
Experiences in Hardware Trojan

Design and Implementation

Yier Jin∗, Nathan Kupp∗, and Yiorgos Makris†

∗Department of Electrical Engineering, Yale University
†Departments of Electrical Engineering and Computer Science, Yale University

Abstract— We report our experiences in designing and imple-
menting several hardware Trojans within the framework of the
Embedded System Challenge competition that was held as part of
the Cyber Security Awareness Week (CSAW) at the Polytechnic
Institute of New York University in October 2008. Due to the
globalization of the Integrated Circuit (IC) manufacturing indus-
try, hardware Trojans constitute an increasingly probable threat
to both commercial and military applications. With traditional
testing methods falling short in the quest of finding hardware
Trojans, several specialized detection methods have surfaced.
To facilitate research in this area, a better understanding of
what Hardware Trojans would look like and what impact they
would incur to an IC is required. To this end, we present
eight distinct attack techniques employing Register Transfer
Level (RTL) hardware Trojans to compromise the security of
an Alpha encryption module implemented on a Digilent BASYS
Spartan-3 FPGA board. Our work, which earned second place in
the aforementioned competition, demonstrates that current RTL
designs are, indeed, quite vulnerable to hardware Trojan attacks.

I. INTRODUCTION

Due to global economic pressures, device fabrication

foundries have spread around the world and the trend to move

the IC supply chain from high-cost to low-cost locations is

accelerating. Even once-trusted foundries are now vulnerable

to attacks, and the threat that a foundry may be compro-

mised and malicious circuits inserted in chips it fabricates is

substantial. This motivates researchers to explore new testing

methods, different from traditional functional and structural

testing, because the characteristics of added malicious circuits

(hardware Trojans) are different from previous manufacturing

defects or functional errors. There are several reasons why

standard testing methods are almost useless in detecting hard-

ware Trojans:

1) Unanticipated behavior is not included in the fault list,

i.e., structural pattern testing will likely not cover Trojan

test vectors [1];

2) Additional functionality of genuine designs is hard to

predict without knowledge of the Trojan inserted by

attackers. Hence, routine functional testing is unlikely

to reveal harmful extra functions;

3) Exhaustive input patterns testing is impractical as chips

become more complicated with a large number of pri-

mary inputs and inner gates.

Based on these reasons, state-of-the-art EDA tools contribute

little to the task of hardware Trojan detection. Only destructive

reverse-engineering is still effective in checking the integrity

and genuineness of manufactured chips, but with high testing

cost. Furthermore, this method, as the name indicates, can

only be used on a sample group of chips with no guarantee

provided that untested chips are Trojan-free [2].

In order to demonstrate the threat of hardware Trojans and

provide an extensive view on what Trojans will look like, The

Polytechnic Institute of NYU hosted an Embedded Systems

Challenge competition in October of 2008. In this competition,

a hypothetic “Orange Army” developed a cryptographic device

code-named Alpha, which was described at the RTL in a

hardware description language (HDL). The device uses the

strong 128-bit private key block cipher AES [3], which has

been shown to be resistant to modern cryptanalysis techniques.

Figure 1 shows the architecture of the Alpha design which,

for the purpose of the competition, was implemented on

a Digilent BASYS Spartan-3 FPGA board. To transmit a

message, operators must do the following:

1) Select the private key using the “Key Select” slide

switches.

2) Press the “INI System” button.

3) Input plaintext using a keyboard connected to the “KB

IN” port. A VGA monitor can be connected to the “VGA

OUT” port to display the plaintext. The “Input Status”

LEDs indicate how much of the input buffer is used.

4) Press the “Start Encryption” button to encrypt. When

this key is pressed the encryption engine reads the

plaintext from the input buffer and writes the ciphertext

into the output buffer.

5) Press the “Transmit” button to send the contents of the

buffer out of the RS-232 port.

Competitors were asked to design and implement a set

of Trojans, to undermine Alpha’s cryptographic strength, and

incorporate them into Alpha’s HDL without failing validation

testing [4]. In this paper, we described our experiences in

designing and implementing such hardware Trojans for the

purpose of this competition. Our team developed the highest

number of alternative Trojans that cannot be detected through

a normal testing stage and was the only one to exploit

vulnerabilities across the entire datapath, eventually earning

second place in the competition.

The rest of the paper is organized as follows: Section 2 lists

recently proposed Trojan detection methods and argues for the

importance of designing practical Trojans when developing

Trojan detection approaches. Section 3 presents the various

50978-1-4244-4804-3/09/$25.00 c© 2009 IEEE

Fig. 1. Alpha architecture

categories of hardware Trojans, which guide us in the design

of practical attacks for the purpose of the competition. Section

4 details all the Trojans that we designed in the target circuit,

and conclusions are drawn in Section 5.

II. PREVIOUS DETECTION APPROACHES

In order to overcome the shortages of traditional testing

methods in Trojan detection, new low-cost testing schemes

are of high priority to secure the whole design chain when

the fabrication foundry is untrusted. Several Trojan detection

schemes have already been proposed, among which two main

techniques are functional testing and side-channel fingerprint

generation. In [1], the author argues that attackers would

only choose rarely occurring events as triggers and proposes

equations to compute low frequency events as a complement

to input patterns generated by commercial ATPG tools. The

assumption here is quite weak, since as soon as attackers know

the testing scheme, they will surely do the same computation

and choose more frequently occurring patterns as triggers. [2]

is the first paper to present the idea of differentiating Trojan-

inserted chips by comparing the side-channel fingerprints

of tested chips with those generated from gold models. It

analyzed the common behavior of various types of Trojans and

demonstrated the feasibility of building effective fingerprints

for an IC family to detect Trojan-inserted ICs. Noise modeling

was used to construct the fingerprint for an IC family and

Karhunen-Loeve (KL) expansion was a computational tool to

separate the randomness and the time-variation of a random

process. This method is useful in detecting Trojans when the

Trojan circuit is large enough compared to the whole chip

area and the process variation is low. The false alarm rate

will emerge and increase quickly if the Trojan only occupies

a trivial percentage of the whole chip area and there is large

process variation.

In [5], a test strategy to detect anomalies introduced by

the Trojan in the power ports currents was proposed. This

method relies on numerous power ports to divide the whole

circuit into smaller power grids. [6] expanded this approach

by presenting four different signal calibration techniques used

to reduce the adverse effects of process and test environment

variations. Though this method is proven quite effective, it

requires many power ports to divide the whole chip into small

power grids.

In [7], path delay fingerprints were generated to differentiate

nominal chips from chips with Trojan insertion. It meets an

obstacle when the tested chip becomes more complicated, as

the delay paths and test patterns increase exponentially. It is

not easy to implement a similar method in high-end processors

with a deep-pipeline structure and large memory to store data

and instructions.

The above discussion summarizes previously proposed Tro-

jan detection methods and their limitations. One shortcoming

common to all of these papers is that the authors did not

implement practical hardware Trojans which would escape tra-

ditional detection but would still be able to destroy the chip or

leak sensitive information. Rather, as their target Trojans, they

only considered addition of hardware structures, randomly

located in the chip, which are not really capable of exhibiting

a particular malicious behavior. In other words, these added

hardware structures do not resemble what practical Trojans

would look like. Moreover, the impact of these added hardware

structures on the IC is strongly influenced by the method that

is proposed for detecting them. For example, in [2], where

global power traces are collected, the inserted Trojans include

a 16-bit counter, an 8-bit sequential comparator and a 3-bit

combinational comparator, which are large enough to consume

the power necessary for the proposed method to detect them.

Similarly, in [5], where local currents are measured, NAND

gates are used to represent Trojans and are precisely located

in place-holder areas where the actual Trojans are expected

to reside and which are covered by the current measurements

that are taken. Finally, in [7], a 2-bit comparator and a 4-

bit counter are used to represent implicit payload and explicit

payload Trojans, respectively. While these Trojans are more

concrete, it has not been demonstrated that they can evade

functional and/or structural testing, hence it is not obvious

that they constitute practical Trojans.

2009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST) 51

In summary, the target Trojans discussed in these papers

can only be regarded as a portion of a practical Trojan,

since they only reflect the power or delay impact that a

practical Trojan may incur. In order to further support the

development of appropriate detection methods, the design and

implementation of practical hardware Trojans needs to be

considered. Given that the most straightforward mechanism

for a malicious attacker is to modify the RTL design, in the

rest of this paper we investigate various attacks on a design

at the RTL level. Specifically, we examine the possibility of

designing hardware Trojans that are able to evade state-of-

the-art detection methodologies, as well as pass structural and

functional test, yet they are able to incur concrete and actual

malicious effects. Overall, eight different implementations of

hardware Trojans are proposed and their operational mecha-

nism and caused damage are detailed.

III. HARDWARE TROJANS

In order to demonstrate the efficacy of hardware Trojans

with a range of sophistication, we designed 8 types of hard-

ware Trojans (titled tro1, tro2,..., tro8 in the rest of the paper)

and implemented them in the Alpha architecture. All these

Trojans were designed on the RTL level, that is, the Alpha

HDL code has been modified. In the following sections, we

examine different characteristics of hardware Trojans and dis-

cuss practical aspects regarding tradeoffs between complexity

and overhead.

A. Payload

For a hardware Trojan to be useful, it must carry a payload.

In other words, we attempt to link the activation of the Trojan

with some deterministic event that is favorable to the attacker.

There are several categories into which hardware Trojans can

be classified according to these payloads:

1) Broadcast to the attacker some internal signals, which

are often sensitive data (e.g. the encryption key).

2) Compromise the function of the circuits (e.g. to replace

the plaintext with other preset information).

3) Destroy the chip.

Our designs, tro1, tro4, tro5, tro7,and tro8 belong to the first

group. Clearly, to an attacker, the most valuable information

in a cryptographic device is the encryption key. When the

Trojan is triggered, the key will be transmitted along with

the cipher text. The attacker, by appropriately listening to the

transmission channel, can thus acquire the key and break the

system.

Tro3 belongs to the second group, the replacement of

plaintext. With this Trojan being activated, the legitimate

receiver will still receive reasonable plaintext. For example,

whenever we input “Moscow”, it will be changed to “Boston”,

i.e., the plaintext “launch the missile targeting Moscow” will

be changed to “launch the missile targeting Boston”.

Tro2, tro6 belong to the third group, and are designed to

destroy the whole chip. This approach has the advantage of

being very difficult to be detected during functional test, as

the configured sleep time of the Trojan will often be much

longer than the testing time. So in the testing stage, Trojans

are inactivated without causing any harm to the chips.

B. Triggers

Similarly, we can classify the Trojans according to their trig-

ger, an event which enables the Trojan. This event is designed

to evade functional test by either relying on rare/atypical

events, such as undefined input sequences, or by using a

counter after a long period. For triggers, we have the following

categories:

1) The attacker can physically access the device and can

give special input to trigger the Trojan directly.

2) The Trojan is triggered internally: by a specific input

event, counter, or other signal change.

3) No trigger; the trojan is always activated.

Tro1, tro2, and tro8 belong to the first group in which

the trigger methods can be quite obscure and hard to detect

during normal testing. The most compact but useful one is to

redefine an unused key in the keyboard to trigger the Trojan.

Since only the alphanumeric characters are officially supported

by Alpha, this trigger can reasonably be expected to escape

functional test. An alternative is to use a specially designed

input string. Using a special string as the trigger should easily

escape functional testing since the input space is too large and

it is unlike that this special string will be typed accidentally.

Clearly, however, a trigger that relies on physical access is

limited in application.

The second class of triggers (tro3, tro4, tro5, tro6, tro7)

is for devices which cannot be physically accessed by an

attacker. In this case, we note that some type of internal

counter can be used as an activation mechanism for the Trojan.

For example, we can implement a counter to track the number

of transmission times in Alpha, and trigger after it exceeds a

pre-specified number. A real-time counter can also be used as

a trigger. Finally, the switch of internal signals can also be

used as the trigger, such as in tro5. In this design, whenever

the key has been changed, the Trojan will be activated. An

even more sophisticated method inserts a RS232 receiver in

order to let the attacker control the whole chip through RS232

channel.

The third group is more aggressive and configures the

Trojan so that it is always activated. It requires the payload of

the Trojan to be well hidden, i.e., by broadcasting secret infor-

mation in ways undetectable by functional test. A shortcoming

of configuring a Trojan this way is that the power usage will be

measurably higher, potentially raising suspicions during test.

Tro5 can be easily modified to fit in this group, although in

the interest of space, we do not discuss it herein.

C. Code Optimization

Along with the trigger/payload-based Trojans described

above, there are two Trojan targets which can be quite effective

and hard to detect at the RTL1.

1Note that these two kinds of Trojans platforms could be also be imple-
mented at the gate level or the transistor level.

52 2009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST)

The first is targeting unoptimized HDL code. For example,

some modules may be written in an unoptimized way and

even with the help of advanced synthesis tools, the generated

gate-level design will have significant amounts of redundant

logic. The attacker, who is already aware of the specification

of this module can rewrite the HDL code in a significantly

more compact way while performing the same functionality.

The on-chip resources saved by this optimization can then be

allocated to a Trojan. For example, in our work we rewrite the

serial-to-parallel data conversion module pt_exp.v which

saves us 128 Flip-flops. In tro2, tro7 and tro8, the original

pt_exp.v file is replaced by our own designed module to

balance the total on-chip area usage and power consumption.

The second is targeting standard or commercial modules

(IP cores). IP cores are now widely used both in academic

and commercial designs to minimize developing time. As a

reusable module, IP cores are typically designed to complete

some generic function in order to suit many different usages.

However, in most applications, not all of these functions

will be used. This leads to redundant logic which can be

optimized away by modifying the code to eliminate unused

functions. Again, the chip area saved by this modification

can be used to insert Trojans. As we will show later, the

Ps2interface.vhd module is optimized to eliminate 13

Flip-flops and 10 4-input LUTs.

In tro2, and tro3, the original Ps2interface.vhd file is

replaced by our optimized module to reduce the total on-chip

area usage and power consumption.

IV. TROJAN IMPLEMENTATIONS

A. Experimental Setup

The implementations of our Trojans on the Alpha plat-

form are performed within the Xilinx ISE Webpack 10.1

environment, using the target chip XC3S250e-4tq144 on a

Digilent Basys development board [8]. These Trojans are

located throughout the whole Alpha architecture as shown in

Figure 1 where “ T©” means the location of each Trojan.

Figure 2 summarizes all eight Trojans discussed in the rest

of the paper including their triggers, payloads, area overheads

and the likelihood they might be detected through normal

testing methods.

B. Trojan type I

Description and trigger mechanism: This Trojan is inserted

at the front-end of the design and monitors the keyboard input.

If the phrase “New Haven” is detected at the beginning of the

plaintext, the Trojan will be triggered. Whenever the Trojan

is triggered, the first block (128 bits) of the output ciphertext

will be replaced by the encryption key. The majority of the

Trojan code is located in alphatop.v module where a FSM

is inserted. Figure 3 shows the working procedure of Trojan

type I.

Platform and area consumption: The original code without

any modification was used as the platform for this Trojan.

Altogether, 1486 Flip-flops and 4320 LUTs are used which

Fig. 3. Trojan type I architecture

correspond to +0.8% and +6.8% more usage than original

design, respectively.

Implementation efficacy: The attacker who has access to the

input (keyboard) and is listening to the output channel (RS232

serial port) can easily acquire the encryption key. A remote

attacker who cannot access the device physically but can listen

to the communication channel can still acquire the key, but is

reliant on a user entering the special text as plaintext.

Limitations: As mentioned above, a special input string is

required to trigger the Trojan. Therefore, either the attacker

must have physical access to the system, or depend on the

legitimate user entering this special string. Of course, the

attacker must also have the ability to monitor the output.

Moreover, the chip area overhead will probably lead to more

power consumption, raising it to suspicious levels during test.

Although it is very unlikely, there is a non-zero probability

that the Trojan will be discovered during functional test, if

the special keyword is used to test the system. Furthermore,

when the Trojan is triggered, the legitimate receiver will still

attempt to decrypt the ciphertext which has been replaced by

the encryption key. This will result in the receiver acquiring

garbage data instead of the correct plaintext, which could also

lead to the detection of the Trojan.

C. Trojan type II

Description and trigger mechanism: This Trojan was de-

signed to reduce power usage significantly to avoid suspicious

increases in power usage due to a Trojan. Two Verilog files

were edited to remove extraneous components and reduce

space usage before the Trojan was implemented. For this

Trojan, the trigger is an originally undefined key “F12”.

Whenever, the key is pressed, the triggered Trojan will lock

and ignore any input unless the FPGA is reprogrammed.

The primary Trojan code is located in the kb2ascii.v file

where the “F12” key is defined. Figure 4 shows the working

procedure of Trojan type II.

Fig. 4. Trojan type II architecture

Platform and area consumption: The code with optimized

pt_exp.v and kb_top.v modules was used as a platform.

2009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST) 53

Fig. 2. Trojan Summary Table

Altogether, 1336 Flip-flops and 4198 LUTs are used which

are 9.4% less than the original design and 0.024% more than

original design, respectively. Clearly, using too few Flip-flops

is not problematic, as we can insert dummy FFs to match the

original design at will.

Implementation efficacy: The attacker who can access the

input can easily trigger the Trojan. A remote attacker who

cannot access the device physically is reliant on a user

mistakenly pressing the undefined key to trigger the Trojan.

Limitations: Due to the limitations of the synthesis tools, we

cannot destroy the chip physically through RTL code, i.e., by

making a connection from VDD to ground. As the Trojan can

be deactivated by simply reprogramming the device, this type

of Trojan would likely not incur serious long-term negative

effects for the user.

D. Trojan type III

Description and trigger mechanism: This Trojan is designed

for the special case where the attacker knows the usage of

the circuit and can construct a plaintext-replacement scheme

appropriately. In this Trojan, whenever the word “Moscow” is

detected in the plaintext, it will be replaced by “Boston”. The

phrase of interest and the replacement phrase can be changed

according to the usage of the Trojan and the chip. The Trojan

code is located in the alphatop.v module where a FSM

is inserted. Figure 5 shows the working procedure of Trojan

type III.

Fig. 5. Trojan type III architecture

Platform and area consumption: The code with optimized

kb_top.v module was used a platform. Altogether, 1523

Flip-flops and 4266 LUTs are used which are +3.3% and

+1.6% more than the original design.

Implementation efficacy: The attacker does not need to

access the input equipment nor does he need to monitor the

output. The selection of words to replace is critical in the

ability of the Trojan to modify the function of the system in

some way useful to the attacker.

Constraints: As mentioned above, the selection of keywords

is critical when designing the Trojan. Again, however, this

type of Trojan would succumb to exhaustive testing of the

54 2009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST)

input space during functional test. Furthermore, if TMR (Triple

Modular Redundancy) is used with three different encryption

modules (the others without the hardware Trojan) to encrypt

and transfer data, the modified result will be discarded and the

effect of the Trojan will be nullified.

E. Trojan type IV

Description and trigger mechanism: The Trojan is custom-

designed targeting the mismatched buffer sizes in the system.

The plaintext buffer size is only 1 KB, while the video buffer is

4 KB. This makes it difficult for the operator to know whether

he or she has overflowed the input buffer with too much

plaintext. When the overflow of input buffer occurs, the Trojan

is triggered and the payload is to replace the last block with

the encryption key. This approach takes advantage of a detail

in the original design: according to the design, if the input

is 1KB, the last byte will be discarded in order to transmit

the key index. So a legitimate receiver will discard the last

block as garbage. Since the receiver will discard this block, the

Trojan can simply replace the block with the entire encryption

key. The Trojan code is located in the alphatop.v module.

Figure 6 shows the working procedure of Trojan type IV.

Fig. 6. Trojan type IV architecture

Platform and area consumption: The original code without

any modification was used as a platform. Altogether, 1475

Flip-flops and 4273 LUTs are used which are +0.068% and

+1.8% more than original design.

Implementation efficacy: The attacker need not physically

access the device, but should have access to the communi-

cation channel to listen for the encryption key after a buffer

overflow has occurred.

Constraints: The attacker must continuously monitor the

communication channel, and check the last block of each

transmission burst. If a buffer-overflow test is included in the

functional test plan, it may detect this type of Trojan.

F. Trojan type V

Description and trigger mechanism: This Trojan is designed

to compromise the communication channel by hiding informa-

tion in transmissions over the RS-232 channel. In our design,

the baud rate of the serial port is changed from 9600 bps to

19200 bps. In the original design, each RS-232 packet contains

1 start bit, 8 data bits, and 2 stop bits. At the 19200 bps baud

rate, these parameters were changed to 1 start bit, 8 data bits

and 1 stop bit. This enables the Trojan to interleave other

information, i.e., the encryption key, along with the legitimate

data. For each legitimate 8-bit packet, as many as 7 bits can

be inserted. Figure 7 compares the original RS-232 package at

9600 Baud rate with the compromised channel of 19200 Baud

rate packages. The “Tro” indicates where leaking bits can be

inserted to reveal the secret. In our design, we use four of these

bits. When the key index is changed, the Trojan is triggered

to insert the encryption key into the hidden channel. The

legitimate user or functional test equipment will not observe

any difference in the output if the baud rate on the receiver is

set at 9600 bps. Thus, the only possible means for detecting

this Trojan is through comparing power consumption. The

Trojan code is located in async_transmitter.v module.

Figure 8 shows the working procedure of Trojan type V.

Fig. 8. Trojan type V architecture

Platform and area consumption: The original code without

any modification was used as a platform. Altogether, 1485

Flip-flops (0.75% more than original design) and 4255 LUTs

(+1.4% more than original design) are used.

Implementation efficacy: This is a sophisticated Trojan which

is immune to functional testing within specification parame-

ters, despite being triggered frequently. The attacks only need

to monitor the RS-232 transmission channel at the 19200 Baud

rate to acquire both the key and the ciphertext.

Constraints: Since the area overhead is insignificant, the

Trojan cannot be detected by functional testing or by power

trace testing for the majority of the time. However, when the

Trojan is triggered, the power consumption at transmission

stage can be higher than normal due to high Baud rate.

Therefore, an on-line power profile monitoring method could

potentially detect the Trojan.

G. Trojan type VI

Description and trigger mechanism: This Trojan is similar

to a time-bomb. An inserted counter will increment for each

character transmitted until it exceed a predefined number, N .

When the Trojan is triggered, the output is locked to a binary

1. The Trojan code is located in alphatop.v module. Figure

9 shows the working procedure of Trojan type VI.

Fig. 9. Trojan type VI architecture

Platform and area consumption: The original code without

any modification was used as a platform. Altogether, 1479

Flip-flops and 4204 LUTs are used which are +0.34% and

+0.17% more than original design.

Implementation efficacy: The Trojan is solely a time-bomb

which will not be activated until the count of transmissions

2009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST) 55

Fig. 7. Compromised RS232 channel

exceeds a predefined number. The attack should carefully set

the number N .

Constraints: For this Trojan, the setting of N is critical to

the whole design. A poor choice could result in detection

during functional test. Again, due to the limitation of synthesis

tools, we cannot destroy the chip physically through RTL

code, which means that when the Trojan is triggered, re-

programming is an easy way to repair the chip. However,

in a real environment, the resulting payload could result in

destroying the chip, for example by activating a path that shorts

VDD to ground.

H. Trojan type VII

Description and trigger mechanism: This Trojan is an

aggressive attempt to demonstrate how to fully control a

device through a Trojan. In this design, the originally un-

used RxD port of Basys Board is configured as the trig-

ger/control signal and one async_receiver.v module

is added to the design. Along with a Trojan trigger sig-

nal, two more control signals are inserted in the original

design: tro7_trigger_rst, and tro7_trigger_tx.

These two signals are controlled through RxD port and act

as remote versions of the Reset and Transmit buttons on the

Basys Board. A new encryption key is also inserted, which

is used to encrypt the information the Trojan transmits over

the RS-232 communications channel. For example, in our

implementation, the original encryption key is encrypted with

this key, and then broadcast across the communication channel,

enabling the attacker to acquire the encryption key. At the

same time, the legitimate user is left unaware that the system

has been compromised by the broadcast of the key, as the

encrypted key looks like a garbage block. Table I displays

a tabulation of the commands our implementation handles

over the RS-232 RxD port. The Trojan code is located in

alphatop.v and the extra async_receiver.v module.

Commands

to RS-232 RxD port Effect

Trojaneftri Reset the system

Trojanabtri Encrypt the encryption key
with the Trojan key

Trojancdtri Transmit encrypted key
on RS-232 TxD port

TABLE I

TROJAN COMMAND KEYS

Platform and area consumption: The code with an optimized

pt_exp.v module was used as a platform. Altogether, 1409

Flip-flops and 4401 LUTs are used which are 4.4% less

than original design and 4.9% more than original design,

respectively.

Implementation efficacy: Since the RxD channel in the

original design is idle, the attacker must control this channel

and monitor the TxD channel. And the tro7_trigger_rst

signal can remove any traces the attackers left to make it even

harder to detect the Trojan in daily use.

Constraints: To control the chip and trigger the Trojan, the

attacker should acquire access to the RxD port of the device,

which is more difficult than simply monitoring the output. Of

course, if the physical connection to the RxD port does not

exist, this Trojan will never be activated.

I. Trojan type VIII

Description and trigger mechanism: This Trojan was de-

signed for the occasion when the attacker does not have access

to the communications channel, but does have access to the

input device—the keyboard. The technique we demonstrate

here is one of many ways of extracting information from the

device without using the RS-232 communications channel. For

this Trojan, the trigger is the “Caps Lock” key, or any other

undefined key on the keyboard. After a system reset, when

the “Caps Lock” key is pressed, the Caps Lock LED will be

on/off to indicate a ’1’ or ’0’ as the least-significant bit of

the encryption key. The attacker need only to press the “Caps

Lock” 128 times to acquire the entire key, progressing to the

most-significant bit. The Trojan code in located in kbtop.v

and kb2ascii.v modules. Figure 10 shows the working

procedure of Trojan type VIII.

Fig. 10. Trojan type VIII architecture

Platform and area consumption: The code with an optimized

pt_exp.v module was used as a platform. Altogether, 1396

Flip-flops and 4305 LUTs are used which are 5.3% less

than original design and 2.6% more than original design,

respectively.

Implementation efficacy: This Trojan removes the need for

attackers to monitor the communication channel during an

attack. The attacker need only monitor the keyboard LED to

determine the encryption key and thus break the system.

56 2009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST)

Constraints: As mentioned above, the attackers should ac-

quire access to the input device, which may not be feasible in

many situations.

V. CONCLUSIONS

In this paper, we have explored eight different implemen-

tations of hardware Trojans. Each of these have different

combinations of triggers, payloads, as well as unique sections

of the architecture that each Trojan attacks. Most importantly,

the Trojans explored herein are designed with varying levels

of sophistication, allowing the attacker to tradeoff design time,

ability to evade detection, and payload.

Our work presented the view that current RTL designs are

indeed quite vulnerable to hardware Trojan attacks. There are

clearly many points of vulnerability that can be exploited

for malicious purposes. The designed Trojans also demon-

strated that traditional functional testing can often be useless

in detecting and preventing hardware Trojan attacks. This

provides significant impetus to improve methods for detecting

and combating hardware Trojans.

REFERENCES

[1] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty,
“Towards trojan-free trusted ics: Problem analysis and detection
scheme,” in Design, Automation and Test in Europe, 2008, pp.
1362–1365.

[2] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using ic fingerprinting,” in Security and
Privacy, IEEE Symposium on, 2007, pp. 296–310.

[3] Advanced Encryption Standard (AES) FIPS Pub 197 (2001,
Nov.)., [Online]. http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

[4] http://isis.poly.edu/csaw/embedded.

[5] R. Rad, J. Plusquellic, and M. Tehranipoor, “Sensitivity analysis
to hardware trojans using power supply transient signals,” in
Hardware-Oriented Security and Trust, 2008. HOST 2008. IEEE
International Workshop on, 2008, pp. 3–7.

[6] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic, “Power
supply signal calibration techniques for improving detection
resolution to hardware trojans,” in Computer-Aided Design,
IEEE/ACM International Conference on, 2008, pp. 632–639.

[7] Y. Jin and Y. Makris, “Hardware trojan detection using path
delay fingerprint,” in Hardware-Oriented Security and Trust,
IEEE International Workshop on, 2008, pp. 51–57.

[8] http://www.digilentinc.com.

2009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST) 57

