly, while in the previous ver-
sion probabilities for exploration nodes were simply a quantitative measure of



Table 1. Results from the Evaluation of the Second Version of the Student Model

Version 1|Version 2
# Subjects 14 5
# Unnecessary warnings 62 2
Total # warnings 163 42
% of warnings that were unnecessary 38% 5%
# Premature passes 6 5
Total # exercises to be assessed 154 55
% of premature passes 4% 9%

the student’s coverage of the relevant exploration cases, they now represent the
likelihood that the student has explored the related concepts sufficiently to un-
derstand them. This assessment depends on both the student’s exploratory ac-
tions and knowledge of the related topic.

Figure 4(b) illustrates an example of the relationship between knowledge
nodes and exploration nodes. Exercise 1 involves knowledge of simple substi-
tution, simple arithmetic and the input/output of constant functions. There-
fore, the corresponding exercise node “e;” depends on knowledge nodes for
those concepts (the shaded nodes “simpleSubstitution”, “simpleArithmetic” and
“constantFunclO” in fig. 4(b)), as well as the relevant exploration cases (e.g.,
“eqCasey” in fig. 4(b)). The CPT for each exploration node is designed so that
if the student has high knowledge of the related concepts, the probability that
the student needs to explore more thoroughly is low. When there is a low prob-
ability that the student knows the corresponding concepts, the probability that
the student needs to explore more thoroughly is based on the adequacy of the
student’s coverage of the relevant exploration cases.

4 Evaluation

After revising ACE’s Student Model in light of the observations made during
the first evaluation, we ran a second study to determine the effectiveness of
the changes. In particular, before going to a fuller scale evaluation we wanted
to verify that the changes in the model actually improve the way ACE issues
warnings. As discussed in section 3.1, the Coach issues a warning to explore fur-
ther when a student tries to leave an exercise before the Student Model assesses
that the exercise was explored effectively. Ideally, the assessment of this Student
Model compared with that of the previous version should result in the Coach
intervening less frequently with the high ability students, while still supporting
the students who are experiencing difficulty with the exploration process. In
addition, the model should be able to detect situations in which students are
systematically failing to explore general concepts, such as the input/output of
specific function types.

A total of five subjects participated in the study. As in the previous study,
the subjects were first-year university students who had not taken a university



math course. Subjects participated in one session that lasted at most 80 minutes
and consisted of a pre-test, a session with ACE and a post-test. The pre-test and
post-test consisted of 39 questions, divided equally into questions on i) function
output recognition and generation, ii) graph and equation property recognition
and iii) graph-equation correspondence. One researcher observed each session
and ACE was instrumented to produce log files of the students’ interface actions.
The pre-test scores were used to set the values of the knowledge nodes in the
model before the students started using ACE.

To verify that the new model reduced unnecessary interruptions for more
knowledgeable students, without becoming too lenient with less knowledgeable
ones, the logs from both the old and new study were analyzed by hand for two
event counts: the number of unnecessary warnings that ACE generated and the
number of premature transitions to new exercises that ACE allowed. Unneces-
sary warnings were considered to occur when the Coach generated a warning
to explore an exercise further, despite it being clear from the pre-test that the
student already understood the concepts associated with that exercise. A pre-
mature pass occurred when the Student Model determined that the student had
effectively explored the exercise, but the student did not appear to understand
the associated concepts on the post-test.

Table 1 shows the results of the analysis. As desired, the new Student Model
resulted in a substantial reduction in the percentage of warnings that were
deemed to be unnecessary (from 38% with the old model to 5% with the new
model). The number of premature passes did rise slightly (from 4% to 9%). This
indicates that the model, at times, overestimates the students’ exploratory be-
haviour. Instances of the Student Model over-estimating exploratory behaviour
were also observed in the first evaluation. Although knowledge is now taken into
account together with the students’ actions to assess effective exploration, the
model still has no way to assess whether or not the students actually use this
knowledge to reason about the outcome of their exploratory actions. We plan to
address this problem in future versions of the model.

Unfortunately, we could not evaluate accuracy of the second change (the
addition of general exploration concept nodes) since, unlike in the first study,
none of the subjects poorly explored any of the more general concepts.

5 Conclusions and Future Work

There is mounting evidence that students need support in open learning envi-
ronments (e.g., [7]). This support cannot be provided in a tailored and timely
manner without knowing when and why a student is having difficulty exploring.
This paper has presented the details of a Student Model that assesses the ef-
fectiveness of a student’s exploration in ACE, an open learning environment for
mathematical functions.

We built two versions of the Student Model. Results from the evaluation of
the initial version provided confirmation of the model’s accuracy and usefulness,
but also uncovered some problems. The second version considerably improved



the model’s performance since knowledgeable students received fewer unneces-
sary interventions, and yet ACE continued to support students who were expe-
riencing difficulty with the exploration process. These results support our belief
that having a Student Model assess the effectiveness of a student’s exploratory
behaviour can help provide the tailored support that many students need to
learn from open learning environments.

Future work on the ACE Student Model will be to continue improving the
model’s assessment of effective exploration. Our studies showed that while it
is important for students to perform the right set of exploratory actions, these
actions alone are not always sufficient to learn the targeted material. The stu-
dents need to proactively reason about their actions. Thus, we plan to include in
our model additional factors that would permit a more accurate assessment of
the student’s exploration. These factors include the student’s tendency to self-
explain, whether or not the student is attending to results of her exploration,
and the time spent on each relevant exploration case.
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